• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有輸入死區(qū)的分數(shù)階Victor-Carmen 系統(tǒng)的有限時間同步(英)

    2021-01-09 02:44:40sgnsgn
    工程數(shù)學學報 2020年6期
    關鍵詞:死區(qū)分數(shù)系統(tǒng)

    ?h(u(t))sgn s ≥ζ sgn s.

    1 Introduction

    Since the pioneering work of Pecora and Carroll[1], the synchronization of chaotic systems has attracted increasing interests among many researchers, due to its useful applications in secure communication, power convertors, biological systems, information processing and chemical reactions[2-9]. By now,a wide variety of control techniques have been successfully applied to synchronize chaotic systems. Zhong et al[10]has considered the synchronization control problem for fractional-order systems based on the motive sliding mode approach. Sun et al[11]has obtained the synchronization for a class of multi-scroll chaos systems, and a self-adaptive sliding mode control project has been derived. While, from a practical point of view, it is more advantageous to synchronize chaotic systems within a finite time rather than merely asymptotically. To obtain fast convergence in a control system, the finite-time control method is an effective technique. Besides, the finite-time control techniques have demonstrated better robustness and disturbance rejection properties[12]. In recent years, some researchers have applied finite-time control techniques, Yu and Zhang[13]has used finite-time control strategies to synchronize two chaotic systems with uncertainty.

    On the other hand, it has been recognized that many systems in interdisciplinary fields can be elegantly described by using fractional-order differential equations. The chaos synchronization of fractional-order systems is in great need of engineering and applications. Mao and Cheng[14]has studied the self-adaptive sliding mode synchronization issue. The chaos synchronization problem of fractional-order complex network systems has been proposed in [15]. However, the synchronization problem of the fractional-order systems in finite-time has not been dissolved and it still remains as an open and challenging problem. In practice, the effect of the dead-zone nonlinearity in control inputs can not be neglected in designing and implementing controller. Tian et al[16]has considered the finite-time synchronization problem with dead-zone input and its stability and convergence in a given finite time have been mathematically proved.

    Motivated by the above discussions, in this paper, the problem of finite-time synchronization is investigated for fractional-order Victor-Carmen systems with dead-zone input. A novel fractional-order nonsingular terminal sliding surface is proposed and its finite time stability is proved. Then, on the basis of the fractional-order Lyapunov stability theory, a robust sliding control law is derived to guarantee the occurrence of the sliding motion in finite time. An estimation of the convergence time is also given.Numerical simulations demonstrate the applicability and efficiency of the proposed fractional terminal sliding mode control technique and verify the theoretical results of the paper.

    2 System description

    In this paper, we will use the Riemann-Liouville fractional derivative. And for the reader’s convenience, we state its definition as follows.

    Definition 1[17]The Riemann-Liouville fractional derivative of order α of function f(t) is defined as

    where Γ(·) is the Gamma function and t0is the initial time.

    For convenience, we denote0Dαtby Dαtin what follows.

    Consider the following Victor-Carmen system as the master system

    where q∈(0,1), x=(x1,x2,x3)T∈R3is the system state vector of the master system,a, b, α, β, γ are the parameters, and chaos occurs in the system when α = 50, β =20, γ =4.1, a=5, b=9, q =0.873.

    The slave system is presented as follows

    where y =(y1,y2,y3)Tis the system state vector of (2), ?fi(y):R3→R is the model uncertainty,di(t)is the external disturbance,ui(t)is the controller to be designed later,and hi(ui(t)) is the dead-zone input determined by

    where h+i(·), h?i(·)(i = 1,2,3) are nonlinear functions of ui(t), u+i,u?i(i = 1,2,3)are given constants satisfying the constraint

    where β+i,β?i(i=1,2,3) are given constants.

    Assumption 1 Assume that ?fi(y)(i=1,2,3)and di(t)(i=1,2,3)are bounded by

    where δiand ρiare given positive constants.

