• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Dwell-fatigue of Titanium Alloy Ti-6AL-4V for Offshore Structures

    2018-10-12 06:28:00
    船舶力學(xué) 2018年9期

    (School of Naval Architecture and Ocean Eng,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:The fatigue peak holding load has an obvious influence on the crack growth rate of titanium alloy Ti-6Al-4V at room temperature.Therefore,the fatigue and dwell-fatigue test of titanium alloy Ti-6Al-4V under room temperature are studied in this paper,and based on the prediction model of dwell-fatigue crack growth rate,the fatigue and dwell-fatigue crack growth rate of this material are predicted as well.The results show that the stress peak holding load for 60s significantly accelerated the fatigue crack growth rate of titanium alloy Ti-6Al-4V,which is consistent with other research results of materials at home and abroad;The difference between the dwell-fatigue crack growth rate and the fatigue crack growth rate increases with the increase of stress intensity factor range.That is to say,the effect of holding load on crack growth rate increases under high stress intensity factor.The fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V are predicted based on the prediction model that research group put forward,the predicted results are in good agreement with the experimental results.

    Key words:titanium alloy;fatigue;crack growth rate;holding time

    0 Introduction

    The results of application and basic research at home and abroad show that Titanium alloys not only have high specific strength,local and uniform corrosion resistance in seawater,high fatigue performance and corrosion fatigue limit,but also have high fracture toughness and resistance to seawater stress corrosion cracking.It is an excellent marine material[-2].The research of α+ β titanium alloy Ti-6Al-4V is relatively mature,its dosage is more than half of all titanium alloys,ultra-low interstitial alloy Ti-6Al-4V has attracted wide attention.The U-nited States applies the Ti-6Al-4V to the horizontal tail shaft of the F-16 fighter.Titanium alloy Ti-6Al-4V is also used in the structure of pressure-resistant shell of deep-sea submersible.Japan’s ‘Deepwater 6 500’ uses the Titanium alloy Ti-6Al-4V,its depth of diving is 6 500 m.The Ti-6Al-4V titanium alloy is also used in the pressure resistant shell structure of‘Jiaolong’ in China,Its depth of diving is 7 062 m[3].The failure of these submersibles during service is mainly fatigue failure.In the course of actual work,the pressure-resistant shell structure bears in addition to floating and submerged load,the structure also bears the load of the working process under sea.That is,the fatigue problem of the pressure-resistant shell structure is actually a dwell-fatigue problem.

    Many studies have shown that dwell-fatigue at room temperature has a certain effect on fatigue crack growth behavior of titanium alloy.The general fatigue crack growth rate increases with the increase of maximum stress level and holding time of load,therefore,the life of dwellfatigue structure is obviously lower than that of fatigue life.Researchers at home and abroad have given many explanations for the causes of these phenomena,for example,peak stress,holding time,microstructure,temperature and hydrogen content can affect the sensitivity of titanium alloy to dwell-fatigue.This is still an inconclusive research hotspot.Therefore,it is of great engineering significance to carry out the dwell-fatigue test of titanium alloy materials.

    1 Study on prediction method of fatigue crack growth behavior

    Domestic and foreign researchers have done a lot of research on fatigue life prediction of offshore structures using fatigue crack propagation theory.Many prediction models of fatigue crack growth rate are proposed.Based on the exponential power law of fatigue crack growth rate(Paris formula)put forward by Paris in 1963,some new crack growth theories are put forward in combination with experiments by McEvily.Aiming at the limitation of Paris formula,McEvily formula is proposed,which can explain more fatigue phenomena,as Eq.(1):

    where ΔKeffthis the effective range of the stress intensity factor at the threshold level,ΔKeffis the effective range of the stress intensity factor,MPa

    On the basis of a large number of related experiments,the McEvily crack growth prediction model based on fatigue crack growth theory can not only predict the fatigue growth behavior of long cracks,but also be applicable to the fatigue small crack propagation behavior,as Eqs.(2)-(4):

    where da/dN is fatigue crack growth rate,m/cycle;KCis the plane stress fracture toughness of the material,σmaxis the maximum stress,MPa;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,R is the stress ratio;Kopmaxis the maximum stress intensity factor of macroscopic long crack at crack opening level,k is the parameters of crack closure level varying with crack length;reis the material inherent defect size;σYis the yield strength of materials;Y(a)is the geometric correction coefficients related to the shape and position of cracks.

