• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Partly Smoothing-Regularization Method for Mathematical Programs with Vanishing Constraints

    2021-01-07 01:24:16DONGYanfeng董艷鳳CHUDejian初德建HULinyu胡林玉HUQingjie胡清潔
    應(yīng)用數(shù)學(xué) 2021年1期

    DONG Yanfeng(董艷鳳),CHU Dejian(初德建) HU Linyu(胡林玉),HU Qingjie(胡清潔)1,2,

    (1.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin 541004,China; 2.Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin 541004,China; 3.School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China)

    Abstract: In this paper,we consider the mathematical programs with vanishing constraints (MPVC).We present a pseudo Huber function based smoothing-regularization method for this problem,which only makes the part ones of the vanishing constraints be smoothed.For the new smoothed problem,we show that the Mangasarian-Fromovitz constraints qualification (MFCQ) holds under some conditions.We also analyze the convergence behavior of the smoothing-regularization method,i.e.,an accumulation point of the stationary points sequence for the smoothing-regularization problem is a T-stationary point,and obtain some sufficient conditions such that an accumulation point of the stationary points sequence for the smoothing-regularization problem is M-or S-stationarity,respectively.Finally,some preliminary numerical results show that the proposed method may be promising.

    Key words: Mathematical program with vanishing constraint; T-stationarity; Mstationarity; S-stationarity; Numerical result

    1.Introduction

    We consider a mathematical program with vanishing constraints as follows:

    where f : Rn→R,g : Rn→Rm,h : Rn→Rpand H : Rn→Rlare all twice continuously differentiable functions.

    The MPVC was firstly introduced to the optimization community in [1].It plays an important role in some fields such as topology optimization design problems in mechanical structures[1],a robot path-finding problem with logic communication constraints in robot motion planning[19],scheduling problems with disjoint feasible regions in power generation dispatch[20]and mixed-integer nonlinear optimal control problems[21-22].The major difficulty in solving the problem (1.1) is that it does not satisfy the standard constraint qualification at some feasible point so that the standard optimization methods are likely to fail for this problem.The problem is closely related to the mathematical programs with equilibrium constraints (MPEC).Theoretically,it is possible to formulate an MPVC as an MPEC and vice versa.However,these formulations have certain disadvantages like the introduction of additional solutions[1]or the violation of MPEC type constraint qualifications[13],which cause some troubles when the MPEC formulation is solved by some classical algorithms.Moreover,the dimension of the MPEC formulation is larger than the original MPVC.These observations motivate us to consider it as an independent class of interesting mathematical programs.

    The MPVC has attracted much attention in the recent years.Some theoretical properties and numerical tricks for MPVC can be found in [2-16].Among these numerical methods,the smoothing method is one of the important methods.Recently,Kanzow et al.[2]have proposed a smoothing-regularization approach to mathematical programs with vanishing constraints.Their basic idea is to reformulate the characteristic constraints of the MPVC via a nonsmooth function and to regularize the feasible set with the aid of a certain smoothing parameter.The convergence behavior of a sequence of stationary points of the smoothed and regularized problems has been investigated.

    In this paper,based on the pseudo Huber function,a new smoothing-regularization method for the mathematical programs with vanishing constraints is presented.Different from the one in [2],only the part ones of the vanishing constraints are smoothed.Moreover,for the new smoothed problem,we show that the MFCQ holds under some conditions.We prove that an accumulation point of the stationary points sequence for the smoothingregularization problem is a T-stationary point,and investigate some sufficient conditions such that an accumulation point of the stationary points sequence for the smoothed problem is Mor S-stationarity.Finally,some numerical results are given.

    The rest of the paper is organized as follows: In Section 2,we review some concepts of nonlinear programming and MPVC,and present the new smoothing-regularization method for (1.1).In Section 3,we give the analysis of the convergence property.In Section 4,some preliminary numerical results are shown.

