• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Iteration Method for a Quadratic Matrix Equation Associated with an M-Matrix

    2021-01-07 01:23:16GUANJinrui關(guān)晉瑞SONGRuying宋儒瑛ZUBAIRAhmed
    應(yīng)用數(shù)學(xué) 2021年1期

    GUAN Jinrui(關(guān)晉瑞),SONG Ruying(宋儒瑛),ZUBAIR Ahmed

    (1.Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China;2.Institute of Mathematics and Computer Science,University of Sindh,Sindh 76080,Pakistan)

    Abstract: In this paper,we consider numerical solution of a quadratic matrix equation associated with an M-matrix,which arises in the study of noisy Wiener-Hopf problems for the Markov chain.The solution of practical interest is the M-matrix solution.By a simple transformation,this quadratic matrix equation is transformed into an M-matrix algebraic Riccati equation.We propose a new iteration method for this equation and then give the convergence analysis of it.Numerical experiments are given to show that the new iteration method is feasible and effective than some existing methods in some cases.

    Key words: Quadratic matrix equation; M-matrix; Algebraic Riccati equation; Iteration method

    1.Introduction

    In this paper,we consider a quadratic matrix equation (QME)

    where E,F(xiàn) ∈Rn×n,E is a diagonal matrix and F is an M-matrix.The study of equation(1.1) is motivated by noisy Wiener-Hopf problems for Markov chains.See [5,8] for more background details.

    Under some conditions,it was proved in [5] that the equation (1.1) has an M-matrix solution,which is of practical interest.In addition,by transforming it into an equivalent M-matrix algebraic Riccati equation,a fixed-point iteration method and Newton method have been developed for solving the QME in [5].However,the fixed-point iteration method converges too slowly while the Newton method is too expensive at each iteration.So they are not very efficient for this problem.In this paper,our main aim is to develop an efficient method for solving the QME (1.1).

    In the following,we first review some basic results of M-matrix and M-matrix algebraic Riccati equation.

    Let A = (aij) ∈Rn×n.If aij≤0 for all ij,then A is called a Z-matrix.A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that A = sI -B and s ≥ρ(B) where ρ(B) is the spectral radius of B.In particular,A is called a nonsingular M-matrix if s >ρ(B) and singular M-matrix if s=ρ(B).

    The following lemmas can be found in [1,11].

    Lemma 1.1Let A ∈Rn×nbe a Z-matrix.Then the following statements are equivalent:

    1) A is a nonsingular M-matrix;

    2) A-1≥0;

    3) Av >0 for some vectors v >0;

    4) All eigenvalues of A have positive real part.

    Lemma 1.2Let A,B be Z-matrices.If A is a nonsingular M-matrix and A ≤B,then B is also a nonsingular M-matrix.In particular,for any nonnegative real number α,B =αI +A is a nonsingular M-matrix.

    Lemma 1.3Let A be an M-matrix,B ≥A be a Z-matrix.If A is nonsingular or irreducible singular with AB,then B is also a nonsingular M-matrix.

    Lemma 1.4Let A,B be nonsingular M-matrices and A ≤B,then A-1≥B-1.

    M-matrix algebraic Riccati equation is of the form

    where A,B,C and D are real matrices of sizes m×m,m×n,n×m and n×n respectively.MARE appears in many branches of applied mathematics,such as transport theory,Markov chains,stochastic process,and so on.See [2-3] and the references therein for details.For the MARE (1.2),the solution of practical interest is its minimal nonnegative solution.The following basic result is obtained in [3-4].

    Lemma 1.5For the MARE (1.2),if

    is a nonsingular M-matrix or an irreducible singular M-matrix,then (1.2) has a minimal nonnegative solution S.If K is a nonsingular M-matrix,then A-SC and D-CS are also nonsingular M-matrices.If K is irreducible M-matrix,then S >0 and A-SC and D-CS are also irreducible M-matrices.