    To solve the finite-time synchronization problem,the error between the master and slave systems is defined as e = y ?x = (e1,e2,e3)T, Therefore, the error dynamics is obtained as follows

    Lemma 1[18]Assume that a continuous, positive-definite function V(t) satisfies the following differential inequality ˙V(t)≤?pVn(t), ?t ≥t0, V(t0)≥0, where p>0 and η ∈(0,1) are two positive constants. Then, for any given t0, V(t) satisfies the following inequality

    and

    Lemma 2[17]Assume that p>q ≥0 and 0 ≤m ?1 ≤p

    Lemma 3[17]Assume that p, q ≥0 and 0 ≤m ?1 ≤p

    holds in Riemann-Liouville fractional derivatives, where m and n are two integers.

    3 Main results

    Generally,the design of a sliding mode controller for stabilizing the fractional order error system (3) has two steps. First, an appropriate sliding surface with the desired dynamics need to be constructed. Second, a robust control law is designed to ensure the existence of the sliding motion.

    In this paper, a novel nonsingular terminal sliding surface is introduced as

    where λ, μ>0.

    When the system trajectories arrive the sliding surface, it follows that si(t) = 0 and ˙si(t) = 0. Taking the time derivative of the sliding surface (4), the sliding mode dynamics is obtained as follows

    That is, the sliding mode dynamics is obtained as

    Theorem 1The terminal sliding mode dynamics (5) is stable and its state trajectories converge to zero in the finite time T1, given by

    Then it follows that

    Multiplying both sides by e2λt, we have

    Integrating both sides of the above equality from 0 to t, it is obvious that

    we get

    Thus, the proof is completed.

    Once the appropriate sliding function has been selected, the next step is to design a control law which can steer the state trajectories onto the sliding mode surface in a given time and remain on it forever. A finite-time control law is proposed as follows

    where kiis a positive constant, and σi= δi+ρi, λ, μ are designed in (5). Then the terminal sliding mode dynamics (5) is stable and its state trajectories converge to zero in a finite time T2.

    Theorem 2Consider the error systems (3) with dead-zone nonlinear inputs.Assume that the controller of the systems is chosen as(7),then the systems trajectories will converge to the sliding surface si=0 in a finite time T2, given by

    ?hi(ui(t))sgn si≥ζisgn2si.

    Multiplying both sides by |si|, we get

    When si>0, through a similar operation, the inequality (9) still holds. Substituting (9) into (8), then we can deduce that

    where k = min{k1,k2,k3}. Thus, according to Lemma 1, the system trajectories will converge to the sliding surfaces si=0, in the finite time

    Therefore, this proof is completed.

    4 Numerical simulations

    In this section, numerical examples are presented to demonstrate the effectiveness and usefulness of the proposed finite-time control technique in synchronizing two different chaotic systems with dead-zone inputs.

    Assume that the systems appear chaos attractors. We choose the parameters α=50, β =20, γ =4.1, a=5, b=9, q =0.873. In addition, the following uncertainties are considered in the simulations

    The constants are set to β+i= 0.4, β?i= 0.5, βi= 0.4, γi= 2.5, λ = 1, μ = 0.5.The initial values of the systems are randomly selected as x(0)=(1,?2,?2)T, y(0)=(1,1,?1)T.

    We can see that the systems are out of synchronization without controller in Figure 1. It can be seen that the synchronization errors converge to zero quickly,which implies that the trajectories of the slave system reach the trajectories of the master system in a finite time, as illustrated in Figure 2.

    Figure 1 State trajectories of master-slave systems without controller (q =0.873)

    Figure 2 State trajectories of master-slave systems with controller (q =0.873)

    In Figure 3 to Figure 5, we see that the faster q approaches 0.873, the sooner system error converges to zero. Obviously, the control inputs are feasible in practice.The simulation results indicate that the introduced sliding mode technique has finitetime convergence and stability in both reaching and sliding mode phases.