    For convenience of discussion,some notations to be used in this paper are given.The i-th component of G will be denoted by Gi,X denote the feasible set of the problem (1.1).For a function g :Rn→Rmand a given vector α ∈Rn,we use

    to denote the active index set of g at z ∈Rnand the support of α,respectively.

    2.Preliminaries

    Firstly,we will introduce some definitions of nonlinear programming.It is an optimization problem of the form

    where f :Rn→R,g :Rn→Rm,h:Rn→Rpare all continuously differentiable functions.

    We denote the feasible set of problem (2.1) by F.

    Definition 2.1A point∈F is called a stationary point for(2.1)if there are multipliers λ,μsuch that(,λ,μ)is a KKT point of(2.1),i.e.,the multipliers satisfy λ ∈andμ∈Rpwith λigi()=0 for all i=1,2,··· ,m,and

    Definition 2.2A feasible pointfor (2.1) is said to satisfy the MFCQ if the gradients{?hi()|i=1,2,··· ,p} are linearly independent and there is a d ∈Rnsuch that

    Definition 2.3A finite set of vectors {ai|i ∈I1}∪{bi|i ∈I2} is said to be positive linearly dependent if there exists (α,β)0 such that

    If the above system only has a solution (α,β)=0,we say that these vectors are positive linearly independent.

    By using Motzkin’s theorem of the alternatives in [18],we can obtain the following property.

    Lemma 2.1A point∈F satisfies the MFCQ if and only if the gradients

    are positive-linearly independent.

    Now,we give the following sets of active constraints for an arbitrary∈X for the problem (1.1):

    Definition 2.4[23]A feasible pointfor (1.1) satisfies the MPVC-MFCQ if and only if

    are linearly independent and there exists a vector d ∈Rnsuch that

    Definition 2.5[23]Letbe a feasible point for the problem (1.1),then.

    Similar to Lemma 2.1,we can also deduce that the following result holds.

    Lemma 2.2A point∈X satisfies the MPVC-MFCQ if and only if the gradients

    are positive-linearly independent.

    In the next disscusion of this section,we shall propose a new smoothing-regularization method for the problem (1.1).

    Firstly,it is easy to see that b ≥0,ab ≤0 is equivalent to b ≥0,a+b ≤|a-b|.Hence,we can obtain a smooth approximation to the part vanishing constraints by constructing a smoothing approximate expression of the absolute value function |·|.

    To achieve such a goal,the first order methods usually replace the absolute value function|·| by the following Huber function[25],where

    where ε >0.The smaller the parameter ε of the Huber function is,the better the function approximates the absolute value function.Obviously,the Huber function is only first-order differentiable,thus this approximation approach is not applicable to second-order methods.Fortunately,the pseudo Huber function which has derivatives of all degrees[26]is a smooth version of the Huber function.This function parameterized with ε >0 is

    Hence,φε(·) can be used to construct a smooth approximation to the function |·|.

    Based on the above discussions,it is clear that the MPVC (1.1) can be approximated as a smoothed optimization problem:

    where

    We denote the feasible set of (2.11) by Xε.

    3.Convergence Analysis

    In this section,we will consider the limiting behavior of stationary points sequence of the new smoothing-regularization problem.Firstly,we discuss the constraint qualification of(2.11).

    For convenience of discussion,we give the following notations:

    For the subsequent analysis,the following lemma is necessary.Its proof is elementary,and is omitted.

    Lemma 3.1Letbe feasible point of (1.1).The following relationships hold:

    The following theorem shows that the Mangasarian-Fromovitz constraints qualification for the problem (2.11) holds under some conditions.

    Theorem 3.1Letbe feasible for (1.1) such that the MPVC-MFCQ is satisfied at.Then there exit a neighborhood U()ofand a sufficiently small>0 such that the problem(2.11) satisfies the standard MFCQ at any point z ∈U()∩Xεfor any ε ∈(0,).