    When K is an irreducible singular M-matrix,there exist unique,up to a multiplicative constant,u >0 and v >0 such that uTK =0,Kv =0 and uTv =1.Partition the vectors u and v according to the block structure of the matrix M asLetwe have the following result.[3]

    Lemma 1.6If K is an irreducible singular M-matrix and S is the minimal nonnegative solution of the MARE (1.2).Then

    (i) when μ<0,D-CS is singular and A-SC is nonsingular;

    (ii) when μ>0,D-CS is nonsingular and A-SC is singular;

    (iii) when μ=0,both D-CS and A-SC are singular.

    Efficient methods for solving the MARE (1.2) include the Schur method,the fixed-point iteration,the Newton iteration,the doubling algorithms and etc.[2-3,6-7,9-10]

    2.A New Iteration Method

    In this section,we first briefly introduce the fixed-point iteration method in[5]for solving the QME (1.1),and then propose a new iteration method for solving (1.1).

    By introducing X =αI -Y,the equation (1.1) can be transformed into

    It was proved in [5] that when α satisty

    α2I-αE-F is a nonnegative matrix.In addition,if F is a nonsingular M-matrix,then

    is a nonsingular M-matrix,and if F is an irreducible singular M-matrix,then K is an irreducible singular M-matrix.

    By the above analysis and the theory of MARE,the following results were obtained in[5].

    Theorem 2.1If F is a nonsingular M-matrix,then (1.1) has exactly one M-matrix as its solution and the M-matrix is nonsingular.If F is an irreducible singular M-matrix,then(1.1) has M-matrix solutions and all elements of each M-matrix solution are nonzero.In addition,let u,v be positive vectors such that Fv =0 and uTF =0,then

    1) if uTEv ≤0,then (1.1) has exactly one M-matrix as its solution and the M-matrix is singular.

    2) if uTEv >0,then (1.1) has exactly one nonsingular M-matrix as its solution but may also have singular M-matrices as its solutions.

    For solving the QME(1.1),a fixed-point iteration method was proposed in[5]as follows.

    Fixed-point iteration method:

    Convergence analysis showed that the sequence {Yk} in (2.4) is monotonically increasingly and converges to the minimal nonnegative solution of the equation (2.1).In addition,the convergence rate of the fixed-point iteration method is linear for the noncritical case,and is sublinear for the critical case.However,experiments in [5] showed that the fixed-point iteration needs a large numbers of iterations to converge,though at each iteration it is very cheap.

    In the following,we will propose a new iteration method for computing the minimal nonnegative solution of the equation (2.1).

    First,write the equation (2.1) as

    (2αI -E-Y)Y =α2I-αE-F.

    Then we can get the following iterations

    (2αI -E-Yk)Yk+1=α2I-αE-F.

    Thus the new iteration method can be stated as follows.

    New iteration method:

    Compared with the fixed-point iteration method (2.4),the new iteration method (2.5) is a little expensive,since at each iteration a matrix inverse is required to compute.However,the new iteration method may need less iterations than the fixed-point iteration method,which will be confirmed by the numerical experiments.So it is feasible.

    3.Convergence Analysis

    In the following,we give convergence analysis of the new iteration method (2.5).

    The following lemma can be concluded from Theorem 2.1,Lemma 1.5 and Lemma 1.6.

    Lemma 3.1Let the parameter α satisfy (2.2).If F in (1.1) is a nonsingular Mmatrix,then the equation (2.1) has a unique minimal nonnegative solution Sα,and αI-Sα,αI-E-Sαare nonsingular M-matrices.If F in(1.1)is an irreducible singular M-matrix,then the equation(2.1)has a unique minimal nonnegative solution Sα,and αI-Sα,αI-E-Sαare irreducible M-matrices.In addition,let u,v be positive vectors such that Fv =0,uTF =0,then

    1) If uTEv =0,then both αI-Sαand αI -E-Sαare singular M-matrices;

    2) If uTEv <0,then αI -Sαis nonsingular and αI -E-Sαis singular;

    3) If uTEv >0,then αI -Sαis singular and αI -E-Sαis nonsingular.