    Figure 3 The system errors (q =0.873)

    Figure 4 The system errors (q =0.5)

    Figure 5 The system errors (q =0.75)

    5 Conclusions

    In this paper, the problem of finite-time chaos synchronization between two different chaotic systems with dead-zone input is solved using a novel nonsingular terminal sliding mode scheme. A robust finite-time sliding mode controller is designed to ensure the occurrence of the sliding motion in a finite time. Finite-time stability and convergence of both sliding motion and reaching phase are proved and the exact values of the convergence times are given. Numerical simulations demonstrate the fast convergent property and robustness of the introduced technique. The proposed nonsingular terminal sliding manifold can be applied for a broad range of nonlinear control problems.

    猜你喜歡
    死區(qū)分數(shù)系統(tǒng)
    光伏模擬器用死區(qū)消除PWM整流器運行方式
    太陽能學報(2023年2期)2023-04-12 00:00:00
    Smartflower POP 一體式光伏系統(tǒng)
    分數(shù)的由來
    WJ-700無人機系統(tǒng)
    ZC系列無人機遙感系統(tǒng)
    北京測繪(2020年12期)2020-12-29 01:33:58
    無限循環(huán)小數(shù)化為分數(shù)的反思
    可怕的分數(shù)
    零電壓開關移相全橋的死區(qū)時間計算與分析
    連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
    算分數(shù)
    国产又色又爽无遮挡免| 内射极品少妇av片p| 久久人人爽人人爽人人片va| 精品不卡国产一区二区三区| 免费大片18禁| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 国产色爽女视频免费观看| 嘟嘟电影网在线观看| 18禁在线无遮挡免费观看视频| 久久久久久伊人网av| 国产成人午夜福利电影在线观看| 99热这里只有是精品在线观看| 国产视频首页在线观看| av在线蜜桃| 秋霞伦理黄片| 色视频www国产| 丰满乱子伦码专区| 亚洲av国产av综合av卡| 秋霞伦理黄片| 色视频www国产| 欧美成人a在线观看| 午夜福利在线在线| 亚洲av成人精品一区久久| 99久久精品国产国产毛片| 九色成人免费人妻av| 一级爰片在线观看| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲自偷自拍三级| 麻豆久久精品国产亚洲av| 亚洲天堂国产精品一区在线| 美女国产视频在线观看| 色网站视频免费| 免费黄频网站在线观看国产| 18禁在线播放成人免费| 在线观看一区二区三区| 国产在线一区二区三区精| 99久国产av精品国产电影| 九九在线视频观看精品| 小蜜桃在线观看免费完整版高清| 欧美成人精品欧美一级黄| 观看美女的网站| 欧美日韩在线观看h| 大陆偷拍与自拍| 国产探花在线观看一区二区| 人妻系列 视频| 亚洲av免费高清在线观看| 成人漫画全彩无遮挡| 午夜日本视频在线| 黄色一级大片看看| 久久久久久久久久久丰满| 亚洲精品成人av观看孕妇| 欧美性感艳星| www.