    ProofSince g,h,G,H are all continuous,there exist a neighborhood U1() and a positive constantsuch that for any ε ∈(0,1) and any point z ∈U1()∩Xε,we have

    In each of the two wings of the castle there was astaircase which led to a place below the entrance, from whence thereis access to a low, vaulted cellar

    Noting that the MPVC-MFCQ holds,we have the gradients

    are positive-linearly independent by Lemma 2.2.Take into account that

    and

    It’s known that Hi(z)>0,Gi(z)≈0 for all i ∈I+0() as well as Hi(z)≈0,Gi(z)>0 for all i ∈I0+() if z is close to.Similar to the proof of Proposition 2.2 in [17],utilizing Lemma 3.1,we know that there is a neighborhood U2() and an2>0 such that the set of vectors

    are positive-linearly independent for all z ∈U2()∩Xεand ε ∈(0,2).

    We now claim that the standard MFCQ holds for the problem (2.11) if z ∈U()∩Xε,where U() = U1()∩U2() and ε ∈(0,),= min{1,2}.To this end,take an arbitrary z ∈U()∩Xε.In view of Lemma 2.1,we have to show that

    with μi∈Rpand λ,β,γ ≥0 holds with the null vector only.Taking into account Lemma 3.1,we rewrite (3.4) as

    Applying the positive linear independence of vectors from (3.3) to (3.5),in view of (3.1),one gets

    Theorem 3.2Let {εk} be a positive sequence which is convergent to zero.Suppose that {zk} is a sequence of stationary points of the problem (2.11) with ε = εk.Ifis an accumulation point of the sequence {zk} such that the MPVC-MFCQ holds at,thenis a T-stationary point of the problem (1.1).

    ProofIt follows from Theorem 3.1 that there exist Lagrange multiplier vectors λk,μk,γksuch that

    From (3.6),we have

    In view of the definitions ofand,we can define

    and

    Note that the definitions ofand.(3.6) can be rewritten as

    We now prove that the sequenceis bounded.

    Combined with (3.8),it yields

    i.e.,

    where λ ≥0 and for all k ∈K large enough,

    The following object is to prove that (λ,μ,β,)0.

    which contradicts the assumption=0.

    By Lemma 2.2,we know that (λ,μ,β,)0 contradicts the fact that the MPVCMFCQ holds at.Thus,we have proved that the sequenceis bounded.

    Without loss of generality,we now suppose that the sequence

    Since f,g,h,G and H are continuously differentiable,we have

    Finally,from the definitions ofandLemma 3.1 and Definition 2.5,it follows thatis the T-stationary of the original MPVC (1.1).

    Next,we will analyse the sufficient conditions on M-stationarity.

    Theorem 3.3Let {εk} be a positive sequence which is convergent to zero.Suppose that zkis a stationary point of the problem (2.11) with ε=εk.Ifis an accumulation point of the sequence{zk}such that the MPVC-MFCQ holds atand max{Hi(zk),εk}=o(Gi(zk))or max{Gi(zk),εk}=o(Hi(zk)) for all i ∈I00()∩IΦε(zk),thenis a M-stationary point of the problem (1.1).

    ProofFrom Theorem 3.2,we can obtain thatis a T-stationary point of the problem(1.1).In order to show thatis an M-stationary point of the problem (1.1),we only need to prove that= 0 for i ∈I00().If i ∈I00()∩IΦε(zk),then Gi(zk)+Hi(zk)+εk=Hence,

    In view of that max{Hi(zk),εk} = o(Gi(zk)) or max{Gi(zk),εk} = o(Hi(zk)) for all i ∈I00()∩IΦε(zk),one gets

    From the proof of Theorem 3.1 and= 2,we can obtain that {γk} is bounded.Thus,for all i ∈I00()∩IΦε(zk).This implies thatis an M-stationary point of the problem (1.1).

    In order to obtain the strong stationarity of the accumulation point,we give the following assumption.

    This assumption is similar to the asymptotic weak nondegeneracy assumption which was defined for the MPEC[10].Combining it and the MPVC-MFCQ,it is strong enough to guarantee S-stationarity of a accumulation point of the sequence generated by the smoothingregularization method.