    ProofWhen F is a nonsingular M-matrix or an irreducible singular M-matrix,equation(2.1) has a unique minimal nonnegative solution Sαby Lemma 1.5.When F is nonsingular,then both αI -Sαand αI -E-Sαare nonsingular M-matrices.

    When F is irreducible singular,take= (uT(αI -E),uT)Tand= (vT,αvT)T,then we haveTK =0,K=0 and μ=-uTEv.By Lemma 1.6,the conclusion follows.

    Theorem 3.1Let F in (1.1) be a nonsingular M-matrix or an irreducible singular M-matrix and the parameter α satisfy (2.2).Then the sequence {Yk} generated by (2.5) is well defined,converges to Sα,and satisfy

    where Sαis the unique minimal nonnegative solution of the equation (2.1).

    ProofWe first prove (3.1) by induction.

    When k = 0,we have Y1= (2αI -E)-1(α2I -αE -F).Since α satisfies (2.2),we have 2αI >E and α2I - αE - F ≥0.It is clear that 0 = Y0≤Y1.Since Sαis the minimal nonnegative solution of (2.1),it holds that (2αI -E-Sα)Sα=α2I -αE-F.By Lemma 3.1,we know αI-E-Sαis an M-matrix,and hence,by Lemma 1.2,2αI-E-Sαis a nonsingular M-matrix.Thus Sα= (2αI - E - Sα)-1(α2I - αE - F).It is evident(2αI-E)-1≤(2αI -E-Sα)-1,thus Y1≤Sα.

    Suppose that the assertions (3.1) hold for k =l-1,i.e.0 ≤Yl-1≤Yl,Yl≤Sα.

    Since Yl≤Sα,we know 2αI -E -Yl≥2αI -E -Sαis a nonsingular M-matrix by Lemma 1.3.Thus Yl+1is well defined.From 0 ≤Yl-1≤Yl≤Sαand Lemma 1.4,we know(2αI-E-Yl-1)-1≤(2αI -E-Yl)-1≤(2αI -E-Sα)-1.We have

    and

    Hence the assertions (3.1) hold for k = l+1.Thus we have proved by induction that the assertions (3.1) hold for all k ≥0.

    Since {Yk} is nonnegative,monotonically increasing and bounded from above,there is a nonnegative matrix Y such that limk→∞Yk=Y.From (3.1) we know Y ≤Sα.On the other hand,taking the limit in(2.5),we know Y is a solution of(2.1),thus Sα≤Y.Hence Sα=Y.

    Theorem 3.2Let F in (1.1) be a nonsingular M-matrix or an irreducible singular M-matrix and the parameter α satisfy (2.2).Then the convergence rate of (2.5) is given by

    where λ=ρ(Sα) and δ is the minimum eigenvalue of the M-matrix αI -E-Sα.

    ProofWe have

    Hence

    Taking limit on both side and noting thatwe have

    Since αI -E-Sαis an M-matrix and Sαis a nonnegative matrix,we can easily verify that

    where δ is the minimum nonnegative eigenvalue of αI-E-Sαand λ is the Perron eigenvalue of Sα.Thus the conclusion (3.2) holds.

    Corollary 3.1If F in (1.1) is a nonsingular M-matrix,then the convergence rate of(2.5)is linear.If F is an irreducible singular M-matrix,then for the cases 2)and 3)in Lemma 3.1,the convergence rate of (2.5) is linear; for the case 1) the convergence rate of (2.5) is sublinear.

    ProofWhen F is a nonsingular M-matrix,αI -Sαand αI -E-Sαare nonsingular M-matrices.Hence α >λ and δ >0.Thus<1,the convergence rate of (2.5) is linear.

    If F is an irreducible singular M-matrix,and the cases 2) and 3) happen,then one of αI-Sαand αI-E-Sαis a nonsingular M-matrix.We have<1,the convergence rate of (2.5) in this case is still linear.

