• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability

    2021-01-06 05:53:20CHENLeiCHENLanhuaZHANGYugangXIEJianDIWUJuan
    無機(jī)材料學(xué)報 2020年12期
    關(guān)鍵詞:放射醫(yī)學(xué)雙錐鈾酰

    CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan

    A Layered Uranyl Coordination Polymer with UV Detection Sensitivity, Stability, and Reusability

    CHEN Lei, CHEN Lanhua, ZHANG Yugang, XIE Jian, DIWU Juan

    (State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China)

    The sensitive detection of UV light is critical in industrial production and for personal protection, and the aim of this research is to develop novel UV detection materials. The uranyl unit generally exhibits relatively high UV absorption efficiency and strong fluorescence intensity. Hence in this work, a uranyl coordination polymer compound [(TEA)2(UO2)5(PhPC)6] (TEA = tetraethylammonium ion, PhPC = (2-carboxyethyl)phenylphosphinic acid, denoted asUPhPC-1) was successfully synthesizedthe hydrothermal method. The structural analysis of UPhPC-1 based on the single crystal XRD data elucidates that there are three crystallographically unique uranyl centers. Two uranyl units are in the pentagonal bipyramidal geometry, while the third one is in the tetragonal bipyramidal geometry. All three uranyl units are connected by the ligands to form infinite uranyl layers in the [] plane, which are packedhydrogen bonding networks and π-π interactions to yield the overall layered structure. The stability test results of UPhPC-1 demonstrate that the compound exhibits good thermal and hydrolytic stability with high radiation resistance. Moreover, results of the UV irradiation experiments show that the intrinsic luminescence of UPhPC-1 is highly sensitive to 365 nm UV irradiation with a low detection limit and a fast response rate. A negative correlation between the emission intensity and the UV irradiation dosage was then established. The electron paramagnetic resonance data analysis strongly supports the production of radicals in UPhPC-1 under UV radiation, which leads to the partial quenching of the uranyl fluorescence. Furthermore, the radicals in the quenched sample can be readily eliminated by heating, resulting in the recovery of the photoluminescence intensity of UPhPC-1. The current results suggest suitable application potential of UPhPC-1 in the field of quantitative UV detection.

    uranyl coordination polymer; luminescence spectroscopy; UV detection; structural chemistry

    For decades, ultraviolet radiation receives rapidly growing attention due to its indispensable role in industrial production, security and anti-counterfeiting, health care, and other related fields[1-4]. However, excessive ultraviolet radiation would cause irreversible damage to human, such as epidermal hyperplasia, DNA damage, and melanoma skin cancers[5-6]. Since UV light is invisible to the naked eyes, the development of UV light detection materials is essential for the purpose of protection and radiation control. Various types of semiconductor photodetectors have been fabricated and commercialized, including photodiodes detectors[7], thermoelectric sensors[8], metal-semiconductor-metal detectors[9], and Schottky barrier detectors[10]. However, those materials still face several disadvantages. For example, the defects of semiconductor materials could significantly affect their sensitivity and efficiency, therefore high production standards are required.

    Compared with traditional semiconductors, luminescent methods show clear advantages in high sensitivity, fast response rate, and low cost[11]. Over the years, many luminescent materials have been developed for this purpose, among which luminescent Coordination Polymers (CPs) or Metal Organic Frameworks (MOFs) have been widely investigated primarily due to their advantages of structure diversity and adjustable functionality that can be readily realized by various selections of organic linkers and metal nodes[12-19]. Lanthanide and transition metals are two major groups of elements utilized to build luminescent CPs or MOFs.

    The 5f element uranium is an emerging element used as photosensitive and luminescent materials. The hexavalent uranium generally exists as the divalent linear dioxo unit of UO22+. The photoluminescence property of the uranyl unit originates from the HOMO-LUMO transition of hybridized molecular orbitals, which is not Laporte- forbidden, and hence the UV absorption efficiency and emission intensity of the uranyl often exceeds those of lanthanides[20-24]. Furthermore, owing to the participation of the uranyl 5f/6d orbitals in bonding, the uranyl luminescence intensity is extremely sensitive to the variation of its coordination environment, endowing uranium bearing materials with high detection sensitivity[25-31]. The ongoing research regarding uranyl-based UV detection systems, though limited, has demonstrated their great application potential. For example, a uranyl carboxylate coordination polymer has been reported for the first time to have excellent detection capability of X- or γ-ray and sensitive response to the UV light[32]. In this work, the luminescence of the uranyl unit is proposed to be quenched by the free radicals generated by the bond breaking of the carboxylate groupunder UV radiation. Then, Liu,[33]reported that the presence of coordinated DMF units of uranyl phthalate layers would significantly lower down the UV detection limit, due to the interaction between the uranyl unit and the radicals generated on the DMF units by the UV light. The authors have prepared convenient UV-test strips using this material. Moreover, the insertion of highly photosensitive molecules such as phenanthroline between uranyl oxalate layers would further extend the detection limit to the 10-9J level. The irradiation of this compound would result in the photo-exfoliation of the layered compound to monolayer nanosheet, which is an irreversible process[34]. Besides actinide carboxylate compounds, a number of actinide phosphonate compounds with high structural diversity have also been reported, by virtue of the strong metal binding affinities of the phosphonate ligands[35-39]. However, their UV detection properties have rarely been reported.