    Theorem 3.4Let {εk} be a positive sequence which is convergent to zero.Suppose that zkis a stationary point of the problem (2.11) with ε=εk.Ifis an accumulation point of the sequence {zk} such that the MPVC-MFCQ and Assumption (*) hold at,thenis a S-stationary point of the problem (1.1).

    ProofTo prove the above result,we only need to prove that= 0,≥0 for i ∈I00().Obviously,Assumption (*) implies that supp(*)∩I00() = ?and supp(*)∩I00()=?.Hence,is a S-stationary point of the problem (1.1).

    4.Numerical Results

    In this section,we report the numerical results about the proposed approach.We also compare our method with the smoothing regularization approach which was proposed by Kanzow et al.[2]In the numerical implementation,we use the build-in MATLAB R2012b function fmincon which is a publicly available software to solve (2.11).To perform numerical test,we use the two test problems considered in the thesis of Hoheisel[23].Our numerical experiments are divided into two sections.

    In the first section of numerical experiments,we consider the following example:

    This model is based on the mechanical structure topology optimization problem,where x1,x2≥0 represents the cross-sectional area of different truss bars,respectively.A comprehensive analysis of the variables in the mechanical structure model can be found in [24].If the problem (4.1) is considered as a pure mathematical model,then it can be proved that x*=(0,0)T,x+=(0,5)Tare all strongly stationary points[2].Obviously,the point x*is the global minimizer of the problem.Although,from the view of the practical applications,the point of the cross-sectional area of the bar being zero is no practical significance,in our test,we only consider the point x+,since it will be interesting whether these methods can find it.

    Firstly,we make a test of different starting points for two problem formulations which are corresponding to our method and the one of Kanzow et al.During the numerical experiment,we select the staring points x1,x2∈{-5,-4,··· ,20},and select ε = 0.001.The following Fig.4.1 and Fig.4.2 illustrate their convergence behavior.In the two figures,we use “*”to indicate the termination point approximating to x*= (0,0)T,and “+” to indicate the termination point approximating to x+= (0,5)T.From the two figures,we can see that the termination points of the two methods are different for the different starting points,from the view of practical significance,the proposed method is better than the one of Kanzow et al.

    Fig.4.1 Termination points for the method of Kanzow et al.

    Fig.4.2 Termination points for our method

    Secondly,we next investigate the influence of the choice of ε for two problem formulations.For this purpose,we fix the starting point x0=(0.5,0.5)T.The results are displayed in Tab.4.1 and Tab.4.2.From the two tables,we can see that the iteration numbers of our method is smaller than the ones of the method of Kanzow et al.Furthermore,the accuracy of our method is higher than the ones of the method of Kanzow et al.

    Tab.4.1 Results of the method of Kanzow et al.for different values of ε

    Tab.4.2 Results of our method for different values of ε

    In the second section of numerical experiments,we consider the following practical problem,i.e.,ten-bar truss model:

    where f is the external force applying at the bottom right hand nodal point which pulls vertically to the ground with ‖f‖ = 1,liis the length of the potential bar,aiis the corresponding cross-sectional area,u ∈R8is a vector of the nodal displacements points,is a global stiffness matrix,σi(a,u) == 1,2,··· ,10 denotes the stress of the i-th potential bar.

    During our numerical experiment,we choose that li=1,i ∈{1,3,5,6,8,10},li={2,4,7,9},c = 10,= 100,= 1,Young’s modulus E = 1.The vector γiis contained in Tab.4.3.We choose ε=0.001 and the starting point(a,u)T=(0,0)T∈R18.

    Tab.4.3 Vectors γi for ten-bar truss

    For comparison,we show the full data containing the stress values in Tab.4.4 and Tab.4.5.From the two tables,we can see that the resulting structures generated by the two methods consist of 5 bars,and are all same as the ones in [23].Our method requires 42 iterations to terminate at the point (a*,u*),but the method of Kanzows et al.requires 142 iterations.

