• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boundary Value and Initial Value Problems with Impulsive Terms for Nonlinear Conformable Fractional Differential Equations

    2021-01-07 01:23:30ZHOUBibo周碧波ZHANGLingling張玲玲BAISang白桑
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:碧波

    ZHOU Bibo(周碧波),ZHANG Lingling(張玲玲),BAI Sang(白桑)

    (1.College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,China; 2.Department of Mathematics,Lvliang University,Lvliang 033000,China; 3.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)

    Abstract: In this paper,we are concerned with the existence and uniqueness of positive solutions for two kinds of nonlinear conformable fractional differential systems.By means of the fixed point theorems of sum-type operators and mixed monotone operators based on the cone theory,our results can not only guarantee the existence of a unique positive solution,but also be applied to construct an iterative scheme for approximating it.Finally,some examples are given to illustrate the main results.

    Key words: Existence and uniqueness; Sum-type operator; Mixed monotone operator;Cone theory; Impulsive

    1.Introduction

    In the past decades,fractional c alculus and its potential applications have gained considerable popularity and importance,mainly because fractional calculus has become a powerful tool for the description of memory and heredity properties of various materials and processes.As fractional differential equation models are more realistic and practical than the classical integer order models,there are a large number of papers and monographs that deal with various phenomena of science and engineering in fractional calculus.For details,see[1-4]and the references therein.

    Two types of fractional derivatives,namely Riemann-Liouville and Caputo,are very famous,many scholars have done a lot of researches on various problems of fractional differential equations based on these two definitions.Mathematicians prefer the Riemann-Liouville fractional derivative because it is amenable to many mathematical manipulations.In contrast,physicists and engineers prefer Caputo fractional derivative.Fractional differential equations is gradual to develop into an important subject in the mathematical analysis area.For more history and development,we refer to the monographs [8-9,13,18].

    Recently,in [10],Khalil defined a new fractional derivative called ”the conformable fractional derivative”.Compared with Riemann-Liouville and Caputo fractional derivative,this new definition is well-behaved and it just depends on the basic limit definition.Namely,for a function f :(0,∞)→R the conformable fraction derivative of order 0 <α <1 of f at t >0 was defined byand the fraction derivative at 0 is defined asThe new definition seems to be a natural extension of the usual integer derivative,and it satisfies the major properties of the integer derivative.In [12],by using the definition of the new fractional derivative,the authors investigated the existence of solution for a class of initial value problems of conformable differential equation as follows:

    where f : [a,b] × R →R is a continuous function,and Tαx(t) denotes the conformable fractional derivative of x at t of order α.For the fist time in the literature of conformable fractional calculus,the authors introduce the notion of tube solution.

    Batarfi et al.[16]investigated the three-point boundary value problems for a class of conformable fractional differential equations

    where Tαis the conformable fractional derivative operator of order α ∈(1,2],D is the ordinary derivative operator,f : [0,1]×R →R is a known continuous function,λ and β are all real numbers.By means of the fixed-point theorem in cone,some existence results of linear system and nonlinear system are obtained.

    In [17],the authors studied the following boundary value problem of nonlinear fractional differential equation with p-Laplacian operator:

    where 1 <α <2 is a real number,φpis p-Laplacian operator and φp(s) = |s|p-2s,Tαis the conformable fractional derivative operator.By the use of an approximation method and fixed point theorems on cone,some existence and multiplicity results of positive solutions were acquired.

    Motivated and inspired by the above research work,we are concerned with conformable fractional differential equations as follows:

    and

    For the system(1.1),by using sum-type operator methods,we examine the existence-uniqueness and the monotone iterative sequence of positive solutions.For the system (1.2) with impulsive terms,by using mixed monotone fixed point theorem,we investigate the existence and uniqueness of positive solution.Our result can not only guarantee the existence of unique positive solution,but also be applied to construct an iterative scheme for approximating it.