    Here, a bifunctional ligand containing both phosphinate and carboxylate moieties was utilized and a luminescent uranyl layered compound [(TEA)2(UO2)5(PhPC)6] (TEA = tetraethylammonium ion, PhPC = (2-carboxyethyl) phenylphosphinic acid, denoted as UPhPC-1) was synthesizedthe hydrothermal method. The structure of UPhPC-1 was revealed by single crystal XRD technique, showing that both phosphinate and carboxylate groups are coordinated to the uranyl ions. The experimental results demonstrate that UPhPC-1 not only shows good thermal stability, hydrolytic stability, and radiation resistance, but also exhibits a fast response rate of 365 nm UV radiation with a low detection limit of 3.9 μJ. The relationship between the UV radiation dosage and the uranyl emission intensity was established and the fluorescence quenching mechanism is proposed to be a radical-induced quenching process. Further studies suggest that the radicals can be readily eliminated by heating, leading to the recovery of the photoluminescence intensity of UPhPC-1.

    1 Experimental

    1.1 Materials and synthesis

    Materials (2-carboxyethyl)phenylphosphinic acid (98%, Energy Chemical) and tetraethylammonium hydroxide (25wt% solution in H2O, J&K Scientific) were used directly without further purification. While uranium compounds used in laboratories contain depleted uranium, standard procedures for handling radioactive materials should be followed.

    Synthesis A mixture of UO2(NO3)2?6H2O (0.05 g, 0.1 mmol), (2-carboxyethyl)phenylphosphinic acid (0.04 g, 0.2 mmol), tetraethylammonium hydroxide (0.2 mL), and H2O (2 mL) was added into a 20 mL Teflon-lined stainless steel autoclave. The autoclave was sealed and heated to 220 ℃ for 3 d, and then cooled to room temperature in 24 h. Brown yellow crystals were isolated as UPhPC-1.

    1.2 Characterization

    X-ray crystallography Single crystal X-ray diffraction data acquisition was carried out on a Bruker D8-Venture diffractometer with a Turbo X-ray Source (Mo-Kα radiation,=0.071073 nm) adopting the direct- drive rotating anode technique and a CMOS detector at 298 K. The data frames were collected using the program APEX3 and processed using SAINT routine in APEX3. The structure of UPhPC-1 was solved by direct methods and refined by the full-matrix least squares on F2using the SHELXTL program.

    Powder X-ray diffraction (PXRD) PXRD patterns were collected on a Bruker D8 Advance diffractometer at 40 kV and 40 mA with Cu Kα radiation (=0.154056 nm) and a Lynxeye one-dimensional detector from 5° to 50° with a step of 0.02° in 2.

    Photoluminescence and UV-Vis absorption spectroscopy The crystals were placed on quartzslides and photoluminescence and UV-Vis absorption spectra were acquired after auto-set optimization by Craic Technologies microspectrophotometer. The photoluminescence spectra of the solid samples before and after X-ray irradiation were collected bySteady State & Transient State Fluorescence Spectrofluorometer.

    Fourier transform infrared (FT-IR) spectroscopy The FT-IR spectra of the solid samples before and after irradiation were recorded in the range of 4000–400 cm–1with the Thermo Nicolet iS 50 spectrometer.

    Thermogravimetric analysis (TG) TG analysis was carried out using a NETZSCH STA449F3 instrument in the temperature range from 30–900 ℃ under a nitrogen flow at a heating rate of 10 K/min for the dried sample.

    Elemental analysis Elemental analysis (C, H, and N) was performed with a Vario EL CHNOS elemental analyzer.

    Electron paramagnetic resonance (EPR) spectroscopyThe EPR data of the pristine sample and samples irradiated for 90 min by UV light and 226 s by X-ray were recorded on a Bruker EMXplus 10/12 EPR spectrometer equipped with an Oxford Instruments EPR901 liquid helium continuous-flow cryostat fitted with a super- high-Q cavity, respectively.