    Although the McEvily crack propagation rate model can explain many phenomena in fatigue tests,it can be used not only for macroscopic long cracks but also for physical small cracks.But the model can only be used in the near threshold region and ideal elastic-plastic materials.It can not reflect the phenomenon of crack instability and can not predict the loadpreserving fatigue process.The results of dwell-fatigue tests[4-5]at home and abroad show that the dwell-fatigue life of titanium alloy decreases significantly compared with the fatigue life of titanium alloy when the peak stress is introduced for a period of time.The cause of this effect is still a hot research topic,but it is generally agreed that stress and loading time have great influence on crack growth behavior of titanium alloy at room temperature according to the domestic and foreign research results.Therefore,it is no longer suitable to predict the life of titanium alloy material for pressure-resistant shell of submersible only by traditional method.In order to ensure the safety of the pressure resistant structure of the submersible,it is necessary to predict the fatigue crack propagation behavior of titanium alloy at room temperature more accurately[13].In 1980,Munz innovatively divided the load-preserving and fatigue processes into load preservation processes with peak stress peaks and pure fatigue load processes with load holding time.Therefore,there are two terms in its load-preserving fatigue crack growth rate model,one is fatigue term related to cyclic load,the other is load protection term related to peak loading time and load,as Eq.(5):

    Based on the above mentioned series of prediction methods for crack propagation behavior,in order to predict the life of the hull structure of the submersible vehicle more accurately,a prediction model of loading and fatigue crack growth rate considering small crack effect is proposed[7].The prediction model divides the fatigue crack propagation process into fatigue loading process and peak load retention process,that is,the prediction model is divided into two parts:fatigue term associated with cyclic load and time-dependent load protection term.The loading time is introduced into the model,so that the influence of different loading time on the load-keeping fatigue crack growth rate can be considered.as Eqs.(6)-(8):

    where A1is a material and environmentally sensitive constant of dimensions,is the modified crack length,m;m1is a constant representing the slope of the corresponding fatigue crack propagation rate curve;n1is the parameters affecting capacity of fatigue cycle part Kmax/Kmin;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,Kminis the minimum stress intensity factor under cyclic fatigue loading,KCis the plane stress fracture toughness of the material,F is the crack tip elastoplastic correction factor;A2is the material and environmental constants related to the load-preserving part,MPa-mm1-m/2;m2is a constant of slope of crack growth rate curve related to load-preserving part;n2is a parameters that affect the capacity of the dwell-fatigue part Kmax/Kmin;tholdis the holding time under maximum stress.

    2 Experimental study on fatigue crack growth rate

    2.1 Test materials

    Due to the strength,plasticity,corrosion resistance and biocompatibility of titanium alloy Ti-6Al-4V are good,Ti-6Al-4V becomes the ace alloy in the titanium alloy industry.Many other types of titanium alloys can be considered as modification of titanium alloy Ti-6Al-4V.In recent years,the development of titanium alloys in China has become more and more rapid,and a set of titanium alloy system which is more suitable for the application and development of titanium alloys in China has been gradually formed.According to national standards GB/T 3620.1-2007,the standard chemical constituents of titanium alloy Ti-6Al-4V in China are listed in Tab.1.

    Tab.1 Chemical constituents of Ti-6Al-4V

    The density of titanium alloy Ti-6Al-4V is generally 4.5 g/cm3,60%of steel only;The standard yield strength of titanium alloy after Ti-6Al-4V annealing is also higher,which is 930 MPa,the ratio of fracture strength to density is about 210.Therefore,titanium alloy Ti-6Al-4V has the advantages of light material and high strength.In this paper,titanium alloy Ti-6Al-4V(TC4)forgings are used for dwell-fatigue crack growth rate test,and the chemical composition is shown in Tab.2.

    Tab.2 Chemical constituents of Ti-6Al-4V(TC4)(mass fraction,%)

    2.2 Fracture toughness test

    In fracture mechanics,the criterion of stress intensity factor K is widely used.The socalled K criterion is that when the stress intensity factor K of the crack reaches the fracture toughness KC,the crack will be unstable and propagate.Because the fracture toughness KCis difficult to be measured,the plane strain fracture toughness KICof the material is generally replaced.