色视频.com| 亚洲精品自拍成人| 99久久九九国产精品国产免费| 十八禁国产超污无遮挡网站| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| av在线亚洲专区| 成人美女网站在线观看视频| 色视频www国产| 国产亚洲av嫩草精品影院| 舔av片在线| 国产成人免费观看mmmm| 日韩av在线免费看完整版不卡| 欧美日韩综合久久久久久| 久久久精品免费免费高清| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产片特级美女逼逼视频| 亚洲国产精品成人综合色| 亚洲美女视频黄频| 人妻制服诱惑在线中文字幕| 男人爽女人下面视频在线观看| 免费观看无遮挡的男女| 久久久久久久久大av| 永久免费av网站大全| 大香蕉久久网| 波多野结衣巨乳人妻| 黄色欧美视频在线观看| 51国产日韩欧美| 欧美成人a在线观看| 欧美性感艳星| 国产在线男女| 少妇被粗大猛烈的视频| 可以在线观看毛片的网站| 亚洲精品成人久久久久久| 国产视频内射| 青春草亚洲视频在线观看| av在线蜜桃| 欧美日本视频| 久久久a久久爽久久v久久| 免费看日本二区| 精品欧美国产一区二区三| 九九久久精品国产亚洲av麻豆| 日本wwww免费看| 日韩av不卡免费在线播放| 国产 一区精品| 黄片无遮挡物在线观看| 日韩一本色道免费dvd| av网站免费在线观看视频 | 亚洲欧洲日产国产| 在线观看一区二区三区| 国产精品国产三级专区第一集| 两个人的视频大全免费| 在线天堂最新版资源| 天堂影院成人在线观看| 免费看日本二区| 成人性生交大片免费视频hd| 欧美xxxx黑人xx丫x性爽| 免费电影在线观看免费观看| 午夜福利在线在线| 夜夜看夜夜爽夜夜摸| 女人被狂操c到高潮| 国产黄a三级三级三级人| 在线观看一区二区三区| 日韩一本色道免费dvd| 成年女人在线观看亚洲视频 | 免费大片18禁| 欧美不卡视频在线免费观看| 国产伦在线观看视频一区| 日日啪夜夜爽| 欧美3d第一页| 简卡轻食公司| 六月丁香七月| 两个人视频免费观看高清| 亚洲av一区综合| 男女国产视频网站| 亚洲国产欧美在线一区| 亚洲国产av新网站| 3wmmmm亚洲av在线观看| 国产三级在线视频| 国内精品一区二区在线观看| 国产伦理片在线播放av一区| 免费在线观看成人毛片| 精品欧美国产一区二区三| 少妇猛男粗大的猛烈进出视频 | 国产人妻一区二区三区在| 亚洲欧美日韩卡通动漫| 午夜亚洲福利在线播放| 婷婷色av中文字幕| 欧美性感艳星| 国产精品1区2区在线观看.| 精品久久久噜噜| 午夜精品国产一区二区电影 | 视频中文字幕在线观看| 日日撸夜夜添| 免费观看a级毛片全部| 午夜日本视频在线| 九九在线视频观看精品| 欧美激情国产日韩精品一区| 国产探花在线观看一区二区| 日韩电影二区| 99热这里只有精品一区| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 日韩精品有码人妻一区| 日日摸夜夜添夜夜添av毛片| 国产日韩欧美在线精品| 午夜福利成人在线免费观看| 精品久久久久久久末码| 久久综合国产亚洲精品| 亚洲精品久久午夜乱码| 看非洲黑人一级黄片| 日本色播在线视频| 国产免费福利视频在线观看| 亚洲成色77777| 麻豆成人av视频| 日本熟妇午夜| av专区在线播放| 欧美97在线视频| 国产在视频线在精品| 蜜桃久久精品国产亚洲av| 国产片特级美女逼逼视频| 毛片女人毛片| 高清欧美精品videossex| 国模一区二区三区四区视频| 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 黄片无遮挡物在线观看| 九草在线视频观看| 国产成人精品福利久久| 久久久久久久久久成人| 青青草视频在线视频观看| 中文精品一卡2卡3卡4更新| 老司机影院毛片| 草草在线视频免费看| 欧美变态另类bdsm刘玥| 人妻少妇偷人精品九色| 91午夜精品亚洲一区二区三区| 国产精品久久视频播放| 日韩强制内射视频| 777米奇影视久久| 