    If F is an irreducible singular M-matrix and the case 1) happens,then αI -Sαand αI -E -Sαare both singular M-matrices.Thus we have α = ρ(Sα) and δ = 0.Hence=1,the convergence rate of (2.5) is sublinear in this case.

    Corollary 3.2The optimal parameter of the new iteration method (2.5) is given by

    ProofLet α1>0,α2>0 be two parameters that satisfy (2.2) and α1>α2.Then the convergence factor of the new iteration method (2.5) are respectively

    where λ1=ρ(Sα1),λ2=ρ(Sα2) and Sα1,Sα2are the minimal nonnegative solutions of (2.1)respectively.Since α1I-S1=α2I-S2,we have S1=(α1-α2)I+S2and λ1=(α1-α2)+λ2.Thus

    and the conclusion follows.

    4.Numerical Experiments

    In this section,numerical experiments are given to show the feasibility and effectiveness of the new iteration method.We compare the new iteration method (NM) with the fixedpoint iteration method(FP)in[5],and present numerical results of each experiment in terms of iteration numbers (IT),CPU time (CPU) in seconds and residue (Res),where the residue is defined to be

    In our implementations,all iterations are run in MATLAB (R2012a) on a personal computer and are terminated when the current iterate satisfies

    Example 4.1[5]Consider the equation (1.1) with

    The numerical result is summarized in Tab.4.1.

    Tab.4.1 Numerical Results of Example 4.1

    Example 4.2[5]Consider the equation (1.1) with

    where we take a=2,b=1.The numerical result is summarized in Tab.4.2.

    Tab.4.2 Numerical Results of Example 4.2

    Example 4.3Consider the equation (1.1) with coefficient matrices defined as

    E =diag(1:n); F =rand(n,n); F =diag(Fe)-F,

    where e=(1,1,··· ,1)T.For different sizes of n,we list the numerical results in Tab.4.3.

    Tab.4.3 Numerical Results of Example 4.3

    From Tabs.4.1-4.3,we can conclude that the new iteration method needs less iteration number and CPU time than the fixed-point iteration method.Hence it is feasible and effective.