    UV detection experiments UV detection studies were carried out and luminescence spectra were recorded at various exposure time under 365 nm light.

    X-ray irradiation experiments The experiments were carried out using a RS-2000 Pro Biological Irradiator equipped with Cu Kα radiation at a dose rate of 26.5 Gy/min and the samples were irradiated for 226 s.

    Hydrolytic stability measurements The hydrolytic stability evaluation of UPhPC-1 was performed by soaking the samples in HNO3/NaOH aqueous solutions in the pH range from 5 to 12 and shaking for 24 h. The soaked samples were isolated and dried for PXRD pattern analysis.

    2 Results and discussion

    2.1 Structural elucidation

    The U1 and U3 units are in the pentagonal bipyramidal geometry with axial U=O bond distances ranging from 0.1781(5) to 0.1789(4) nm. The U2 unit sits at the inversion center and is in tetragonal bipyramidal geometry with the typical uranyl bond distance of 0.1777(4) nm. All equatorial-bonding oxygen atoms of three uranyl units are provided from the PhPC ligand with bond distances ranging from 0.2309(5) to 0.2491(4) nm. The bond valence sum values of the U1, U2, and U3 are calculated to be 6.019, 5.739, and 6.094, respectively. As shown in Fig. 1, all uranyl units are connected by the PhPC ligands to form the uranyl layers, which are packedhydrogen bonding networks and π-π interactions to yield the overall layered structure. In the free space, there are tetraethylammonium cations to compensate the negative charge of the uranyl layers. The formula of UPhPC-1 is determined to be (TEA)2(UO2)5(PhPC)6taken the results of single crystal structural analysis and elemental analysis (Table S2) into consideration. The FT-IR spectrum of UPhPC-1 was collected without KBr at room temperature. As shown in Fig. S1,the characteristic vibration peaks of the phenyl rings and the carboxylate units are identified between 1720 and 1250 cm–1[40-42]. The vibration peaks of the phosphinate groups are located in the range from 1200 and 950 cm–1. The peak at ~ 920 cm–1is assigned to the stretching vibration of the O=U=O unit[43-44].

    Fig. 1 Structural depiction of UPhPC-1

    (a) View of the layer topology in the [] plane; (b) View of the stacking mode of the uranyl layers

    2.2 Irradiation dosage dependent luminescence spectra

    The photoluminescence spectrum of UPhPC-1 was collected under 365 nm excitation light at room temperature. As shown in Fig. S2, the spectrum of UPhPC-1 exhibits the characteristic emission peaks at 495, 516, 539, 565, and 592 nm, corresponding to the10-0(= 0-4) transitions of the uranyl unit. Compared with the emissive spectrum of UO2(NO3)2·6H2O, the peak position of UPhPC-1 was red-shifted by7 nm, probably caused by the coordination of the uranyl unit and the PhPC ligand, which is generally observed in uranyl coordination polymers[45-48]. The maximum UV-Vis absorption peak position of UPhPC-1 was also slightly shifted comparing to the reported data of UO2(NO3)2·6H2O, as shown in Fig. S3.

    To our surprise, the luminescent emission of UPhPC-1 was quenched rapidly after UV light irradiation, which could be observed by naked eyes. This phenomenon strongly suggests the potential of this material being used as a dosimeter for ultraviolet radiation. As shown in Fig. 2, the emission intensity of UPhPC-1 decreased significantly with the accumulative increase of the UV radiation dosage, indicating that the luminescence intensity of UPhPC-1 is responsive to the dosage of UV light not only instantly but also accumulatively. The emission peak intensity of UPhPC-1 was decreased by 79% after being exposed to 0.84 mJ 365 nm radiation and was almost completely quenched after 1.5 h exposure (Fig. 2(a)). To quantitively describe the negative correlation between luminescence intensity and UV radiation dosage, the quenching ratio of UPhPC-1 was calculated and expressed as (0–)/0, where0is the initial luminescence intensity andis the luminescence intensity after irradiation by ultraviolet light. The detection limit of UPhPC-1 can be determined by the following equations:

    The inset is the linear fitting of the point data in the low dose range (0–0.028 mJ)

    Hereis the detection limit;SEis the standard error of the luminescence intensity;0is the measured initial luminescence intensity of UPhPC-1;is the slope obtained from the linear fit in the low dosage range of the dosage-dependent luminescence intensity calibration curve.