    2.Preliminaries

    In this section,we list some basic notations,definitions in ordered Banach spaces.For the convenience of the reader,we refer to [5-6,19] for details.

    A nonempty closed convex set P ?E is a cone if it satisfies:

    (I1) x ∈P,λ ≥0 ?λx ∈P;

    (I2) x ∈P,-x ∈P ?x=θ.

    Suppose that(E,‖·‖)is a real Banach space which is partially ordered by a cone P ?E,that is x ≤y if and only if y-x ∈P.If x ≤y and xy,then we denote x <y or y >x.By θ we denote the zero element of E.

    For all the x,y ∈E,the notation x ~y meas that there exists λ >0 and μ >0 such that λx ≥y ≥μx.Clearly ~is a equivalence relation.Giving h >θ,we denote by Phthe set Ph={x ∈E |x ~h}.It is easy to see that Ph?P is convex and λPh=Phfor all λ >0.Ifθ and h ∈,it is clear that Ph=P.

    Definition 2.1[11]The conformable fractional derivative staring from a of a function f :[a,∞)→R of order 0 <α <1 is defined by

    When a=0 we write Tα,if the α order conformable fractional derivative exists,then we say f is α-differentiable.

    Definition 2.2[11]The conformable fractional integral staring from a of a function f :[a,∞)→R is defined by

    when integral is the usual Riemann improper integral,and α ∈(0,1).

    Definition 2.3[15]Let D = P,or D =and γ be a real number with 0 ≤γ <1.An operator A:P →P is said to be γ-concave if it satisfies

    Definition 2.4[17]An operator A:P →P is said to be sub-homogeneous if it satisfies

    Definition 2.5[14]A : P ×P →P is said to be a mixed monotone operator if A(x,y)is increasing in x and decreasing in y,that is,u1,v1,u2,v2∈P and u1<u2,v1>v2,implies that A(u1,v1)≤A(u2,v2).Element x ∈P is called a fixed point of A if A(x,x)=x.

    Lemma 2.1[15]Let P be a normal cone,A : P →P be an increasing operator and B :P →P be a decreasing operator.Assume that

    (I) For any x ∈P and t ∈(0,1),there exist φi(t)∈(t,1)(i=1,2) such that

    (II) There exists h0∈Phsuch that Ah0+Bh0∈Ph.

    Then,

    1) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤Au0+Bv0≤Av0+Bu0≤v0;

    2) The operator equation Ax+Bx=x has a unique solution x*in Ph;

    3) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=Axn-1+Bnn-1,yn=Ayn-1+Bxn-1,n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    Lemma 2.2[9]A : P ×P →P is a mixed monotone operator,for ?γ ∈(0,1),there exist a function φ(γ)∈(γ,1) such that

    A(tx,t-1y)≥φ(γ)A(x,y),t ∈(0,1),x,y ∈P.

    Assume that there exist h ∈P such that A(h,h)∈Ph.Then,

    1) A:Ph×Ph→Ph;

    2) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤A(u0,v0)≤A(v0,u0)≤v0;

    3) The operator equation A(x,x)=x has a unique solution x*in Ph;

    4) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    3.Bound Value Problems

    Lemma 3.1Let f,g ∈C[(0,1)×R+,R+].Then u ∈C[0,1] is a solution to (1.1) if and only if u is the solution to the following integral equation:

    where

    ProofLet P = {u | u(t) ≥0,?t ∈[0,1]} and u(t) is a solution of conformable fractional differential equation (1.1).We integrate the both sides of equation (1.1),so we have the following results

    Letting t=1,by (1.1) and (3.3) we can know

    We can get the following equation by combining (3.3) and (3.4).

    The proof is complete.

    Theorem 3.1Assume that f(t,u(t))+g(t,u(t))0 and

    (H1) f,g : [0,1]×[0,+∞) →[0,+∞) is continuous,f(t,u) is increasing and g(t,u) is decreasing in u ∈[0,+∞) for fixed t ∈[0,1];

    (H2) For any x ∈P and t*∈(0,1),there exist φi(t*)∈(t*,1)(i=1,2) such that

    Then the equation(1.1)has a unique positive solution u*.Moreover,for any initial value u0,v0∈Ph,constructing successively the following sequences,

    we have un(t)→x*(t) and vn(t)→x*(t) as n →+∞.