    In the process of preparing and testing the plane strain fracture toughness KIC,it is necessary to preform the crack on the standard test piece first,and then to gradually increase the load during the loading process until the specimen breaks.The curve(P-V)between the load and the opening displacement of the crack nozzle should be recorded during the test.The standard specifies that the PQand KQare defined by using the intersection of the cut line and the curve that deviates from the curve tangent 5%(Conditional fracture toughness).The theoretical basis of the experiment is linear elastic fracture mechanics(LEFM).Therefore,the size and results of the specimen should meet the applicable range of LEFM.

    Fig.1 Tensile specimen standard

    Standard compact tensile specimen(CT test sample)were machined according to the GB/T 4161-2007 Plane Strain Fracture Toughness Test Method of Metallic Materials.The specific dimensions are shown in Fig.1.W=50 mm,B=12.5 mm,H=60 mm,S=62.5 mm,force hole diameter D=12.6 mm.

    The fracture toughness test samples of titanium alloy Ti-6Al-4V are 4 and the effective samples are 3.Marked A-1,A-2,A-3,respectively.Therefore,the fracture toughness of titanium alloy Ti-6Al-4V is calculated as the average of three.That is KIC≈76.5

    2.3 Fatigue/dwell-fatigue crack growth rate test

    The testing of crack growth rate is generally divided into two categories:one is crack propagation in elastic range;the other is crack propagation in plastic range.The zero member with high cycle and low load belongs to the former category,while the zero member with low cycle and high load belongs to the latter class.This paper focuses on a test of fatigue and dwell-fatigue crack growth rate in elastic range.A compact tensile specimen with severe stress concentration was used in the test(CT test sample).The sample has the advantages of small volume,light weight and long crack propagation distance.Empirical formula of stress intensity factor at crack tip of CT specimenas Eqs.(9)~(10):

    Before carrying out fatigue and load fatigue tests,the test specimens are uniformly prefabricated and tested.The IST 8802 type high and low temperature fatigue testing machine is adopted in the test.According to the requirements of relevant codes,the constant K method is adopted in the test.On the basis of 3-5 group pre-tests,K value is determined to be 18.6 in order to ensure the loading cycle number of precast crack is about 20 000,the best prefabrication effect can be achieved.The initial crack length is 22.5 mm,and the prefabricated crack length is 2 mm.The crack length of finished sample is 24.5 mm.

    Fig.2 Loading diagram

    Fig.3 Connection diagram between test machine and CT specimen

    IST 8802 high and low temperature fatigue testing machine is used in the fatigue crack growth rate test system.The dynamic and static load capacity of the testing machine is equal to that of the sampling rate of 10 kHz.Creep fatigue testing system is used for dwell-fatigue crack growth rate.The test process was carried out according to GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials[15].The load spectrum used in fatigue and dwellfatigue tests[8]is shown in Fig.2.The maximum load is set at 8 kN and the stress ratio R is 0.03.Means of connection between test equipment and CT specimens and fixtures are shown in Fig.3.The precision of testing machine and extensometer are all up to the national standard GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials and American standard ASTME647 Standard Test Method for Measurement of Fatigue Crack Growth Rates.

    3 Results and analysis

    Based on the theoretical knowledge of compliance method,the length of crack propagation a is measured,and the corresponding cycle number N is determined,that is the a-N curve is obtained.By using the seven point incremental polynomial method to process the experimental data,the double logarithmic da/dN curves of fatigue and dwellfatigue crack growth rate of titanium alloy Ti-6Al-4V were made according to the treated data.The curves are shown in Figs.4-6.

    Fig.4 Experimental results of fatigue crack growth rate of titanium alloy Ti-6Al-4V

    The curve of Ti-6Al-4V fatigue crack growth rate test for titanium alloy is shown in Fig.4.It can be seen from the figure that the fatigue crack growth rate test has two sets of valid data,marked as 1#,2#,respectively.The coincidence between the two groups of test data is high.From the point of view of test,it can be considered that the test data of fatigue crack growth rate is more reliable.With the increase of the range of stress intensity factor,the growth rate of fatigue crack in both groups shows an increasing trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5.