    The linear fitting can be achieved for the curve of the quenching ratiothe dosage of UV irradiation in the low dose range (Fig. 2(b)). The detection limit of UPhPC-1 was determined to be 3.9 μJ. Besides, the response rate of UPhPC-1 is faster than the uranyl-oxalate based UV detection material, demonstrating the high sensitivity of UPhPC-1 for the low dosage ultraviolet radiation. When exposed with 100 Gy X-ray, the luminescence intensity of UPhPC-1 was quenched by 66% (Fig. 3(a)).

    2.3 Stability evaluation

    The stability of UPhPC-1 was investigated in this work. The PXRD and FT-IR data show that the structural integrity of UPhPC-1 was maintained after UV light and X-ray irradiation without any light-induced crystal degradation (Fig. S1 and Fig. S4). Those results demonstrate the high radiation resistance of UPhPC-1, which is comparable to other uranyl-based detection materials. The hydrolytic stability of UPhPC-1 was evaluated by soaking the crystalline samples in HNO3/NaOH aqueous solutions in the pH range from 5 to 12 and shaking for 24 h. The experimental PXRD patterns of the soaked samples match well with the pattern of the pristine UPhPC-1 sample, indicating the excellent hydrolytic stability of UPhPC-1 (Fig. S4). Thermogravimetric analysis reveals that UPhPC-1 experienced several stages of weight loss in the temperature range from 30 to 900 ℃. As shown in Fig. S5, the first weight-loss of 1.72% before 380 ℃ is assigned to the loss of surface water molecules during the heating process. The loss of tetraethylammonium ion occurred at temperature above 400 ℃, resulting in the 10.7% loss in weight and the disruption of the overall structure. This decomposition temperature is higher than that of a previous reported two-dimensional uranyl-oxalate compound of 306 ℃[32].

    2.4 Quenching mechanism and reusability investigation

    The EPR analyses were performed on the irradiated and pristine crystalline samples to further investigate the fluorescence quenching mechanism (Fig. 3(b)). It was observed that the peak intensity of the irradiated samples increased significantly compared to the original sample, implying the generation of radicals, yet further theoretical calculation is necessary to identify those radicals. On the basis of the obtained data, we speculate that the most plausible quenching mechanism is the production of radicals possibly from the partial bond break of the ligand in the irradiated crystal, resulting in the energy transfer from the uranyl center to the nearby generated radicals, which leads to the quenching of the luminescence of UPhPC-1[33-34].

    Fig. 3 Photoluminescence spectra (a) of UPhPC-1 before and after X-ray irradiation, EPR spectra (b) of UPhPC-1 before and after UV and X-ray irradiation, luminescence intensities (c) of UPhPC-1 before and after UV irradiation, and after the heating recovery process

    The reusability of UV detection materials is also critical for their industrial development. Generally, it is not easy to obtain a reusable uranyl-based UV detection material since the recovery of the material requires not only the easy elimination of irradiation induced radicals, but also the ability to maintain the structural integrity during the irradiation and the recovery processes to restore its original photophysical properties. Generally, free radicals will not be able to stable for a long time, and heating accelerates the quenching process. The thermal elimination of radicals has been widely studied ever since 1970’s and has already been applied in the industrial production[49-51]. Here in this work, we have demonstrated that the radicals in the quenched UPhPC-1 samples could be eliminated after heating at 150 ℃ for 21 h. During the irradiation and heating process, the overall structure of UPhPC-1 is retained, and the uranyl fluorescence intensity could be fully restored (Fig. 3(c)). Therefore, the UPhPC-1 could be reused in a recovery way that is executable and cost-effective. A similar heating induced recovery was reported by Xie,[33].

    3 Conclusion

    In conclusion, we herein report a novel uranyl layered compound UPhPC-1with high thermal and hydrolytic stability and radiation resistance. The intrinsic luminescence of UPhPC-1 was found to be highly sensitive to UV and 100 Gy X-ray irradiation, and a negative correlation between the emission intensity and the irradiation dosage was established with a low detection limit. The EPR data indicate that the production of free radicals after irradiation is responsible for the quenching of the uranyl emission. Therefore, we can reasonably conclude that UPhPC-1 exhibits suitable application potential in the field of quantitative UV radiation detection and provides a new application platform for a large inventory of depleted uranium.

    Supporting Materials

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20200139.

    [1] GINER TORRES S, MONTANES N, FENOLLAR O,. Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation., 2016, 108: 648–658.

    [2] YUE WU, HE RIAN, YAO PING-JIA,. Ultraviolet radiation- induced accelerated degradation of chitosan by ozone treatment., 2009, 77(3): 639–642.

    [3] WESTERHOF W, NIEUWEBOER KROBOTOVA L. Treatment of vitiligo with UV-B radiationtopical psoralen plus UV-A.1997, 133(12): 1525–1528.