    ProofLet

    and

    It is easy to know that A : P →P is an increasing operator and B : P →P is a decreasing operator by the condition(H1),(3.5)and(3.6).We know that the equation(1.1)is equivalence to sum operator equation Au+Bu=u by Lemma 3.1.

    Step 1 We prove A(t*u)≥φ1(t*)Au andBu.

    By the condition (H2) of Theorem 3.1,we can know

    Step 2 We prove there exist h0∈Phsuch that Ah0+Bh0∈Ph.

    and

    From the above conclusion we can get

    It means that(γ3+γ5)h ≤A(h0)+B(h0)≤(γ4+γ6)h,that is,(A+B)(h0)∈Ph.According to Lemma 2.1,we know that the operator equation Au+Bu=u has a unique positive solution x*in Ph,and there exist u0,v0∈Phand γ ∈(0,1) such that

    And for any initial value u0,v0∈Ph,constructing successively the sequences

    we have un→u*,vn→u*as n →∞.

    Corollary 3.1Assume that

    (H1)′f : [a,b]×[0,+∞] →[0,+∞] is continuous and increasing with respect to the second argument,f(t,0)0;

    (H2)′for any x ∈P and t ∈(0,1),there exist φ3(t) ∈(t,1) such that f(x,tu) ≥φ3(t)f(x,u).

    Then the problem

    has a unique positive solution u*.Moreover,for any initial value u0∈Ph,constructing successively the sequence

    we have un(t)→u*(t) as n →+∞.

    4.Initial Value Problems with Impulsive Terms

    Throughout this subsection,we use the following notation.

    Let J =[0,1],R+=(0,∞),f ∈[J ×R+×R+,R+],0 <t1<t2<...<tm<1.△u|t=tkdenotes the jump of u(t) at t = tk,and Δu|t=tk= u()-u(),where u() and u()represent the right and left limits of u(t) at t = tk,respectively.Also,Ikis a given function in C[R+×R+,R+].

    Let PC[J,R] := {x | x : J →R,x(t) is continuous at ttk,and left continuous at t = tk,x() exists,k = 1,2,...m}.Then,we can easily find that PC[J,R] is a Banach s pace with norm

    Lemma 4.1Let f ∈C[J ×R+×R+,R-],then u ∈PC[J,R]∩C1[J′,R] is a solution to (1.2) on J if and only if u ∈PC[J,R] is the solution to the following integral equation:

    ProofIf t ∈J0,we take α time integral for the first equation on both of (1.2),the following contents can be obtained,

    If t ∈J1,we take α time integral for the first equation on both of(1.2),then the following contents can be obtained,

    If t ∈Jk,the following conclusions can be obtained,

    So we get,

    Then,we can know the integral form solution (1.2) is (4.1).

    Now let’s go on to prove (4.1) to meet the various equations of (1.2).

    If t ∈J0,let t=0,by (4.1) we can know that u(0)=u0.

    If t ∈J1,we take a α time conformable derivative on both sides of (4.1):

    By subtracting the two equations in (4.3) and (4.4) ,then we can obtain

    So it is to know,when t ∈J1,(4.1) meets all kinds of (1.2).In the same way,when t ∈Jk,we can prove that (4.1) meet all kinds of (1.2) too.That is (4.1) and (1.2) is completely equivalent,the proof is completed.

    Theorem 4.1Assume that

    (H3)f :J×R+×R+→(-∞,0]for all t ∈J and x,y ∈R+,also f(t,x,y)is nonincreasing in x for each t ∈J and y ∈R+and is nondecreasing in y for each t ∈J and x ∈R+.Moreover,<0 for all t ∈J.