    Fig.5 is the test data of dwell-fatigue test for 30 s and 60 s.There are two valid groups of data for each group,marked as 1#,2#,respectively.It can be seen from the diagram that the two groups of data have good coincidence and strong reliability.From the da/dN-ΔK logarithmic curves in the diagram,it is shown that the crack growth rate da/dN increases with the increase of the stress intensity ΔK factor range.For the crack growth rate after the loading time is introduced,the crack growth is stable in the range of stress intensity factor ΔK<45and the rate is increasing slowly.When the range of stress intensity factor ΔK reaches 76.5it is in the stage of instability and propagation,and the crack growth rate accelerates obviously in this stage.

    Fig.5 Experimental results of Ti-6Al-4V dwell-fatigue crack growth rate for titanium alloys

    Fig.6 Summary of fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V

    In order to compare and analyze the effect of different holding time on fatigue crack growth rate of titanium alloy Ti-6Al-4V,the double logarithmic curves da/dN-ΔK of Ti-6Al-4V fatigue and dwell-fatigue crack growth rate of titanium alloy under holding time of 30 s and 60 s are given in Fig.6.It is found from Fig.6 that the holding time has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V.The dwell-fatigue crack growth rate at 30 s and 60 s is higher than that of fatigue crack propagation.When holding time is introduced,with the increasing of holding time,the dwell-fatigue crack growth rate increases linearly in the same stress intensity factor range.With the increase of the range of stress intensity factor,the difference between fatigue and dwell-fatigue crack growth rate under holding time increases gradually.It is found that the material has lower resistance to dwell-fatigue crack propagation.That is,under the same stress intensity factor ΔK,the fatigue crack growth rate of the holding time 30 s and 60 s is higher than that of the fatigue crack growth rate.In the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.Therefore,this experiment can reflect the effect of dwell-fatigue on fatigue crack growth rate.

    4 Reliability verification of prediction model for dwell-fatigue crack growth behavior

    The fatigue crack growth rate test of titanium alloy Ti-6Al-4V under different holding time is predicted by using the dwell-fatigue crack growth rate prediction model mentioned above,and the predicted crack growth rate is compared with the experimental results.The corresponding prediction model parameters[16]are shown in Tab.3.The double logarithmic curves da/dN-ΔK of forecast result and test result based on forecast model,as shown in Fig.7.

    Tab.3 Model parameters

    Fig.7 Comparison of fatigue and dwell-fatigue crack growth rates of titanium alloy Ti-6Al-4V under different holding times

    It can be seen from Fig.7 that the prediction results of Ti-6AL-4V dwell-fatigue of titanium alloy by using the dwell-fatigue crack growth rate prediction model are in good agreement with the corresponding experimental results,and the experimental values are all distributed in the predicted values.With the increase of the stress intensity factor range,the fatigue crack growth rate also increases.When the range of stress intensity factor exceeds 50the prediction results of fatigue crack growth rate are in good agreement with the experimental results.When the stress intensity factor is larger than 50the experimental results are slightly different from the predicted ones.The reason may be that the crack growth rate is in the stage of unstable growth in the middle and late stage of the experiment,and the crack growth rate fluctuates slightly,which leads to a slight deviation from the predicted results.

    With the increase of holding time,the dwell-fatigue crack propagation rate of the material increases obviously.The test results and forecast results at 60 s are higher than those when holding time is 30 s.Compared with the results of two groups of dwell-fatigue prediction,the difference between the predicted values of 60 s and 30 s is about 1.5 to 2 times.Under the same stress intensity factor range,the difference between the experimental values of 60 s and 30 s of dwell-fatigue is about 1.7 to 2.5 times.In general,the prediction formula can be used to predict the dwell-fatigue crack growth rate of Ti-6Al-4V.

    5 Conclusions

    The fatigue problem of pressure-resistant shell structure is a hot topic in recent years.In this paper,the fatigue and dwell-fatigue crack propagation rate of titanium alloy Ti-6Al-4V has been studied experimentally and predicted.The fatigue of titanium alloy Ti-6Al-4V and the holding time of 30 s and 60 s were studied.The data are classified,calculated and analyzed after the test.And the forecasting model was put forward by our research group.The prediction value of the model is compared with the test value.The following conclusions are obtained:

    (1)The fatigue and dwell-fatigue of titanium alloy Ti-6Al-4V materials were studied.The holding time of dwell-fatigue was 30 s and 60 s,respectively.According to the experimental results,with the increase of the stress intensity factor range,the fatigue and dwell-fatigue crack growth rate increased in the same trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5;