    [4] NERANDZIC M MICHELLE, CADNUM L JENNIFER, PULTZ J MICHAEL,Evaluation of an automated ultraviolet radiation device for decontamination ofand other healthcare-associated pathogens in hospital rooms., 2010, 10: 197.

    [5] NARAYANAN L DEEVYA, SALADI N RAO, FOX L J,Ultraviolet radiation and skin cancer., 2010, 49(9): 978–986.

    [6] MANCEBO E SILVIA, WANG Q STEVEN.Skin cancer: role of ultraviolet radiation in carcinogenesis., 2014, 29(3): 265–273.

    [7] SCHOLZE F, KLEIN R, MULLER R. Characterization of detectors for extreme UV radiation.., 2006, 43: S6–S10.

    [8] FRITZ G GILBERT, WOOD S KENT, VECHTEN VAN DEBORAH,. Thermoelectric single-photon detectors for X-ray/UV radiation., 2000, 4140: 459–469.

    [9] HE CHENG, WU XIAO, KONG JI-CHUAN,. A hexanuclear gadolinium–organic octahedron as a sensitive MRI contrast agent for selectively imaging glucosamine in aqueous media.., 2012, 48: 9290–9292.

    [10] MONROY E, VIGUé F, CALLE F,Time response analysis of ZnSe-based Schottky barrier photodetectors.., 2000, 77: 2761–2763.

    [11] FABBRIZZI LUIGI, LICCHELLI MAURIZIO, RABAIOLI GIULIANO,The design of luminescent sensors for anions and ionisable analytes., 2000, 205(1): 85–108.

    [12] INUKAI M, TAMURA M, HORIKE S,. Storage of CO2into porous coordination polymer controlled by molecular rotor dynamics.,2018, 57(28): 8687–8690.

    [13] DU YA, YANG HAI-SHEN, WAN SHUN,A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2.,2017, 5(19): 9163–9168.

    [14] CUI JING-WANG, HOU SUO-XIA, LI YUE-HUA,A multifunctional Ni(ii) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst.,2017, 46(48): 16911–16924.

    [15] NOVIO F, SIMMCHEN J, VáZQUEZ-MERA N,Coordinationpolymer nanoparticles in medicine., 2013, 257(19/20): 2839–2847.

    [16] LIHAI-YANG, XU HONG, ZANG SHUANG-QUAN,A viologen-functionalized chiral Eu-MOF as a platform for multifunctional switchable material..,2016, 52(3): 525–528.

    [17] HU SHU-ZHI,ZHANGJIE,CHENSHU-HUANG,. Efficient ultraviolet light detector based on a crystalline viologen-based metal–organic framework with rapid visible color change under irradiation., 2017, 9(46): 39926–39929.

    [18] ZHANG YING-MU, YUAN SHUAI, DAY GREGORY,Luminescent sensors based on metal-organic frameworks., 2018, 354: 28–45.

    [19] WANG YA-XING, YIN XUE-MIAO, WANG SHU-AO,Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators.,2018, 57(26): 7883–7887.

    [20] PARKERDAVID, DICKINS S RACHEL, PUSCHMANN HORST,. Being excited by lanthanide coordination complexes:? aqua species, chirality, excited-state chemistry, and exchange dynamics.,2002, 102(6): 1977–2010.

    [21] LI FEI-ZE, MEI LEI, SHI WEI-QUN,Uranyl compounds involving a weakly bonded pseudorotaxane linker: combined effect of pH and competing ligands on uranyl coordination and speciation., 2019, 58(5): 3271–3282.

    [22] ZHAO RAN, MEI LEI, SHI WEI-QUN,Bimetallic uranyl organic frameworks supported by transition-metal-ion-based metalloligand motifs: synthesis, structure diversity, and luminescence properties.,2018, 57(10): 6084–6094.

    [23] MEI LEI, WU QUN-YAN, SHI WEI-QUN,Silver ion-mediated heterometallic three-fold interpenetrating uranyl-organic framework., 2015, 54(22): 10934–10945.

    [24] LIU WEI, SONG EN-HAI, WANG SHU-AO,Introducing uranium as the activator toward highly stable narrow-band green emitters with near-unity quantum efficiency.,2019, 31: 9684–9690.

    [25] WU XU-MENG, WANG HONG-QING, WANG XIANG-KE,Sensors for determination of uranium: a review.,2019, 118: 89–111.