    (H4) For each k =1,2,...,m,Ik:R+×R+→R+.Ik(x,y) is nondecreasing in x for each y ∈R+and is nonincreasing in y for each x ∈R+.

    (H5) For all γ ∈(0,1),there exist φ1(γ),φ2(γ)∈(γ,1) such that

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J.Moreover for any initial x0,y0∈Ph,constructing successively the following sequences,

    we have xn→x*and yn→x*as n →+∞.

    ProofIn order to show the existence-uniqueness of the solution to (1.2),we define an operator A:PC[J,R]×PC[J,R]→PC[J,R] by

    Then,we infer from (H3),(H4) and (4.6) that

    Step 1 We show there exist φ(γ) ∈(γ,1] such that A(γu,γ-1v) ≥φ(γ)A(u,v) for any u,v ∈P and γ ∈(0,1).

    Put φ(γ) = min{φ1(γ),φ2(γ)},γ ∈(0,1).Then we see from (H5) that φ(γ) ∈(γ,1).Therefor for any γ ∈(0,1) and x,y ∈,from (H3),(H4) and (H5),we have

    which implies that A(γx,γ-1y)(t)≥φ(γ)A(x,y)(t),?x,y ∈,γ ∈(0,1).

    Step 2 We prove there exist h ∈P with hθ such that A(h,h)∈Ph.

    Set a function h by

    Then,we can easily obtain that?t ∈J.Let

    then,0 ≤r1≤r2.From (H3),(H4) and (4.8),it follows that

    Also,we have

    Thus,we observe that

    which implies that A(h,h)∈Ph.

    By argument as above,we see that the operator A:×→defined by (4.6) satisfies all conditions of Lemma 2.2.Therefore,we conclude that the operator A has a unique fixed point in,hence there exist a unique positive solution to(1.2)on J.Moreover for any initial x0,y0∈,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    Corollary 4.1Assume that (H3),(H4) hold and

    (H5)′Let α1,α2∈(0,1),for all γ ∈(0,1).There exist γα1,γα2∈(γ,1) such that

    f(t,γx,γ-1y)≤γα1f(t,x,y),Ik(γx,γ-1y)≥γα2Ik(x,y),

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J,Moreover for any initial x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    ProofLet φ1(γ)=γα1and φ2(γ)=γα2.We can get the above conclusion by Theorem 3.2.

    5.Applications

    As applications,two examples are presented to illustrate our main results.

    Example 5.1

    Conclusion 5.1The boundary value problem (5.1) has a unique positive solution in Ph,where

    ProofIn this example,we haveLet

    Obviously,f,g :[0,1]×[0,+∞)→[0,+∞) are continuous,f(t,x) is increasing and g(t,x) is decreasing in x ∈[0,+∞) for fixed t ∈[0,1].Beside,for λ ∈(0,1),t ∈(0,1),x ∈[0,+∞),letting φ1(λ)=φ2(λ)=λ,we have

    Hence all the conditions of Theorem 3.1 are satisfied.An application of Theorem 3.1 implies that the problem (5.1) has a unique positive solution in Ph.

    Example 5.2

    Conclusion 5.2The initial value problem for conformable fraction differential equations systems (5.2) with impulsive terms admits a unique positive solution in Ph,where h(t) =and the unique positive is continuously differentiable on

    ProofLet J = [0,1],f(x,y) = -2(1 + x(t))- 2(1 + y(t))Clearly,f(t,x,y) is decreasing in x for y ≥0 and increasing in y for x ≥0.Also,let I1(x,y) =(1+x(t))+(1+y(t))-and we know I1(x,y) is increasing in x for y >0 and is decreasing in y for x ≥0.

    f(t,γx,γ-1y)=-2(1+γx(t))-2(1+γy(t))-≤φ(γ)f(t,x(t),y(t)),?x(t)>0,y(t)>0,

    I1(γx,γ-1y)=(1+γx(t))+(1+γy(t))-≥φ(γ)I1(x(t),y(t)),?x(t)>0,y(t)>0.