    (2)The crack propagation rate curves of fatigue and dwell-fatigue were compared and analyzed.It is known that the dwell-fatigue crack growth rate is higher than the fatigue crack growth rate under the same stress intensity factor ΔK,in the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.With the increase of holding time,the crack growth rate increases obviously.The results show that the dwell has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V;

    (3)Based on the prediction model of dwell-fatigue crack propagation proposed by our group,the dwell-fatigue crack propagation behavior of titanium alloy Ti-6Al-4V was predicted and compared with the experimental results.It is found that with the increase of holding time,the Ti-6Al-4V dwell effect of titanium alloy is obvious.The predicted crack growth rate of titanium alloy Ti-6Al-4V is in good agreement with the experimental data,which indicates that the prediction model has a good ability to predict the dwell-fatigue crack growth behavior of titanium alloy Ti-6Al-4V.Therefore,the dwell-fatigue crack growth rate prediction model proposed in this paper,considering the dwell effect,has a strong ability to predict the crack growth rate of titanium alloy Ti-6Al-4V under dwell-fatigue condition.It provides a theoretical basis for studying the fatigue life prediction of marine structures under cyclic dwell-loading.

    黄色毛片三级朝国网站| 亚洲欧美激情在线| 国产男靠女视频免费网站| a级片在线免费高清观看视频| 满18在线观看网站| 操美女的视频在线观看| av网站免费在线观看视频| 大香蕉久久成人网| 国产日韩一区二区三区精品不卡| 亚洲午夜精品一区,二区,三区| 涩涩av久久男人的天堂| 久久精品人人爽人人爽视色| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 国产成人欧美| 国产午夜精品久久久久久| 视频在线观看一区二区三区| 最近最新中文字幕大全电影3 | 国产精品 国内视频| 老司机午夜福利在线观看视频| 午夜91福利影院| 天天躁夜夜躁狠狠躁躁| av有码第一页| av片东京热男人的天堂| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 在线看a的网站| 亚洲一区高清亚洲精品| 热99国产精品久久久久久7| av天堂在线播放| 亚洲中文av在线| 一级作爱视频免费观看| 精品高清国产在线一区| 国产精品影院久久| 欧美日韩亚洲综合一区二区三区_| 三级毛片av免费| 国产激情欧美一区二区| 欧美+亚洲+日韩+国产| 日本黄色日本黄色录像| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 亚洲全国av大片| 成年人免费黄色播放视频| 青草久久国产| 人妻丰满熟妇av一区二区三区| 亚洲五月色婷婷综合| 在线观看免费视频网站a站| 国产亚洲精品久久久久5区| 极品人妻少妇av视频| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 国产午夜精品久久久久久| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区| 不卡一级毛片| 久久香蕉国产精品| www.www免费av| 中文欧美无线码| 日本 av在线| 伊人久久大香线蕉亚洲五| 国产野战对白在线观看| 女人高潮潮喷娇喘18禁视频| 18禁观看日本| 亚洲精品一二三| 色精品久久人妻99蜜桃| 免费不卡黄色视频| 最新美女视频免费是黄的| 两性午夜刺激爽爽歪歪视频在线观看 | 成年人免费黄色播放视频| 69av精品久久久久久| 视频区图区小说| 天堂影院成人在线观看| 色播在线永久视频| 亚洲中文字幕日韩| 日本 av在线| 成人亚洲精品一区在线观看| 51午夜福利影视在线观看| 成人黄色视频免费在线看| 久久久国产成人精品二区 | 宅男免费午夜| 欧美日韩乱码在线| 午夜老司机福利片| 亚洲色图综合在线观看| 