    [26] GUI DA-XIANG, DUAN WAN-CHUN, WANG SHU-AO,Persistent superprotonic conductivity in the order of 10?1S·cm?1achieved through thermally induced structural transformation of a uranyl coordination polymer., 2019, 1(2): 197–206.

    [27] LI JIE, WANG XIANG-YUE, WANG XIANG-KE,Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions., 2018, 47(7): 2322–2356.

    [28] WANG LIN, LI ZIJIE, SHI WEI-QUN,Layered structure- based materials: challenges and opportunities for radionuclide sequestration., 2020, 7(3): 724–752.

    [29] WANG XIANG-XUE, SHI WEI-QUN, WANG XIANG-KE,Synthesis of novel nanomaterials and their application in efficient removal of radionuclides.., 2019, 62(8): 933–967.

    [30] YIN XUE-MIAO, WANG YA-XING, WANG SHU-AO,Competing crystallization between lanthanide and actinide in acidic solution leading to their efficient separation.., 2019, 37(1): 53–57.

    [31] WANG YAN-LONG, LIU ZHI-YONG, WANG SHU-AO,Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions.., 2015, 137(19): 6144–6147.

    [32] XIE JIAN, WANG YA-XING, LIU WEI,Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework., 2017, 56(26): 7500–7504.

    [33] LIU WEI, DAI XING, XIE JIAN,Highly sensitive detection of UV radiation using a uranium coordination polymer., 2018, 10(5): 4844–4850.

    [34] XIE JIAN, WANG YA-XING, WANG SHU-AO,Photo- exfoliation of a highly photo-responsive two-dimensional metal- organic framework., 2019, 55(78): 11715–11718.

    [35] ZHENG TAO, YANG ZAI-XING, GUI DA-XIANG,Overcoming the crystallizationanddesignability issues in the ultrastable zirconium phosphonate framework system., 2017, 8(1): 15369.

    [36] GUI DA-XIANG, ZHENG TAO, CHEN LAN-HUA,Hydrolytically stable nanoporous thorium mixed phosphite and pyrophosphate framework generated from redox-active ionothermal reactions., 2016, 55(8): 3721–3723.

    [37] TIAN TAO, YANG WEI-TING, SUN ZHONG-MING,Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels., 2013, 52(12): 7100–7106.

    [38] YANG WEI-TING, TIAN WAN-GUO, SUN ZHONG-MING,Syntheses, structures, luminescence, and photocatalytic properties of a series of uranyl coordination polymers.., 2014, 14(11): 5904–5911.

    [39] YANG WEI-TING, PARKER GANNON T, SUN ZHONG-MING. Structural chemistry of uranium phosphonates.., 2015, 303: 86–109.

    [40] LAN WEN-TING, HE LI, LIU YAO-WEN. Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film., 2018, 8(8): 291.

    [41] LAWRIE GWEN, KEEN IMELDA, DREW BARRY,Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS., 2007, 8(8): 2533–2541.

    [42] POLJAN?EK IDA, KRAJNC MATJA?. Characterization of phenol- formaldehyde prepolymer resins by in line FT-IR spectroscopy.., 2005, 52: 238–244.

    [43] WANG YA-XING, LIU XIN, WANG SHU-AO,Direct radiation detection by a semiconductive metal-organic framework.., 2019, 141(20): 8030–8034.

    [44] COZACIUC ANDREEA IRINA, POSTOLACHI RODICA, GRADINARU ROBERT,Synthesis and characterization of uranyl (VI) chiral Schiff-base complexes derived from salicylaldehyde and-aminoacids., 2012, 65(12):2170–2181.

    [45] YANG WEI-TING, WANG HAO, SUN ZHONG-MING,The first family of actinide carboxyphosphinates: two and three- dimensional uranyl coordination polymers.., 2014, 2014(31): 5378–5384.

    [46] YANG WEI-TING, WU DAI, SUN ZHONG-MING,Structural variations of the first family of heterometallic uranyl carboxyphosphinate assemblies by synergy between carboxyphosphinate and imidazole ligands.., 2016, 16(4): 2011– 2018.

    [47] YANG WEI-TING, WANG HAO, SUN ZHONG-MING,Isolation of a series of uranium organophosphinates., 2014, 16(34): 8073–8080.

    [48] ZHANG YU-GANG, CHEN LAN-HUA, GUAN JING-WEN,. A unique uranyl framework containing uranyl pentamers as secondary building units: synthesis, structure, and spectroscopic properties..,2020,49: 3676–3679.

    [49] RSTENSEN PETERCA. Free radicals in diene polymers induced by ultraviolet irradiation. II. an ESR study of cis-1.4-poly(butadiene)., 1971, 142(1): 131–144.