    Therefore,we see that condition (H3),(H4) and (H5) hold.Hence,applying Theorem 4.1 to (5.2),we can get a unique positive solution to (5.2) on [0,1].

    猜你喜歡
    碧波
    聽松榭步韻杜工部《宿江邊閣》
    碧波一樹
    唐 風(fēng)
    秋 景
    浩浩碧波潤(rùn)江淮——洪澤湖
    虹橋碧波太平湖
    江淮法治(2020年4期)2020-06-05 12:52:56
    點(diǎn)絳唇·蓮
    碧波蕩漾珊瑚海
    10 Digestive Tract
    搡女人真爽免费视频火全软件| 人人妻人人爽人人添夜夜欢视频 | 22中文网久久字幕| 夫妻性生交免费视频一级片| 国产伦理片在线播放av一区| 99国产精品免费福利视频| 亚洲中文av在线| 国产av精品麻豆| 国产有黄有色有爽视频| 午夜福利在线观看免费完整高清在| 国产永久视频网站| 久久99精品国语久久久| 午夜福利在线在线| 精品国产乱码久久久久久小说| 亚洲av男天堂| 日韩三级伦理在线观看| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 中文字幕人妻熟人妻熟丝袜美| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 国产成人a∨麻豆精品| 国产精品女同一区二区软件| 亚洲精品国产av成人精品| 久热久热在线精品观看| 九草在线视频观看| 成人黄色视频免费在线看| 我要看日韩黄色一级片| a级毛色黄片| 午夜视频国产福利| 国产亚洲5aaaaa淫片| 一级毛片电影观看| 国产精品一二三区在线看| 亚洲av中文字字幕乱码综合| 免费人妻精品一区二区三区视频| 成人影院久久| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| av网站免费在线观看视频| 高清日韩中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 亚洲美女搞黄在线观看| 夫妻性生交免费视频一级片| 日韩中文字幕视频在线看片 | 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 久久久色成人| 又黄又爽又刺激的免费视频.| 国产av码专区亚洲av| 草草在线视频免费看| 黄色怎么调成土黄色| 国产69精品久久久久777片| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 精品久久久久久久久av| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 美女国产视频在线观看| 亚洲av免费高清在线观看| 又爽又黄a免费视频| 黄色一级大片看看| 久久久久久伊人网av| 久久午夜福利片| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 亚州av有码| 成人特级av手机在线观看| 我要看日韩黄色一级片| 一本久久精品| 欧美丝袜亚洲另类| 国产色爽女视频免费观看| 91精品一卡2卡3卡4卡| 十八禁网站网址无遮挡 | 老熟女久久久| 99热这里只有是精品50| 欧美日本视频| 五月开心婷婷网| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 国产精品免费大片| 最近手机中文字幕大全| 亚洲精品国产av蜜桃| 日韩一区二区视频免费看| 人妻制服诱惑在线中文字幕| 91久久精品电影网| 草草在线视频免费看| 一级二级三级毛片免费看| 亚洲av免费高清在线观看| 亚洲人成网站在线播| 国产午夜精品一二区理论片| 免费观看在线日韩| 久久精品久久久久久噜噜老黄| 成人18禁高潮啪啪吃奶动态图 | 日韩成人av中文字幕在线观看| 特大巨黑吊av在线直播| 亚洲成色77777| 亚洲av.av天堂| 免费观看的影片在线观看| 亚洲第一av免费看| 国产乱人视频| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 18禁在线播放成人免费| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 免费不卡的大黄色大毛片视频在线观看| av不卡在线播放| 国产欧美日韩精品一区二区| 深夜a级毛片| 色视频在线一区二区三区| 晚上一个人看的免费电影| 亚洲成色77777| 久久久久视频综合| 国产精品一二三区在线看| 久久久久国产网址| 日韩中文字幕视频在线看片 | 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 国产淫语在线视频| 久久国产乱子免费精品| 一本一本综合久久| 新久久久久国产一级毛片| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 草草在线视频免费看| 青青草视频在线视频观看| 国产精品久久久久久精品电影小说 | 老师上课跳d突然被开到最大视频| 香蕉精品网在线| 