    成年av动漫网址| 久久久欧美国产精品| av免费观看日本| 亚洲美女黄色视频免费看| 日本色播在线视频| 国产熟女午夜一区二区三区 | 日韩欧美 国产精品| 日本黄色日本黄色录像| 亚洲第一区二区三区不卡| 亚洲精品日韩在线中文字幕| 久久精品国产鲁丝片午夜精品| 国产中年淑女户外野战色| 欧美日韩国产mv在线观看视频| 国产黄色视频一区二区在线观看| 成年人午夜在线观看视频| 国产亚洲一区二区精品| 狠狠精品人妻久久久久久综合| 国产69精品久久久久777片| 国产美女午夜福利| 熟女人妻精品中文字幕| 免费看av在线观看网站| 在线观看人妻少妇| 国产伦精品一区二区三区四那| 亚洲欧美成人精品一区二区| 亚洲人成网站在线观看播放| 国产在线视频一区二区| 成人免费观看视频高清| 精品国产露脸久久av麻豆| 精品人妻偷拍中文字幕| 亚洲av欧美aⅴ国产| 欧美三级亚洲精品| 交换朋友夫妻互换小说| 在线观看免费日韩欧美大片 | 欧美精品人与动牲交sv欧美| 男女边摸边吃奶| 国产在线视频一区二区| 国产永久视频网站| 亚洲av男天堂| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 国产一区有黄有色的免费视频| 国产视频内射| 久久久a久久爽久久v久久| 亚洲性久久影院| 免费观看av网站的网址| 搡女人真爽免费视频火全软件| 激情五月婷婷亚洲| 久久久久精品性色| 在线观看一区二区三区激情| 久久女婷五月综合色啪小说| 亚洲av成人精品一二三区| √禁漫天堂资源中文www| 亚洲高清免费不卡视频| 国产一级毛片在线| 亚洲无线观看免费| 这个男人来自地球电影免费观看 | 能在线免费看毛片的网站| 熟妇人妻不卡中文字幕| 欧美人与善性xxx| 91精品一卡2卡3卡4卡| 在线天堂最新版资源| 欧美 亚洲 国产 日韩一| 人妻人人澡人人爽人人| 国产在线一区二区三区精| 亚洲性久久影院| 免费av不卡在线播放| 美女脱内裤让男人舔精品视频| 高清视频免费观看一区二区| 国精品久久久久久国模美| 啦啦啦中文免费视频观看日本| 亚洲精品国产av成人精品| 国产69精品久久久久777片| 少妇精品久久久久久久| 极品教师在线视频| 妹子高潮喷水视频| 国产乱人偷精品视频| 三上悠亚av全集在线观看 | 久久人人爽人人片av| 美女xxoo啪啪120秒动态图| av在线播放精品| 美女福利国产在线| 性色av一级| 久久精品国产亚洲av涩爱| 一级毛片黄色毛片免费观看视频| 少妇 在线观看| 国产淫片久久久久久久久| 国产在视频线精品| 一级黄片播放器| 亚洲欧美清纯卡通| 我要看黄色一级片免费的| 18禁在线无遮挡免费观看视频| 日韩免费高清中文字幕av| 能在线免费看毛片的网站| videossex国产| 国产av国产精品国产| 国产高清有码在线观看视频| 国精品久久久久久国模美| 最近手机中文字幕大全| 丝袜在线中文字幕| 欧美+日韩+精品| 国产极品天堂在线| 国产男女内射视频| 下体分泌物呈黄色| 国产午夜精品一二区理论片| 国产成人精品无人区| 草草在线视频免费看| 少妇被粗大猛烈的视频| 一边亲一边摸免费视频| 国模一区二区三区四区视频| 中文字幕亚洲精品专区| 免费看光身美女| 亚洲欧美精品专区久久| 黄色怎么调成土黄色| 国产淫片久久久久久久久| 日本欧美视频一区| 国产女主播在线喷水免费视频网站| 一级毛片 在线播放| av卡一久久| 中文字幕制服av| 伊人久久精品亚洲午夜| 午夜av观看不卡| 国产精品一区二区在线不卡| 99热6这里只有精品| 精品视频人人做人人爽| 高清黄色对白视频在线免费看 | 18禁在线播放成人免费| 超碰97精品在线观看| 日韩成人伦理影院| 男女边摸边吃奶| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 精品一品国产午夜福利视频| 插逼视频在线观看| xxx大片免费视频| 久久国内精品自在自线图片| 狠狠精品人妻久久久久久综合| 国产成人freesex在线| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 少妇人妻精品综合一区二区| 国产欧美日韩精品一区二区| 男女边摸边吃奶| 丰满乱子伦码专区| 久久久久网色| 欧美一级a爱片免费观看看| 肉色欧美久久久久久久蜜桃| 我的女老师完整版在线观看| 久久久久精品性色| 韩国高清视频一区二区三区| 熟女av电影| 国产精品成人在线| 一级毛片久久久久久久久女| 国产精品蜜桃在线观看| 大陆偷拍与自拍| 极品人妻少妇av视频| 亚洲高清免费不卡视频| 99热这里只有是精品50| 两个人的视频大全免费| 18禁在线播放成人免费| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 