    Tab.4.4 Results of the method of Kanzow et al.for ten-bar truss problem

    Tab.4.5 Results of our method for ten-bar truss problem

    黄色日韩在线| 偷拍熟女少妇极品色| 一区二区三区乱码不卡18| 三级国产精品片| 精品人妻一区二区三区麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄 | 国产中年淑女户外野战色| 国产色爽女视频免费观看| 国产精品1区2区在线观看.| 亚洲成人中文字幕在线播放| 搡老妇女老女人老熟妇| 免费看av在线观看网站| 不卡视频在线观看欧美| 欧美bdsm另类| 久久6这里有精品| 欧美3d第一页| 国产伦一二天堂av在线观看| 午夜福利在线在线| 国产精品精品国产色婷婷| 三级毛片av免费| 国产色爽女视频免费观看| 成人亚洲欧美一区二区av| 精华霜和精华液先用哪个| 99九九线精品视频在线观看视频| 韩国av在线不卡| 国产在线男女| 日韩一本色道免费dvd| 高清av免费在线| 国产亚洲av嫩草精品影院| 99久久人妻综合| 精品酒店卫生间| 中文欧美无线码| 嫩草影院精品99| 中文字幕精品亚洲无线码一区| 国产探花在线观看一区二区| 久久精品人妻少妇| 中国国产av一级| 精品人妻熟女av久视频| 少妇的逼水好多| 男的添女的下面高潮视频| 长腿黑丝高跟| 成人av在线播放网站| 亚洲av成人精品一区久久| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清专用| 可以在线观看毛片的网站| 1000部很黄的大片| 亚洲av福利一区| 男人和女人高潮做爰伦理| av在线老鸭窝| 三级国产精品欧美在线观看| 男女国产视频网站| 麻豆乱淫一区二区| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线| 校园人妻丝袜中文字幕| 高清毛片免费看| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 老女人水多毛片| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 午夜福利在线观看吧| 国产亚洲最大av| 在线免费观看不下载黄p国产| 人人妻人人看人人澡| 亚洲精品日韩在线中文字幕| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 国产亚洲精品av在线| 国产av在哪里看| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 中文欧美无线码| 国产黄色小视频在线观看| 免费看日本二区| 岛国毛片在线播放| 日韩大片免费观看网站 | 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 日本av手机在线免费观看| 国产单亲对白刺激| 小说图片视频综合网站| 少妇的逼好多水| 能在线免费观看的黄片| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 全区人妻精品视频| 成人特级av手机在线观看| 99热6这里只有精品| kizo精华| 亚洲乱码一区二区免费版| 嫩草影院新地址| 成人亚洲精品av一区二区| 女人久久www免费人成看片 | 国产探花在线观看一区二区| 亚洲欧美精品专区久久| 18禁裸乳无遮挡免费网站照片| 国产又黄又爽又无遮挡在线| 天堂中文最新版在线下载 | 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 热99re8久久精品国产| 国产精品不卡视频一区二区| 午夜a级毛片| 午夜免费激情av| 国产探花在线观看一区二区| 男人舔奶头视频| 一级二级三级毛片免费看| 国产v大片淫在线免费观看| 99久久九九国产精品国产免费| 亚洲美女视频黄频| 国产精品一区www在线观看| 亚洲人成网站在线观看播放| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 91久久精品国产一区二区成人| 亚洲图色成人| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 欧美成人免费av一区二区三区| 网址你懂的国产日韩在线| av免费在线看不卡| 免费在线观看成人毛片| 波野结衣二区三区在线| 一级毛片电影观看 | 国产高潮美女av| 91久久精品国产一区二区三区| 超碰97精品在线观看| 色综合色国产| 亚洲国产欧洲综合997久久,| 国产精品一二三区在线看| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 18禁动态无遮挡网站| 国产精品1区2区在线观看.| 精品午夜福利在线看| 久久精品夜色国产| 亚洲av二区三区四区| 亚洲国产欧洲综合997久久,| 欧美成人精品欧美一级黄| 在线a可以看的网站| 国产成年人精品一区二区| 国产成人aa在线观看| 国产探花极品一区二区| 五月玫瑰六月丁香| 国产精品伦人一区二区| 成人毛片60女人毛片免费| 中国国产av一级| 欧美高清性xxxxhd video| 亚洲电影在线观看av| 精品久久国产蜜桃| 直男gayav资源| 亚洲国产高清在线一区二区三| 黄片无遮挡物在线观看| 亚洲成人中文字幕在线播放| 在线天堂最新版资源| 国产亚洲5aaaaa淫片| 亚洲欧洲日产国产| 五月玫瑰六月丁香| 成人av在线播放网站| 男女那种视频在线观看| 免费av不卡在线播放| 日韩精品青青久久久久久| 精品久久国产蜜桃| 人妻系列 视频| 乱码一卡2卡4卡精品| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 亚洲人与动物交配视频| 联通29元200g的流量卡| 又粗又爽又猛毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 99久国产av精品国产电影| 老女人水多毛片| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美三级三区| 日本一二三区视频观看| 亚洲国产精品国产精品| av.在线天堂| АⅤ资源中文在线天堂| 99热6这里只有精品| av在线亚洲专区| 亚洲精品成人久久久久久| 日韩av在线大香蕉| 级片在线观看| 国产午夜福利久久久久久| 久久久精品94久久精品| 一级av片app| 黄色配什么色好看| 精品久久久久久电影网 | 久久精品国产亚洲av天美| 波野结衣二区三区在线| 亚洲精品乱久久久久久| 内射极品少妇av片p| 久久99蜜桃精品久久| 听说在线观看完整版免费高清| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 日本色播在线视频| 91久久精品国产一区二区成人| 亚洲图色成人| 亚洲精品aⅴ在线观看| 国产高清国产精品国产三级 | 国产伦在线观看视频一区| 国产不卡一卡二| 能在线免费看毛片的网站| 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站 | 纵有疾风起免费观看全集完整版 | 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 黄色欧美视频在线观看| 中文字幕av成人在线电影| 少妇裸体淫交视频免费看高清| 99久久人妻综合| 两个人的视频大全免费| 九九热线精品视视频播放| 熟女人妻精品中文字幕| 国产午夜精品论理片| 久久久久精品久久久久真实原创| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 黄色日韩在线| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 日本-黄色视频高清免费观看| 免费电影在线观看免费观看| 午夜爱爱视频在线播放| 亚洲国产日韩欧美精品在线观看| 最新中文字幕久久久久| av卡一久久| 国产大屁股一区二区在线视频| 天堂中文最新版在线下载 | 国产精品福利在线免费观看| 少妇被粗大猛烈的视频| 欧美成人a在线观看| 亚洲精品一区蜜桃| 国产精品1区2区在线观看.| 日日撸夜夜添| 久久久久网色| 亚洲成av人片在线播放无| 国产精品一区二区性色av| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 黄色日韩在线| 亚洲国产欧美在线一区| 久久久久性生活片| 99热全是精品| 欧美人与善性xxx| 国产爱豆传媒在线观看| 国产成人91sexporn| 最后的刺客免费高清国语| 国产av一区在线观看免费| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看 | 欧美成人精品欧美一级黄| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 亚洲五月天丁香| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 免费黄网站久久成人精品| 亚洲成人av在线免费| 久久久久久久久大av| 亚洲高清免费不卡视频| 精品久久久久久久久久久久久| 亚洲欧美精品自产自拍| 精品久久久久久久久av| 99热全是精品| 秋霞伦理黄片| 纵有疾风起免费观看全集完整版 | 日产精品乱码卡一卡2卡三| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 国产白丝娇喘喷水9色精品| 九九久久精品国产亚洲av麻豆| 插阴视频在线观看视频| 日韩视频在线欧美| 久久精品人妻少妇| 免费大片18禁| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看 | 国产淫语在线视频| 日本五十路高清| 日日摸夜夜添夜夜爱| av黄色大香蕉| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 成人鲁丝片一二三区免费| 亚洲经典国产精华液单| 亚洲av成人av| 少妇人妻精品综合一区二区| av在线亚洲专区| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 99久国产av精品| 日产精品乱码卡一卡2卡三| 成人性生交大片免费视频hd| 亚洲av日韩在线播放| 亚洲va在线va天堂va国产| 色综合色国产| 一个人观看的视频www高清免费观看| av在线亚洲专区| 丰满乱子伦码专区| 天堂av国产一区二区熟女人妻| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 热99在线观看视频| 久久精品国产亚洲av天美| eeuss影院久久| 最近2019中文字幕mv第一页| 久久热精品热| 在线免费十八禁| 亚洲第一区二区三区不卡| 六月丁香七月| 在线播放无遮挡| 日韩精品有码人妻一区| 亚洲人成网站在线播| 纵有疾风起免费观看全集完整版 | 天天躁日日操中文字幕| 久久久久久久久久成人| 午夜亚洲福利在线播放| 99热全是精品| 欧美一区二区精品小视频在线| 99久国产av精品国产电影| 插逼视频在线观看| 毛片女人毛片| 天堂中文最新版在线下载 | 国产成年人精品一区二区| videos熟女内射| 日本wwww免费看| 晚上一个人看的免费电影| 村上凉子中文字幕在线| 久久草成人影院| 欧美日韩在线观看h| 国产亚洲一区二区精品| 美女大奶头视频| 欧美丝袜亚洲另类| 亚洲真实伦在线观看| 免费黄色在线免费观看| 国产乱人视频| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 久久久久网色| 白带黄色成豆腐渣| 国产成人a∨麻豆精品| 精品酒店卫生间| 亚洲aⅴ乱码一区二区在线播放| 人妻制服诱惑在线中文字幕| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 色综合色国产| 能在线免费看毛片的网站| 国产老妇女一区| 一边摸一边抽搐一进一小说| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| 国产成人精品久久久久久| 日本欧美国产在线视频| 国产高潮美女av| 成人av在线播放网站| 久久久久久九九精品二区国产| 人妻少妇偷人精品九色| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲精品自拍成人| 欧美xxxx性猛交bbbb| 久久精品人妻少妇| 美女高潮的动态| 久久99精品国语久久久| 亚洲欧美精品综合久久99| 少妇被粗大猛烈的视频| 在线播放国产精品三级| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久韩国三级中文字幕| 在线a可以看的网站| 一区二区三区乱码不卡18| 亚洲国产高清在线一区二区三| 大香蕉97超碰在线| 久久热精品热| 亚洲一区高清亚洲精品| 日韩精品有码人妻一区| av线在线观看网站| 日韩大片免费观看网站 | 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| kizo精华| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 国产免费视频播放在线视频 | av女优亚洲男人天堂| 人体艺术视频欧美日本| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 深爱激情五月婷婷| 欧美一级a爱片免费观看看| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区 | 成人一区二区视频在线观看| 亚洲怡红院男人天堂| 国产中年淑女户外野战色| 欧美日韩综合久久久久久| 色哟哟·www| 精品久久久久久久久久久久久| 国产真实伦视频高清在线观看| 99久久精品国产国产毛片| 亚洲国产精品合色在线| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| 免费搜索国产男女视频| 中文资源天堂在线| 草草在线视频免费看| 国产v大片淫在线免费观看| 纵有疾风起免费观看全集完整版 | 美女xxoo啪啪120秒动态图| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 日韩高清综合在线| av在线亚洲专区| 床上黄色一级片| 国产在视频线在精品| 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 日本一二三区视频观看| 精品国产一区二区三区久久久樱花 | 亚洲伊人久久精品综合 | 大话2 男鬼变身卡| 春色校园在线视频观看| 最近中文字幕2019免费版| 日韩欧美国产在线观看| 你懂的网址亚洲精品在线观看 | 国产成人午夜福利电影在线观看| 日韩制服骚丝袜av| 韩国高清视频一区二区三区| 老司机影院毛片| 