亚洲色图av天堂| 欧美亚洲日本最大视频资源| 亚洲欧美精品综合一区二区三区| 国产99白浆流出| 搡老岳熟女国产| 亚洲第一青青草原| 丝袜美腿诱惑在线| 国产精品成人在线| 国产区一区二久久| 国产成人免费无遮挡视频| 国产精品一区二区精品视频观看| 亚洲专区中文字幕在线| 亚洲国产精品sss在线观看 | 日韩欧美免费精品| 久久精品人人爽人人爽视色| 免费女性裸体啪啪无遮挡网站| 在线观看免费日韩欧美大片| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 纯流量卡能插随身wifi吗| 亚洲av美国av| 亚洲精华国产精华精| 多毛熟女@视频| 欧美激情久久久久久爽电影 | 亚洲国产欧美日韩在线播放| 亚洲欧美日韩无卡精品| 亚洲全国av大片| 色在线成人网| 天天影视国产精品| 日韩成人在线观看一区二区三区| 欧美av亚洲av综合av国产av| 国产av一区二区精品久久| 88av欧美| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 天堂俺去俺来也www色官网| 99久久人妻综合| 亚洲激情在线av| 满18在线观看网站| 日本wwww免费看| 法律面前人人平等表现在哪些方面| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 久久人人97超碰香蕉20202| 国产主播在线观看一区二区| 亚洲男人天堂网一区| 久热这里只有精品99| 午夜福利在线免费观看网站| 国产精品久久久久久人妻精品电影| 男人的好看免费观看在线视频 | 免费av中文字幕在线| 搡老乐熟女国产| 在线观看舔阴道视频| 色婷婷久久久亚洲欧美| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 99在线人妻在线中文字幕| 视频区图区小说| 超碰成人久久| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 老司机亚洲免费影院| 欧美午夜高清在线| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 天堂√8在线中文| 免费在线观看亚洲国产| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 大码成人一级视频| 久久婷婷成人综合色麻豆| 国产成人精品在线电影| 日本三级黄在线观看| 国产无遮挡羞羞视频在线观看| 视频区欧美日本亚洲| 日韩有码中文字幕| 欧美国产精品va在线观看不卡| 丰满的人妻完整版| 夜夜夜夜夜久久久久| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 高清在线国产一区| 成人国产一区最新在线观看| a级毛片在线看网站| 黄色怎么调成土黄色| 国产男靠女视频免费网站| 啪啪无遮挡十八禁网站| 日韩大尺度精品在线看网址 | 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 精品福利观看| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 国产一区二区激情短视频| 国产精品一区二区三区四区久久 | 美女xxoo啪啪120秒动态图 | av福利片在线观看| 精品国产亚洲在线| 一a级毛片在线观看| 国产国拍精品亚洲av在线观看| 一区二区三区四区激情视频 | 精品久久久久久久久久免费视频| 熟妇人妻久久中文字幕3abv| 中文字幕av成人在线电影| 91麻豆精品激情在线观看国产| 一个人观看的视频www高清免费观看| 精品熟女少妇八av免费久了| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 亚洲第一欧美日韩一区二区三区| 在线a可以看的网站| 久久精品综合一区二区三区| 别揉我奶头 嗯啊视频| 国产高清视频在线播放一区| 精品久久久久久久末码| 亚洲无线观看免费| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久| 中文字幕av成人在线电影| 一个人观看的视频www高清免费观看| 99热精品在线国产| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 一级黄色大片毛片| 精品免费久久久久久久清纯| 亚洲三级黄色毛片| 欧美午夜高清在线| 午夜福利成人在线免费观看| 此物有八面人人有两片| 精品欧美国产一区二区三| 日本熟妇午夜| 90打野战视频偷拍视频| 免费观看精品视频网站| 久久久成人免费电影| 一级黄片播放器| 国产老妇女一区| 俄罗斯特黄特色一大片| 看免费av毛片| 丰满的人妻完整版| 国产69精品久久久久777片| 成人特级黄色片久久久久久久| 嫩草影院精品99| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 禁无遮挡网站| 亚洲色图av天堂| 丰满乱子伦码专区| 天堂网av新在线| 美女免费视频网站| bbb黄色大片| 亚洲av二区三区四区| 舔av片在线| 天堂影院成人在线观看| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 色尼玛亚洲综合影院| 国产精品影院久久| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 日韩中字成人| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av香蕉五月| 动漫黄色视频在线观看| 午夜福利在线在线| 免费av毛片视频| 久久亚洲真实| 夜夜夜夜夜久久久久| 日韩欧美在线乱码| 亚洲 欧美 日韩 