一级片'在线观看视频| 下体分泌物呈黄色| 国产乱来视频区| 一级毛片aaaaaa免费看小| 三级国产精品欧美在线观看| 伦理电影免费视频| 嘟嘟电影网在线观看| 免费看光身美女| 男女边摸边吃奶| 噜噜噜噜噜久久久久久91| 国产视频内射| av福利片在线观看| 最新中文字幕久久久久| 少妇人妻 视频| 日本黄色片子视频| 美女xxoo啪啪120秒动态图| 永久网站在线| 少妇人妻 视频| 人妻少妇偷人精品九色| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 国产视频内射| 我的老师免费观看完整版| 亚洲精品国产色婷婷电影| 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆| 亚洲欧洲精品一区二区精品久久久 | 你懂的网址亚洲精品在线观看| 噜噜噜噜噜久久久久久91| 高清毛片免费看| 日韩欧美 国产精品| 最近中文字幕高清免费大全6| av在线app专区| 男女啪啪激烈高潮av片| 日韩欧美精品免费久久| 亚洲在久久综合| 五月玫瑰六月丁香| 国产69精品久久久久777片| 高清午夜精品一区二区三区| 丰满迷人的少妇在线观看| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 午夜免费鲁丝| 午夜视频国产福利| av免费在线看不卡| 午夜精品国产一区二区电影| 日产精品乱码卡一卡2卡三| 六月丁香七月| 亚洲久久久国产精品| 99久久中文字幕三级久久日本| 韩国av在线不卡| 欧美区成人在线视频| av一本久久久久| 亚洲精品乱码久久久v下载方式| 久久热精品热| 综合色丁香网| 午夜免费男女啪啪视频观看| 9色porny在线观看| 免费人成在线观看视频色| av免费观看日本| av女优亚洲男人天堂| www.av在线官网国产| 久久久国产一区二区| 久久久久久久国产电影| 亚洲欧美精品专区久久| 一本大道久久a久久精品| 欧美97在线视频| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 国产日韩欧美在线精品| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 久久99一区二区三区| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 三上悠亚av全集在线观看 | 18禁动态无遮挡网站| 我的老师免费观看完整版| 91精品伊人久久大香线蕉| 国产av一区二区精品久久| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 亚洲欧美一区二区三区黑人 | 纵有疾风起免费观看全集完整版| 男男h啪啪无遮挡| 国产精品国产av在线观看| 精品一区二区免费观看| 如何舔出高潮| 国产精品偷伦视频观看了| 在现免费观看毛片| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| 日韩电影二区| 大码成人一级视频| av黄色大香蕉| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 男人舔奶头视频| 亚洲欧美清纯卡通| 国产黄片美女视频| 色视频在线一区二区三区| 国产淫语在线视频| 日本vs欧美在线观看视频 | 免费不卡的大黄色大毛片视频在线观看| 一级av片app| 91久久精品电影网| 久久久久网色| 男女免费视频国产| 一本久久精品| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 丰满迷人的少妇在线观看| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 国产成人freesex在线| 精品一区在线观看国产| 男女无遮挡免费网站观看| 亚洲国产精品专区欧美| 国产爽快片一区二区三区| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| 嫩草影院新地址| 国产av一区二区精品久久| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看日韩| 国产一级毛片在线| 少妇人妻一区二区三区视频| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 在线 av 中文字幕| 三级国产精品欧美在线观看| 老司机亚洲免费影院| 十分钟在线观看高清视频www | 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 