    [50] ZHANG XIAN, WANG SHENG-MING, SUN CAI,. Stabilizing and color tuning pyrazine radicals by coordination for photochromism., 2016, 52(51): 7947–7949.

    [51] WANG SHENG-MING, XU GANG, ZHANG ZHANGJ-ING,Inorganic–organic hybrid photochromic materials.,2010, 46(3): 361–376.

    具有UV探測靈敏性、穩(wěn)定性和重復(fù)利用性的層狀鈾酰配位聚合物研究

    陳磊, 陳蘭花, 張瑜港, 謝健, 第五娟

    (蘇州大學(xué) 江蘇省高等學(xué)校放射醫(yī)學(xué)協(xié)同創(chuàng)新中心, 放射醫(yī)學(xué)及交叉科學(xué)研究院(RAD-X), 放射醫(yī)學(xué)與輻射防護(hù)國家重點(diǎn)實(shí)驗(yàn)室, 蘇州 215123)

    靈敏的UV探測對于工業(yè)生產(chǎn)和個人防護(hù)非常重要, 本研究旨在開發(fā)新型UV探測材料。一般而言, 鈾酰單元具有相對高的UV吸收效率和熒光強(qiáng)度。本課題組成功地在水熱條件下制備了一例鈾酰配位聚合物[(TEA)2(UO2)5(PhPC)6] (TEA = 四乙基胺離子, PhPC = (2-羧基乙基)苯膦酸, 標(biāo)記為UPhPC-1)?;趩尉RD數(shù)據(jù)的結(jié)構(gòu)分析表明UPhPC-1中有三個不同的鈾酰中心, 其中兩個鈾酰單元為五角雙錐構(gòu)型, 而第三個鈾酰單元為四角雙錐構(gòu)型。全部三個鈾酰中心與配體在[]平面配位形成無限的鈾酰層。通過氫鍵網(wǎng)格和π-π相互作用, 這些鈾酰層堆積成整體的層狀結(jié)構(gòu)。此化合物具有很好的熱穩(wěn)定性、水穩(wěn)定性和高抗輻照能力。UV輻照實(shí)驗(yàn)結(jié)果表明UPhPC-1的本征熒光強(qiáng)度對365 nm的UV輻射高度敏感, 檢測下限低且響應(yīng)速率快, 而發(fā)光強(qiáng)度與UV輻照劑量呈負(fù)相關(guān)。電子順磁共振譜分析證實(shí)在UV光照射下, UPhPC-1中極有可能產(chǎn)生自由基, 造成鈾酰熒光部分淬滅。進(jìn)一步, 被淬滅樣品中的自由基能夠在加熱后被去除, 從而實(shí)現(xiàn)UPhPC-1發(fā)光強(qiáng)度的快捷恢復(fù)。目前的結(jié)果表明UPhPC-1在UV輻照的定量探測領(lǐng)域具有一定的發(fā)展?jié)摿Α?/p>

    鈾酰配位化合物; 熒光光譜; UV探測; 結(jié)構(gòu)化學(xué)

    TQ174

    A

    1000-324X(2020)12-1391-07

    10.15541/jim20200139

    2020-03-17;

    2020-04-08

    Science Challenge Project (TZ2016004); National Natural Science Foundation of China (21771133, 21790374, 21906113); Natural Science Foundation of Jiangsu Province (BK20190044); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