在线 免费| 久久99热这里只有精品18| 一区二区三区四区激情视频 | 亚洲av不卡在线观看| 黄色一级大片看看| av国产免费在线观看| 一本一本综合久久| 亚洲最大成人中文| 国产精品,欧美在线| 在线观看午夜福利视频| 网址你懂的国产日韩在线| 舔av片在线| 国内精品久久久久精免费| 婷婷六月久久综合丁香| 成年免费大片在线观看| 久久热精品热| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| 制服丝袜大香蕉在线| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 如何舔出高潮| 国产av在哪里看| 麻豆成人午夜福利视频| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 婷婷丁香在线五月| 国产av在哪里看| 成人av在线播放网站| 女同久久另类99精品国产91| 国产精品久久视频播放| 激情在线观看视频在线高清| 欧美一区二区亚洲| 国产亚洲精品av在线| 亚洲内射少妇av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男人和女人高潮做爰伦理| 成年版毛片免费区| 亚洲av熟女| 一本综合久久免费| 舔av片在线| 国产av麻豆久久久久久久| 国产精品一及| 久久久久精品国产欧美久久久| 成人三级黄色视频| 成年女人毛片免费观看观看9| 此物有八面人人有两片| 美女 人体艺术 gogo| 身体一侧抽搐| 亚洲成av人片免费观看| 欧美日韩黄片免| 欧美成人一区二区免费高清观看| av福利片在线观看| 99国产精品一区二区蜜桃av| 亚洲欧美日韩东京热| 99国产综合亚洲精品| 成人精品一区二区免费| 亚洲国产欧美人成| av专区在线播放| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式| 亚洲国产精品sss在线观看| 一级黄片播放器| 国产爱豆传媒在线观看| bbb黄色大片| 日韩欧美 国产精品| 国产亚洲精品久久久com| 国产精品1区2区在线观看.| 亚洲av第一区精品v没综合| 91在线观看av| 国内毛片毛片毛片毛片毛片| 搞女人的毛片| 美女xxoo啪啪120秒动态图 | 午夜免费激情av| 在线观看舔阴道视频| 三级国产精品欧美在线观看| 成人美女网站在线观看视频| 老熟妇乱子伦视频在线观看| 国产黄片美女视频| 色噜噜av男人的天堂激情| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看 | 国内揄拍国产精品人妻在线| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 国产在线男女| 午夜福利在线在线| 精品久久国产蜜桃| 少妇人妻精品综合一区二区 | 亚洲精品久久国产高清桃花| 欧美另类亚洲清纯唯美| 黄色一级大片看看| 欧美午夜高清在线| av女优亚洲男人天堂| 免费看光身美女| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 日韩欧美一区二区三区在线观看| 亚洲avbb在线观看| 国产不卡一卡二| 性欧美人与动物交配| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 动漫黄色视频在线观看| 午夜精品在线福利| 日韩欧美 国产精品| 亚洲五月婷婷丁香| av天堂中文字幕网| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添小说| 国产精品一及| 中文在线观看免费www的网站| 欧美bdsm另类| 欧美日韩亚洲国产一区二区在线观看| 精华霜和精华液先用哪个| x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 国产真实乱freesex| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看| 欧美最新免费一区二区三区 | 99久久成人亚洲精品观看| 91av网一区二区| 最新在线观看一区二区三区| 色在线成人网| 欧美成人免费av一区二区三区| 亚洲乱码一区二区免费版| x7x7x7水蜜桃| 人人妻人人澡欧美一区二区| 日韩 亚洲 欧美在线| 免费在线观看影片大全网站| 国产淫片久久久久久久久 | 国产精品三级大全| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 看片在线看免费视频| 欧美在线黄色| 黄色日韩在线| 人人妻,人人澡人人爽秒播| 69人妻影院| 国产精品永久免费网站| 全区人妻精品视频| 淫秽高清视频在线观看| 国产精品永久免费网站| 999久久久精品免费观看国产| 一区二区三区四区激情视频 | 精品福利观看| 舔av片在线| 国产在线精品亚洲第一网站| 久久国产乱子伦精品免费另类| 99精品久久久久人妻精品| .国产精品久久| 欧美一区二区亚洲| 99精品在免费线老司机午夜| 亚洲片人在线观看| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| 亚洲欧美日韩东京热| 香蕉av资源在线| 美女高潮的动态| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 极品教师在线免费播放| 日本在线视频免费播放| 日韩欧美精品v在线| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 日韩欧美在线二视频| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 伊人久久精品亚洲午夜| 国产成人福利小说| 午夜久久久久精精品| 18禁黄网站禁片免费观看直播| 久久久国产成人免费| 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 老女人水多毛片| 亚洲精品日韩av片在线观看| 99久久精品国产亚洲精品| av在线蜜桃| 国产亚洲av嫩草精品影院| 日本成人三级电影网站| 一级作爱视频免费观看| 村上凉子中文字幕在线| 99久久成人亚洲精品观看| www.999成人在线观看| 精品久久久久久久久av| 如何舔出高潮| 亚洲av美国av| 亚洲在线自拍视频| 乱人视频在线观看| .