国产白丝娇喘喷水9色精品| 中国国产av一级| 人妻 亚洲 视频| 一本色道久久久久久精品综合| 国产欧美日韩一区二区三区在线 | 久久综合国产亚洲精品| 色5月婷婷丁香| 男女国产视频网站| 久热这里只有精品99| 亚洲一级一片aⅴ在线观看| 国产精品一区二区三区四区免费观看| 久久人人爽av亚洲精品天堂| 日韩成人伦理影院| 亚洲情色 制服丝袜| 日韩一区二区视频免费看| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 高清不卡的av网站| 国产成人freesex在线| 一级二级三级毛片免费看| 日韩一区二区视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 激情五月婷婷亚洲| kizo精华| 国产视频首页在线观看| 日本欧美视频一区| 黄片无遮挡物在线观看| 久久6这里有精品| 日韩av免费高清视频| 性色av一级| 制服丝袜香蕉在线| av福利片在线| 国产老妇伦熟女老妇高清| 十八禁网站网址无遮挡 | 免费在线观看成人毛片| 国产av精品麻豆| 免费av中文字幕在线| 精品久久久噜噜| 最新中文字幕久久久久| 久久精品夜色国产| 日本黄大片高清| 国产免费视频播放在线视频| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 免费黄色在线免费观看| 一个人看视频在线观看www免费| 精品一区二区免费观看| 国产淫片久久久久久久久| 老司机影院毛片| 男男h啪啪无遮挡| 国产白丝娇喘喷水9色精品| 久久国产亚洲av麻豆专区| 精品酒店卫生间| 国产免费视频播放在线视频| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| av福利片在线观看| 我要看黄色一级片免费的| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 在线观看三级黄色| 日韩欧美一区视频在线观看 | 免费看光身美女| 国产黄片视频在线免费观看| 免费大片黄手机在线观看| 亚洲欧美日韩卡通动漫| 久久国产精品大桥未久av | 日韩av在线免费看完整版不卡| 久久久久精品性色| 亚洲av国产av综合av卡| 99热6这里只有精品| 久久久午夜欧美精品| 久久久久国产精品人妻一区二区| 在线观看免费日韩欧美大片 | 国产在线视频一区二区| 精品少妇内射三级| 亚洲电影在线观看av| 午夜福利影视在线免费观看| 人妻夜夜爽99麻豆av| 久久久久精品性色| 国产亚洲5aaaaa淫片| 天堂俺去俺来也www色官网| 街头女战士在线观看网站| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 妹子高潮喷水视频| 免费播放大片免费观看视频在线观看| av线在线观看网站| 五月玫瑰六月丁香| 少妇的逼水好多| 中国国产av一级| 国产精品99久久久久久久久| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 国产 一区精品| 如何舔出高潮| 亚洲av.av天堂| 久久久a久久爽久久v久久| 自拍欧美九色日韩亚洲蝌蚪91 | 久久97久久精品| 成人亚洲精品一区在线观看| 大香蕉97超碰在线| 亚洲精品视频女| 青春草国产在线视频| 欧美亚洲 丝袜 人妻 在线| 一级av片app| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 免费久久久久久久精品成人欧美视频 | 男女国产视频网站| 91午夜精品亚洲一区二区三区| 97精品久久久久久久久久精品| 自拍偷自拍亚洲精品老妇| 如何舔出高潮| 十分钟在线观看高清视频www | 极品人妻少妇av视频| 国产色爽女视频免费观看| 日韩av免费高清视频| 97超碰精品成人国产| 人人澡人人妻人| av有码第一页| 夜夜骑夜夜射夜夜干| 边亲边吃奶的免费视频| 国产乱来视频区| 婷婷色综合大香蕉| 一个人免费看片子| 国产精品欧美亚洲77777| 久久av网站| 久久97久久精品| 欧美区成人在线视频| 在线 av 中文字幕| 国产精品福利在线免费观看| 国产深夜福利视频在线观看| 一级片'在线观看视频| 97超碰精品成人国产| 久久青草综合色| 亚洲成色77777| 亚洲四区av| 午夜日本视频在线| 中文字幕免费在线视频6| 色吧在线观看| 国产av一区二区精品久久| 另类精品久久| 精品一区二区免费观看| 精品一品国产午夜福利视频| 天美传媒精品一区二区| 欧美日韩综合久久久久久| 国产精品熟女久久久久浪| 国产黄色免费在线视频| 中文字幕免费在线视频6| 18禁裸乳无遮挡动漫免费视频| 久热这里只有精品99| 黄色怎么调成土黄色| 