免费不卡的大黄色大毛片视频在线观看 | 国产成人精品婷婷| 亚洲精品成人久久久久久| 欧美三级亚洲精品| 日韩,欧美,国产一区二区三区| 国产精品麻豆人妻色哟哟久久 | 麻豆av噜噜一区二区三区| 欧美xxxx性猛交bbbb| 亚洲精品国产av成人精品| 97人妻精品一区二区三区麻豆| 伦理电影大哥的女人| 最近中文字幕2019免费版| 成人高潮视频无遮挡免费网站| 一个人看视频在线观看www免费| 亚洲,欧美,日韩| 精品久久久久久成人av| 舔av片在线| 欧美一区二区亚洲| 校园人妻丝袜中文字幕| 欧美日韩视频高清一区二区三区二| 一级二级三级毛片免费看| 别揉我奶头 嗯啊视频| 久久精品国产鲁丝片午夜精品| 精品亚洲乱码少妇综合久久| 中文在线观看免费www的网站| 九九爱精品视频在线观看| 伊人久久国产一区二区| 观看免费一级毛片| 日本一本二区三区精品| 又黄又爽又刺激的免费视频.| 啦啦啦韩国在线观看视频| 日韩成人伦理影院| 少妇熟女aⅴ在线视频| 老司机影院毛片| 三级男女做爰猛烈吃奶摸视频| 麻豆成人av视频| h日本视频在线播放| 内射极品少妇av片p| 特级一级黄色大片| 白带黄色成豆腐渣| 国产高清不卡午夜福利| 边亲边吃奶的免费视频| 人妻夜夜爽99麻豆av| 精品国产露脸久久av麻豆 | 欧美日韩综合久久久久久| 1000部很黄的大片| 日韩人妻高清精品专区| 哪个播放器可以免费观看大片| 成人国产麻豆网| 黑人高潮一二区| 听说在线观看完整版免费高清| 青青草视频在线视频观看| 91在线精品国自产拍蜜月| 国产亚洲av嫩草精品影院| 亚洲精品日本国产第一区| 99热6这里只有精品| 欧美丝袜亚洲另类| 久久99热6这里只有精品| 干丝袜人妻中文字幕| 天堂影院成人在线观看| 国产探花在线观看一区二区| 搞女人的毛片| 大陆偷拍与自拍| 三级国产精品欧美在线观看| 亚洲精品日韩在线中文字幕| 免费观看a级毛片全部| 七月丁香在线播放| 国产男人的电影天堂91| 激情 狠狠 欧美| 久久韩国三级中文字幕| 一本一本综合久久| 少妇熟女欧美另类| 中文字幕免费在线视频6| 真实男女啪啪啪动态图| 看黄色毛片网站| 亚洲,欧美,日韩| av天堂中文字幕网| 亚洲第一区二区三区不卡| 日韩精品青青久久久久久| 亚洲精品,欧美精品| 男女下面进入的视频免费午夜| 亚洲欧洲国产日韩| 一边亲一边摸免费视频| 18禁在线播放成人免费| 亚洲伊人久久精品综合| 欧美精品国产亚洲| 最近视频中文字幕2019在线8| 天天躁日日操中文字幕| 日韩亚洲欧美综合| 晚上一个人看的免费电影| 国产一区有黄有色的免费视频 | 精品久久久噜噜| 成人一区二区视频在线观看| 国产伦一二天堂av在线观看| 最近中文字幕2019免费版| 中文天堂在线官网| 国产真实伦视频高清在线观看| 亚洲美女视频黄频| 国产成人精品婷婷| 国产视频首页在线观看| 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 特大巨黑吊av在线直播| 国产乱人偷精品视频| 乱码一卡2卡4卡精品| 在线播放无遮挡| 国产一区有黄有色的免费视频 | 国产免费一级a男人的天堂| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 自拍偷自拍亚洲精品老妇| 亚洲国产av新网站| 2018国产大陆天天弄谢| 舔av片在线| 成人无遮挡网站| 三级国产精品片| 十八禁网站网址无遮挡 | 又大又黄又爽视频免费| 国产午夜精品久久久久久一区二区三区| 七月丁香在线播放| 天美传媒精品一区二区| 夫妻午夜视频| 亚洲婷婷狠狠爱综合网| 久久精品久久久久久久性| 蜜桃亚洲精品一区二区三区| 日韩视频在线欧美| 午夜免费观看性视频| 高清视频免费观看一区二区 | 日本-黄色视频高清免费观看| 免费av不卡在线播放| 全区人妻精品视频| 美女大奶头视频| 国产国拍精品亚洲av在线观看| 超碰av人人做人人爽久久| 成人性生交大片免费视频hd| 中文字幕人妻熟人妻熟丝袜美| 欧美激情久久久久久爽电影| 欧美日韩在线观看h| 2018国产大陆天天弄谢| 欧美一区二区亚洲| 午夜福利视频精品| 丰满乱子伦码专区| 2021少妇久久久久久久久久久| 日本黄色片子视频| 黄色欧美视频在线观看| 人人妻人人澡人人爽人人夜夜 | 少妇高潮的动态图| 我的老师免费观看完整版| 午夜福利在线在线| 在线免费观看的www视频| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 少妇人妻精品综合一区二区| 韩国av在线不卡| 亚洲国产精品国产精品| 麻豆成人av视频| ponron亚洲| 久久久久久伊人网av| 69人妻影院| 亚洲国产精品成人久久小说| 精品久久久久久成人av| 亚洲无线观看免费| 成人毛片60女人毛片免费| 精品国产三级普通话版| 亚州av有码| 少妇裸体淫交视频免费看高清| 床上黄色一级片| 成人午夜高清在线视频| 青春草国产在线视频| 十八禁国产超污无遮挡网站| 91狼人影院| 亚洲精品自拍成人| 亚洲av男天堂| 视频中文字幕在线观看| 最近的中文字幕免费完整| av黄色大香蕉| 国产一区二区三区综合在线观看 | 精品久久久久久电影网| 亚洲怡红院男人天堂| 亚洲精品国产成人久久av| 插阴视频在线观看视频| 欧美zozozo另类| 亚洲人与动物交配视频| 内地一区二区视频在线| 免费看不卡的av| 欧美区成人在线视频| 亚洲国产精品sss在线观看| 五月玫瑰六月丁香| 国产黄色小视频在线观看| 国产精品久久视频播放| 国产视频内射| 赤兔流量卡办理| 在线a可以看的网站| 亚洲精品,欧美精品| 一级a做视频免费观看| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 午夜视频国产福利| 伦理电影大哥的女人| 日本黄大片高清| 日韩欧美三级三区| 国精品久久久久久国模美| 国产亚洲一区二区精品| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 三级国产精品欧美在线观看| 亚洲综合色惰| 综合色丁香网| 亚洲四区av| 久久久色成人| 尤物成人国产欧美一区二区三区| 天天一区二区日本电影三级| 久久久久久九九精品二区国产| 欧美精品国产亚洲| 性色avwww在线观看| 干丝袜人妻中文字幕| 伊人久久精品亚洲午夜| 国产乱人视频| 免费观看性生交大片5| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品 | 精品一区二区三卡| 熟妇人妻久久中文字幕3abv| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| av国产久精品久网站免费入址| 国产在视频线在精品| 亚洲最大成人中文| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 午夜精品在线福利| 久久亚洲国产成人精品v| 深夜a级毛片| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载 | 男女边摸边吃奶| 性色avwww在线观看| 日韩在线高清观看一区二区三区| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 伦理电影大哥的女人| 亚洲综合精品二区| 久久久亚洲精品成人影院| 美女高潮的动态| 在线观看一区二区三区| 99热这里只有是精品50| 91久久精品国产一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲国产最新在线播放| 午夜福利高清视频| 久久草成人影院| www.色视频.com| 夜夜爽夜夜爽视频| 欧美性感艳星| 在线a可以看的网站| 成年人午夜在线观看视频 | 午夜老司机福利剧场| 1000部很黄的大片| 美女高潮的动态| 热99在线观看视频| 免费人成在线观看视频色| 欧美性感艳星| 国产高清不卡午夜福利| 熟女人妻精品中文字幕| 亚洲精品成人久久久久久| 精品人妻一区二区三区麻豆| 亚洲国产欧美人成| 秋霞伦理黄片| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 在线免费观看的www视频| 国产黄色免费在线视频| 五月天丁香电影| 亚洲欧美精品自产自拍| 亚洲四区av| 亚洲国产高清在线一区二区三| 精品久久久久久久末码| 成人亚洲精品一区在线观看 | 干丝袜人妻中文字幕| 特级一级黄色大片| 少妇被粗大猛烈的视频| 