国产精品久久| 国产亚洲精品久久久com| 好男人电影高清在线观看| 女人被狂操c到高潮| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 亚洲av日韩精品久久久久久密| 搞女人的毛片| 久久久久九九精品影院| 久久欧美精品欧美久久欧美| 亚洲久久久久久中文字幕| 国产成年人精品一区二区| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| 欧美激情国产日韩精品一区| 国产精品爽爽va在线观看网站| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 日韩欧美精品v在线| 欧美色欧美亚洲另类二区| 成人av一区二区三区在线看| 99在线视频只有这里精品首页| 国内精品美女久久久久久| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 欧美成狂野欧美在线观看| 麻豆久久精品国产亚洲av| 久久久久国内视频| 成人欧美大片| 变态另类丝袜制服| 日本一本二区三区精品| 日本精品一区二区三区蜜桃| 老司机福利观看| 午夜a级毛片| 99久国产av精品| 亚洲国产精品999在线| 国产精品伦人一区二区| 国产三级中文精品| 久99久视频精品免费| 国产精品一区二区性色av| 美女cb高潮喷水在线观看| 国产亚洲精品久久久久久毛片| 欧美xxxx黑人xx丫x性爽| 看十八女毛片水多多多| 老鸭窝网址在线观看| 亚洲av五月六月丁香网| 嫩草影院入口| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 一个人看视频在线观看www免费| 制服丝袜大香蕉在线| 日韩国内少妇激情av| 亚洲七黄色美女视频| 欧美乱色亚洲激情| 一夜夜www| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站| 亚洲av五月六月丁香网| 夜夜爽天天搞| 国产白丝娇喘喷水9色精品| 99riav亚洲国产免费| 久久精品91蜜桃| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 最近视频中文字幕2019在线8| 91在线观看av| 深爱激情五月婷婷| 韩国av一区二区三区四区| 综合色av麻豆| 91在线观看av| 亚洲av一区综合| 99久久九九国产精品国产免费| 最近中文字幕高清免费大全6 | 久久人人爽人人爽人人片va | 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 精品一区二区三区人妻视频| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 免费高清视频大片| 午夜免费男女啪啪视频观看 | 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 国产大屁股一区二区在线视频| 日韩欧美三级三区| 成人欧美大片| 欧美一区二区亚洲| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 97超级碰碰碰精品色视频在线观看| 丁香欧美五月| 精品人妻一区二区三区麻豆 | 99久久精品一区二区三区| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| 久久久久九九精品影院| ponron亚洲| 国产成人欧美在线观看| 国产主播在线观看一区二区| 亚洲人成网站高清观看| or卡值多少钱| 麻豆一二三区av精品| 国产av不卡久久| 中文资源天堂在线| 亚洲七黄色美女视频| 国产白丝娇喘喷水9色精品| 毛片女人毛片| 一区二区三区高清视频在线| bbb黄色大片| 亚洲美女黄片视频| 日本在线视频免费播放| 长腿黑丝高跟| 一本综合久久免费| 性插视频无遮挡在线免费观看| 亚洲中文字幕日韩| 国产美女午夜福利| 亚洲美女黄片视频| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 天堂av国产一区二区熟女人妻| 国产精品自产拍在线观看55亚洲| 少妇高潮的动态图| 在现免费观看毛片| 自拍偷自拍亚洲精品老妇| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 欧美中文日本在线观看视频| 少妇被粗大猛烈的视频| 淫妇啪啪啪对白视频| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 色哟哟·www| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va | 欧美绝顶高潮抽搐喷水| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 国产精品自产拍在线观看55亚洲| 亚洲av中文字字幕乱码综合| 亚洲av成人av| 欧美潮喷喷水| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| 亚洲综合色惰| 亚洲欧美日韩高清在线视频|