黑丝袜美女国产一区| 18+在线观看网站| 免费观看性生交大片5| av天堂中文字幕网| 下体分泌物呈黄色| av免费观看日本| 老女人水多毛片| 有码 亚洲区| 一个人看视频在线观看www免费| 国产色婷婷99| 日韩中文字幕视频在线看片| 日韩成人伦理影院| 一区二区三区免费毛片| 成人毛片60女人毛片免费| 一级黄片播放器| 久久久久精品久久久久真实原创| 少妇精品久久久久久久| 国产日韩一区二区三区精品不卡 | 欧美精品人与动牲交sv欧美| 久热久热在线精品观看| 我的女老师完整版在线观看| 免费看不卡的av| 久久韩国三级中文字幕| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 一级毛片 在线播放| 午夜视频国产福利| 在线观看免费高清a一片| 国产精品一区二区性色av| 最近手机中文字幕大全| 交换朋友夫妻互换小说| 18禁动态无遮挡网站| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 新久久久久国产一级毛片| 国产精品欧美亚洲77777| 久久久久国产网址| 老司机影院成人| 亚洲欧美精品专区久久| 老女人水多毛片| 国产精品一区二区在线不卡| 国产男女超爽视频在线观看| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 久久婷婷青草| 久久国产亚洲av麻豆专区| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩卡通动漫| 全区人妻精品视频| 国产亚洲一区二区精品| 日韩精品有码人妻一区| 97在线人人人人妻| 精品午夜福利在线看| 麻豆成人av视频| 夜夜骑夜夜射夜夜干| 自拍偷自拍亚洲精品老妇| av在线app专区| 噜噜噜噜噜久久久久久91| 国产高清不卡午夜福利| 麻豆乱淫一区二区| 99热网站在线观看| 尾随美女入室| 最后的刺客免费高清国语| 国产极品天堂在线| 乱码一卡2卡4卡精品| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 99热全是精品| www.色视频.com| 97超碰精品成人国产| 成人美女网站在线观看视频| 欧美性感艳星| 成年美女黄网站色视频大全免费 | 久久鲁丝午夜福利片| 日韩亚洲欧美综合| 五月伊人婷婷丁香| h视频一区二区三区| 91精品伊人久久大香线蕉| 一级,二级,三级黄色视频| 99久久人妻综合| av一本久久久久| 久久久久久久久久人人人人人人| 国产精品国产三级国产专区5o| 99热网站在线观看| 中国美白少妇内射xxxbb| 春色校园在线视频观看| 久久99蜜桃精品久久| 日本91视频免费播放| 人人澡人人妻人| 亚洲欧美精品自产自拍| 亚洲av不卡在线观看| 一级片'在线观看视频| 欧美人与善性xxx| 中文字幕精品免费在线观看视频 | 亚洲精品国产成人久久av| 一个人看视频在线观看www免费| 亚洲四区av| 日韩中字成人| 久热这里只有精品99| 国产免费一区二区三区四区乱码| 久久99精品国语久久久| tube8黄色片| av国产精品久久久久影院| 91久久精品电影网| 乱人伦中国视频| 久久久久人妻精品一区果冻| 免费观看在线日韩| 18禁动态无遮挡网站| 黑人猛操日本美女一级片| 最近中文字幕2019免费版| 麻豆精品久久久久久蜜桃| 亚洲精品色激情综合| 国产在线免费精品| 国产成人aa在线观看| 日日撸夜夜添| 国产成人一区二区在线| 中文乱码字字幕精品一区二区三区| 日本午夜av视频| 成年女人在线观看亚洲视频| 久久午夜福利片| 亚洲真实伦在线观看| 亚洲精品视频女| 黑人巨大精品欧美一区二区蜜桃 | 永久网站在线| 国产亚洲5aaaaa淫片| 乱系列少妇在线播放| 男人舔奶头视频| 免费看av在线观看网站| 精品久久久久久电影网| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清| 免费大片黄手机在线观看| 成人18禁高潮啪啪吃奶动态图 | a 毛片基地| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 中文字幕免费在线视频6| 日韩三级伦理在线观看| 人人妻人人看人人澡| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 乱系列少妇在线播放| 少妇人妻一区二区三区视频| av黄色大香蕉| 黑人猛操日本美女一级片| 九草在线视频观看| av国产久精品久网站免费入址| 人妻夜夜爽99麻豆av| 另类精品久久| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥|