• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      STRONG EQUIVALENCES OF APPROXIMATION NUMBERS AND TRACTABILIY OF WEGHED NSP SV M*

      2021-01-07 06:43:58JidongHAO郝季冬HepingWANG汪和平
      關(guān)鍵詞:和平

      Jidong HAO (郝季冬) Heping WANG (汪和平)?

      School of Mathematical Sciences, Capital Normal University, Beijing 100048, China E-mail : 1047695025@qq.com; wanghp@cnu.edu.cn

      [1,10–12]),and Sobolev embeddings and Gevrey type embeddings on the sphere Sdand on the ball Bd(see[2]).In[25],Werschulz and Wo′zniakowski investigated the tractability of weighted isotropic Sobolev embeddings.The aim of this article is to generalize the above results to weighted anisotropic Sobolev embeddings.

      We also consider the tractability of the approximation problemI={Id}of the weighted anisotropic Sobolev embeddings.We consider algorithms that use finitely many continuous linear functionals.The information complexityn(ε,Id)is defined as the minimal number of linear functionals which are needed to find an approximation to within an error thresholdε.There are two kinds of tractability:that based on polynomial convergence,and that based on exponential convergence.The classical tractability describes how the information complexity behaves as a function ofdandε?1,while the exponential convergence-tractability(EC-tractability)does as one ofdand(1+lnε?1).Nowadays,the study of tractability and EC-tractability has attracted much interest,and a great number of interesting results have been obtained(see[5,6,15–18,22]and the references therein).

      Denote byH(Kd,a,2b)the analytic Korobov space which is a reproducing kernel Hilbert space with the reproducing kernelKd,a,2b,and whose definition will be given in Section 2.2.Such spacesH(Kd,a,2b)have been widely investigated in the study of tractability and ECtractability(see[4–8,13,14,23]).In particular,the articles[4,23]considered different notions of EC-tractability of the approximation problems APP={APPd}d∈N,and obtained the corresponding necessary and sufficient conditions,where

      In this article,we establish the relationship of the information complexitiesn(ε,Id)andn(ε,APPd).On the basis of this relationship,we obtain the necessary and sufficient conditions for various notions of tractability of the approximation problemI={Id}d∈N.

      The article is organized as follows:in Section 2 we introduce the weighted anisotropic Sobolev spaces,the analytic Korobov spaces,the properties of the approximation numbers,the tractability,and then state our main results.Section 3 is devoted to proving the strong equivalence of the approximation numbers of the weighted anisotropic embeddings.In Section 4 we prove the tractability of the weighted anisotropic embeddings.

      2 Preliminaries and Main Results

      2.1 Weighted anisotropic Sobolev spaces on[0,1]d

      2.2 Analytic Korobov spaces

      2.3 Approximation numbers

      2.4 General notations of tractability

      In both cases,e(0,Sd)=1.In other words,the normalized error criterion and the absolute error criterion coincide for the approximation problemsI={Id}and APP={APPd}.

      Forε∈(0,1)andd∈N,letn(ε,Sd)be the information complexity defined by

      We say thatS={Sd}d∈Nis

      ?Exponential convergence-strong polynomially tractable(EC-SPT)if and only if there exist non-negative numbersCandpsuch that,for alld∈N,ε∈(0,1),

      2.5 Main results

      3 Strong Equivalences of Approximation Numbers

      猜你喜歡
      和平
      和平之路
      和平萬歲
      青年歌聲(2020年9期)2020-09-27 07:57:12
      和平分手
      意林(2017年24期)2018-01-02 23:55:39
      Toward a History of Cross-Cultural Written Symbols
      和平之花綻放
      黃河之聲(2016年12期)2016-11-07 01:02:19
      博弈·和平
      特別文摘(2016年18期)2016-09-26 16:42:36
      和平的宣示
      太空探索(2015年10期)2015-07-18 10:59:20
      期盼和平
      珍惜脆弱的和平
      太空探索(2014年9期)2014-07-10 13:06:26
      和平
      小說月刊(2014年2期)2014-04-18 14:06:40
      喜德县| 上杭县| 海淀区| 浑源县| 嵊州市| 钟山县| 佛教| 峨山| 遂川县| 通化县| 玉龙| 三河市| 图们市| 获嘉县| 扎赉特旗| 舟曲县| 成都市| 巫山县| 姜堰市| 嘉峪关市| 新津县| 柞水县| 武川县| 大庆市| 栖霞市| 阳原县| 德令哈市| 黄龙县| 青铜峡市| 清原| 莆田市| 阿克苏市| 米易县| 屏东市| 饶平县| 东阳市| 赣州市| 青铜峡市| 阳原县| 张家口市| 云梦县|