成人午夜精彩视频在线观看| av在线老鸭窝| 久久久久国产网址| av播播在线观看一区| 天堂8中文在线网| a 毛片基地| 一级毛片aaaaaa免费看小| 久久热精品热| 久久久久久久大尺度免费视频| 国产成人精品一,二区| 欧美人与善性xxx| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 精品午夜福利在线看| videossex国产| 18禁动态无遮挡网站| 高清视频免费观看一区二区| 在线观看av片永久免费下载| 国产精品一及| av在线播放精品| 韩国高清视频一区二区三区| 另类亚洲欧美激情| 三级国产精品欧美在线观看| 中国三级夫妇交换| 18禁在线无遮挡免费观看视频| 成人美女网站在线观看视频| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 国产乱人视频| 国产黄片视频在线免费观看| 极品少妇高潮喷水抽搐| 日产精品乱码卡一卡2卡三| 国产av国产精品国产| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 麻豆成人av视频| 日韩制服骚丝袜av| 青春草国产在线视频| 性高湖久久久久久久久免费观看| 精品一区在线观看国产| av在线app专区| 寂寞人妻少妇视频99o| 丰满迷人的少妇在线观看| 国产久久久一区二区三区| 男女免费视频国产| 91久久精品国产一区二区成人| 国产色婷婷99| 国产一区二区三区av在线| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 午夜激情福利司机影院| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 亚洲第一av免费看| 亚洲欧美成人综合另类久久久| 日韩亚洲欧美综合| 女性生殖器流出的白浆| 在线观看国产h片| 97在线人人人人妻| 精品人妻视频免费看| 毛片女人毛片| 99re6热这里在线精品视频| 99热网站在线观看| 热re99久久精品国产66热6| 伦理电影大哥的女人| 高清av免费在线| 久久久久久久大尺度免费视频| 高清黄色对白视频在线免费看 | 51国产日韩欧美| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| videos熟女内射| 永久网站在线| 夫妻午夜视频| 亚洲av免费高清在线观看| 免费看av在线观看网站| 亚洲在久久综合| 只有这里有精品99| 又粗又硬又长又爽又黄的视频| 国产精品爽爽va在线观看网站| 男男h啪啪无遮挡| 欧美日韩视频高清一区二区三区二| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 免费观看性生交大片5| 亚洲av免费高清在线观看| 中文字幕亚洲精品专区| 夜夜爽夜夜爽视频| 色网站视频免费| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 如何舔出高潮| 欧美老熟妇乱子伦牲交| 国产精品成人在线| av一本久久久久| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 日本与韩国留学比较| 国产精品精品国产色婷婷| 婷婷色av中文字幕| 国产欧美亚洲国产| 日韩不卡一区二区三区视频在线| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 国产精品精品国产色婷婷| 建设人人有责人人尽责人人享有的 | 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 婷婷色综合www| 黄色配什么色好看| 免费久久久久久久精品成人欧美视频 | kizo精华| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 亚洲精品,欧美精品| 各种免费的搞黄视频| 免费看av在线观看网站| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 熟女av电影| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 亚洲第一区二区三区不卡| 欧美zozozo另类| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 亚洲精品一二三| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 久热这里只有精品99| 国产成人91sexporn| 国产一级毛片在线| 成年美女黄网站色视频大全免费 | 欧美一区二区亚洲| 免费看不卡的av| 国产男人的电影天堂91| 日日啪夜夜爽| 日韩中字成人| 成年免费大片在线观看| 欧美精品人与动牲交sv欧美| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 丰满迷人的少妇在线观看| 亚洲丝袜综合中文字幕| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 国产女主播在线喷水免费视频网站| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 亚洲成人手机| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱| a级毛片免费高清观看在线播放| 国产一区有黄有色的免费视频| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 深夜a级毛片| 日韩一区二区三区影片| 亚洲真实伦在线观看| 国产精品99久久99久久久不卡 | 欧美最新免费一区二区三区| 久久 成人 亚洲| 麻豆成人av视频| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 国产男女内射视频| 99久久精品一区二区三区| 国产精品人妻久久久影院| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 久久人人爽人人片av| 欧美精品人与动牲交sv欧美| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 久久久久精品性色| 日韩人妻高清精品专区| 国产精品99久久99久久久不卡 | 成年美女黄网站色视频大全免费 | 国产成人免费无遮挡视频| 亚洲久久久国产精品| 日韩强制内射视频| 国产精品人妻久久久久久| 免费av中文字幕在线| 成年女人在线观看亚洲视频| 麻豆国产97在线/欧美| 国产一区有黄有色的免费视频| 久久久久久久久大av| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 国产免费一区二区三区四区乱码| 纯流量卡能插随身wifi吗| av福利片在线观看| 国产成人免费观看mmmm| 丰满少妇做爰视频| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 极品少妇高潮喷水抽搐| 久久久久久九九精品二区国产| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 汤姆久久久久久久影院中文字幕| 久久ye,这里只有精品| 丝袜脚勾引网站| 伦精品一区二区三区| 日本wwww免费看| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 伊人久久国产一区二区| 国产精品久久久久久久电影| 国产精品免费大片| 干丝袜人妻中文字幕| 国产成人精品福利久久| 黑人高潮一二区| 久久人人爽人人片av| 插逼视频在线观看| 深爱激情五月婷婷| 久久久久久久久久久丰满| 午夜福利在线在线| 亚洲va在线va天堂va国产| 久久av网站| 日韩中文字幕视频在线看片 | 亚洲av二区三区四区| 2018国产大陆天天弄谢| 国产精品蜜桃在线观看| 黄色一级大片看看| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 免费高清在线观看视频在线观看| 久久午夜福利片| 少妇的逼水好多| 五月伊人婷婷丁香| 最近手机中文字幕大全| 少妇的逼水好多| 亚洲欧美成人综合另类久久久| 大片免费播放器 马上看| 欧美成人午夜免费资源| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产av玫瑰| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| av网站免费在线观看视频| 夫妻午夜视频| 久久精品夜色国产| 亚洲性久久影院| 草草在线视频免费看| videossex国产| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 色吧在线观看| 免费黄色在线免费观看| 欧美激情极品国产一区二区三区 | 国产亚洲欧美精品永久| 欧美极品一区二区三区四区| 男女啪啪激烈高潮av片| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 一边亲一边摸免费视频| 久久久久久久国产电影| 精品人妻偷拍中文字幕| 丰满少妇做爰视频| 91狼人影院| 国产国拍精品亚洲av在线观看| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 我要看日韩黄色一级片| 久久久久久人妻| 边亲边吃奶的免费视频| 久久综合国产亚洲精品| 老熟女久久久| 久久久久久九九精品二区国产| 成人漫画全彩无遮挡| av在线app专区| 日韩一本色道免费dvd| 午夜福利视频精品| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱久久久久久| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 日日撸夜夜添| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 最近中文字幕高清免费大全6| 亚洲三级黄色毛片| 美女国产视频在线观看| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 国产免费一区二区三区四区乱码| 日韩成人伦理影院| 有码 亚洲区| 国产乱人偷精品视频| 亚洲美女黄色视频免费看| 