综合色丁香网| 亚洲在线自拍视频| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 精品久久久久久久人妻蜜臀av| 亚洲成人精品中文字幕电影| 亚洲精品影视一区二区三区av| 国产一级毛片在线| 在线观看av片永久免费下载| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 欧美成人免费av一区二区三区| 我的女老师完整版在线观看| 秋霞伦理黄片| 91在线精品国自产拍蜜月| 国产高清不卡午夜福利| 水蜜桃什么品种好| 黄片wwwwww| 日韩欧美国产在线观看| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 亚洲av日韩在线播放| 99热这里只有是精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品一区二区三区免费看| 国产亚洲最大av| 大香蕉久久网| 国产片特级美女逼逼视频| 汤姆久久久久久久影院中文字幕 | 国产日韩欧美在线精品| 中国国产av一级| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 欧美性猛交╳xxx乱大交人| 直男gayav资源| 汤姆久久久久久久影院中文字幕 | 日韩欧美精品v在线| 99热全是精品| 日韩人妻高清精品专区| 亚洲四区av| 国产av码专区亚洲av| 色播亚洲综合网| 国产久久久一区二区三区| 26uuu在线亚洲综合色| 人妻系列 视频| ponron亚洲| 简卡轻食公司| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 欧美成人a在线观看| 黄色一级大片看看| 免费看美女性在线毛片视频| 尾随美女入室| 亚洲最大成人av| 99久久精品一区二区三区| 亚洲精品色激情综合| 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 免费看av在线观看网站| 国产极品天堂在线| 如何舔出高潮| 少妇的逼好多水| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 美女大奶头视频| 欧美一级a爱片免费观看看| 观看美女的网站| 天堂中文最新版在线下载 | 中国国产av一级| 精品不卡国产一区二区三区| 三级国产精品片| 我的女老师完整版在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 亚洲真实伦在线观看| 国产大屁股一区二区在线视频| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品影视一区二区三区av| 国产高潮美女av| 亚洲人成网站在线播| 国国产精品蜜臀av免费| 成年版毛片免费区| 中文字幕精品亚洲无线码一区| 精品国产三级普通话版| 少妇的逼水好多| 一区二区三区免费毛片| 一区二区三区高清视频在线| 九九爱精品视频在线观看| 丰满乱子伦码专区| 最近中文字幕2019免费版| 秋霞在线观看毛片| 久久久久精品久久久久真实原创| 国产午夜精品一二区理论片| 18禁在线无遮挡免费观看视频| 亚洲精品久久久久久婷婷小说 | 美女大奶头视频| 亚洲三级黄色毛片| 欧美zozozo另类| 又粗又爽又猛毛片免费看| 在线播放国产精品三级| 我要看日韩黄色一级片| 插逼视频在线观看| 一级av片app| 床上黄色一级片| 人人妻人人澡人人爽人人夜夜 | 国产av一区在线观看免费| 亚洲av电影在线观看一区二区三区 | 校园人妻丝袜中文字幕| 插阴视频在线观看视频| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 亚洲成av人片在线播放无| 精品免费久久久久久久清纯| 亚洲,欧美,日韩| 六月丁香七月| 日本黄色视频三级网站网址| 亚洲国产色片| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 国产淫语在线视频| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 国产成人91sexporn| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 日韩成人伦理影院| 卡戴珊不雅视频在线播放| 九草在线视频观看| 午夜福利视频1000在线观看| 日本免费一区二区三区高清不卡| 色视频www国产| 久久久成人免费电影| 国产成人a区在线观看| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 亚洲精品自拍成人| 99热这里只有精品一区| 97超视频在线观看视频| 精品久久久久久久人妻蜜臀av| 成人无遮挡网站| 深夜a级毛片| 波多野结衣巨乳人妻| 大香蕉97超碰在线| 亚洲欧美成人综合另类久久久 | 九九热线精品视视频播放| 亚洲电影在线观看av| 免费黄网站久久成人精品| 久久综合国产亚洲精品|