亚洲精品日本国产第一区| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 丝袜喷水一区| 一区二区三区高清视频在线| 国产精品三级大全| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 国产精品一区二区三区四区久久| 色视频www国产| 亚洲丝袜综合中文字幕| 中文欧美无线码| 午夜免费激情av| 国产在视频线在精品| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 中文乱码字字幕精品一区二区三区 | 免费少妇av软件| 2022亚洲国产成人精品| 日本爱情动作片www.在线观看| 亚洲在线自拍视频| 国产精品无大码| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 亚洲最大成人手机在线| 欧美日韩一区二区视频在线观看视频在线 | 91在线精品国自产拍蜜月| av在线老鸭窝| 国产成年人精品一区二区| av在线老鸭窝| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说 | 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| videos熟女内射| 中文天堂在线官网| 国产精品久久久久久精品电影| 简卡轻食公司| 免费看日本二区| av在线蜜桃| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| av播播在线观看一区| 国产精品熟女久久久久浪| 特级一级黄色大片| 97超视频在线观看视频| 七月丁香在线播放| 97精品久久久久久久久久精品| 99热这里只有精品一区| 国产有黄有色有爽视频| 18禁在线播放成人免费| 最近最新中文字幕大全电影3| 纵有疾风起免费观看全集完整版 | 精品人妻视频免费看| 我要看日韩黄色一级片| 免费黄频网站在线观看国产| 亚洲自拍偷在线| 97热精品久久久久久| 亚洲最大成人中文| 天天躁日日操中文字幕| 国产老妇女一区| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 免费av观看视频| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片| 亚洲av.av天堂| 国产综合懂色| 亚洲18禁久久av| 日韩欧美一区视频在线观看 | 国产综合精华液| 国产伦理片在线播放av一区| 国产在视频线精品| 久久国产乱子免费精品| 国产乱人偷精品视频| 亚洲精品456在线播放app| 成人欧美大片| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频 | 爱豆传媒免费全集在线观看| 成年女人在线观看亚洲视频 | 听说在线观看完整版免费高清| 少妇的逼水好多| 乱人视频在线观看| 人妻制服诱惑在线中文字幕| videossex国产| av在线蜜桃| 99热这里只有是精品在线观看| 草草在线视频免费看| 一级毛片aaaaaa免费看小| 最近最新中文字幕免费大全7| 国产激情偷乱视频一区二区| 青青草视频在线视频观看| 久久鲁丝午夜福利片| 两个人视频免费观看高清| 三级经典国产精品| 精品久久久精品久久久| 人妻夜夜爽99麻豆av| 国产中年淑女户外野战色| freevideosex欧美| 三级国产精品片| 日本午夜av视频| 亚洲人成网站在线播| 国产精品一及| 日韩视频在线欧美| 男女国产视频网站| 人妻制服诱惑在线中文字幕| 亚洲高清免费不卡视频| 精品一区二区三区人妻视频| 国产麻豆成人av免费视频| 免费观看a级毛片全部| 别揉我奶头 嗯啊视频| 亚洲av成人av| 欧美高清成人免费视频www| 一二三四中文在线观看免费高清| 在线天堂最新版资源| 最近的中文字幕免费完整| 美女主播在线视频| 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 久久久久久久久大av| 一级毛片aaaaaa免费看小| 成人漫画全彩无遮挡| 国产探花极品一区二区| 美女内射精品一级片tv| 国产免费一级a男人的天堂|