一本一本综合久久| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 日日啪夜夜撸| 好男人视频免费观看在线| 99久久精品一区二区三区| 久久久成人免费电影| 欧美3d第一页| 成人毛片60女人毛片免费| 久久99热这里只频精品6学生| 中文字幕久久专区| 婷婷色综合大香蕉| 在现免费观看毛片| 成人免费观看视频高清| 多毛熟女@视频| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 婷婷色综合www| 亚洲色图av天堂| 免费观看性生交大片5| 久久久欧美国产精品| 日日撸夜夜添| 丝瓜视频免费看黄片| 日韩伦理黄色片| 嘟嘟电影网在线观看| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 男女免费视频国产| 国产亚洲精品久久久com| 人体艺术视频欧美日本| 嫩草影院入口| 国产精品.久久久| 免费观看性生交大片5| 国产精品99久久久久久久久| 亚洲av电影在线观看一区二区三区| 国产伦精品一区二区三区四那| 午夜激情久久久久久久| 夜夜爽夜夜爽视频| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 亚洲伊人久久精品综合| 国产久久久一区二区三区| 午夜激情久久久久久久| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 99热这里只有是精品在线观看| av.在线天堂| 男男h啪啪无遮挡| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 在线观看人妻少妇| 午夜日本视频在线| 人妻少妇偷人精品九色| 免费观看av网站的网址| 久久97久久精品| 久久久精品免费免费高清| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 2018国产大陆天天弄谢| 国产免费又黄又爽又色| 久久久久视频综合| 黄色欧美视频在线观看| 国产男女内射视频| 成人午夜精彩视频在线观看| 男女国产视频网站| 久久毛片免费看一区二区三区| 高清av免费在线| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频 | 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 日本wwww免费看| 少妇精品久久久久久久| 观看美女的网站| 人体艺术视频欧美日本| 久久久久性生活片| 国产精品一及| 亚洲,欧美,日韩| 日韩欧美精品免费久久| 国产极品天堂在线| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 亚洲国产日韩一区二区| 下体分泌物呈黄色| 亚洲av成人精品一二三区| 午夜视频国产福利| 欧美成人一区二区免费高清观看| 亚洲精品乱码久久久久久按摩| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 国产 一区精品| 老女人水多毛片| 欧美性感艳星| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 九色成人免费人妻av| 人妻制服诱惑在线中文字幕| 下体分泌物呈黄色| 少妇人妻 视频| 久久久欧美国产精品| 日韩欧美精品免费久久| 中文欧美无线码| 免费少妇av软件| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 伊人久久国产一区二区| 欧美性感艳星| 男女免费视频国产| 国产91av在线免费观看| 男女国产视频网站| 国产av码专区亚洲av| 超碰97精品在线观看| 在线观看三级黄色| 少妇高潮的动态图| 一本一本综合久久| 99热国产这里只有精品6| 国产欧美日韩精品一区二区| 精品久久久久久久末码| 一区二区三区精品91| 老女人水多毛片| 精品少妇久久久久久888优播| 纵有疾风起免费观看全集完整版| 搡老乐熟女国产| 看十八女毛片水多多多| 人妻系列 视频| 色吧在线观看| 不卡视频在线观看欧美| 乱系列少妇在线播放| 精品一区二区免费观看| 国产成人一区二区在线| 国产片特级美女逼逼视频| 一区二区av电影网| 尾随美女入室| 日韩亚洲欧美综合| 一区二区av电影网| 麻豆成人av视频| 国产精品久久久久久精品电影小说 | 久久人人爽人人片av| 97超视频在线观看视频| 黄色配什么色好看| 少妇熟女欧美另类| 国产精品人妻久久久影院| 少妇高潮的动态图| 久久久久性生活片| 亚洲国产欧美在线一区| 黄色配什么色好看| 久久精品国产亚洲网站| 在线观看三级黄色| 黄色日韩在线| 国产精品一二三区在线看| 久久人人爽人人爽人人片va| 国产精品一区二区在线观看99| 国产69精品久久久久777片| 日韩av免费高清视频| 精品国产一区二区三区久久久樱花 | 国产成人一区二区在线| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜添av毛片| 精品一区二区三区视频在线| 亚洲美女黄色视频免费看| 国产大屁股一区二区在线视频| 搡老乐熟女国产| 老司机影院毛片| 九九久久精品国产亚洲av麻豆|