    CHEN Lei (1995-), female, Master candidate. E-mail: 20174220040@stu.suda.edu.cn

    陳磊(1995-), 女, 碩士研究生. E-mail: 20174220040@stu.suda.edu.cn

    DIWU Juan, professor. E-mail: diwujuan@suda.edu.cn

    第五娟, 教授. E-mail: diwujuan@suda.edu.cn

    猜你喜歡
    放射醫(yī)學(xué)雙錐鈾酰
    《國際放射醫(yī)學(xué)核醫(yī)學(xué)雜志》聯(lián)系電話變更的通知
    金納米雙錐的SPR吸收調(diào)控及光熱性能評價實(shí)驗(yàn)設(shè)計
    一種鈾酰配合物的合成及其光催化降解性能研究
    《國際放射醫(yī)學(xué)核醫(yī)學(xué)雜志》變更為月刊的通知
    《國際放射醫(yī)學(xué)核醫(yī)學(xué)雜志》招聘科技期刊編輯
    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers
    電噴霧串聯(lián)質(zhì)譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應(yīng)用
    預(yù)緊工況下雙錐環(huán)的有限元分析及優(yōu)化
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    間充質(zhì)干細(xì)胞在放射醫(yī)學(xué)中的研究前景
    亚洲人成网站在线观看播放| 一进一出抽搐动态| 欧美xxxx黑人xx丫x性爽| 亚洲七黄色美女视频| 国产精品爽爽va在线观看网站| 一级毛片久久久久久久久女| 国产成人影院久久av| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 国产黄片美女视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲自拍偷在线| 亚洲国产欧美人成| 热99re8久久精品国产| 日韩大尺度精品在线看网址| 久久久久国产网址| 国产高清激情床上av| av视频在线观看入口| 成人鲁丝片一二三区免费| 久久久久久久久中文| 亚洲成人久久性| 国产不卡一卡二| 欧美精品国产亚洲| 12—13女人毛片做爰片一| 亚洲中文字幕日韩| 国产精品一区二区三区四区免费观看| 欧美最新免费一区二区三区| 人妻制服诱惑在线中文字幕| kizo精华| 啦啦啦啦在线视频资源| 三级毛片av免费| 久久国内精品自在自线图片| 美女xxoo啪啪120秒动态图| 久久亚洲精品不卡| 99热精品在线国产| 午夜激情欧美在线| 给我免费播放毛片高清在线观看| 少妇猛男粗大的猛烈进出视频 | 一级av片app| 在线播放国产精品三级| 啦啦啦韩国在线观看视频| 91精品一卡2卡3卡4卡| 免费无遮挡裸体视频| 91久久精品电影网| 亚洲欧美日韩无卡精品| 欧美在线一区亚洲| 国产亚洲av片在线观看秒播厂 | 国产乱人偷精品视频| 免费无遮挡裸体视频| avwww免费| 成人午夜高清在线视频| 老司机福利观看| 搞女人的毛片| 美女大奶头视频| 日本免费a在线| 亚洲一区高清亚洲精品| 国产精品.久久久| 黄片wwwwww| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 亚洲,欧美,日韩| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 国产色婷婷99| 1000部很黄的大片| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 黄色配什么色好看| 美女黄网站色视频| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 91av网一区二区| 天美传媒精品一区二区| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 国产蜜桃级精品一区二区三区| 六月丁香七月| 久久精品国产鲁丝片午夜精品| 欧美日韩综合久久久久久| 免费av毛片视频| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 国产熟女欧美一区二区| 丰满乱子伦码专区| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 亚洲欧美精品专区久久| 久久午夜福利片| 国产在视频线在精品| 欧美日韩一区二区视频在线观看视频在线 | 久久精品91蜜桃| 日韩三级伦理在线观看| 午夜爱爱视频在线播放| 熟妇人妻久久中文字幕3abv| 亚洲av.av天堂| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 村上凉子中文字幕在线| 一个人免费在线观看电影| 99久国产av精品| 看十八女毛片水多多多| 久久精品影院6| 能在线免费观看的黄片| 日本熟妇午夜| 精品国产三级普通话版| 亚洲国产精品成人久久小说 | 久久6这里有精品| 性欧美人与动物交配| 日韩视频在线欧美| 少妇的逼水好多| 黄色欧美视频在线观看| 欧美人与善性xxx| 日本黄大片高清| 精品一区二区免费观看| 精品免费久久久久久久清纯| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 内地一区二区视频在线| 日韩欧美在线乱码| 亚洲中文字幕日韩| 在线观看一区二区三区| 嫩草影院精品99| 国产老妇伦熟女老妇高清| 99热这里只有精品一区| 在线播放无遮挡| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| 久久综合国产亚洲精品| 日韩一区二区三区影片| 国产午夜精品一二区理论片| 日本-黄色视频高清免费观看| 亚洲自拍偷在线| 国产成人freesex在线| 身体一侧抽搐| 麻豆国产97在线/欧美| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 国产高清激情床上av| 亚洲国产精品成人综合色| 久久久久性生活片| 老师上课跳d突然被开到最大视频| 青春草国产在线视频 | a级一级毛片免费在线观看| 看免费成人av毛片| 永久网站在线| 日韩三级伦理在线观看| 久久九九热精品免费| 午夜精品一区二区三区免费看| 亚洲av二区三区四区| 久久精品国产自在天天线| 国产精品精品国产色婷婷| 免费人成视频x8x8入口观看| 国产精品久久电影中文字幕| 国产伦在线观看视频一区| 一进一出抽搐gif免费好疼| av又黄又爽大尺度在线免费看 | 国产精品人妻久久久影院| 最后的刺客免费高清国语| 国产精品久久电影中文字幕| 免费看光身美女| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 日韩欧美精品免费久久| 一级av片app| 亚洲,欧美,日韩| 99视频精品全部免费 在线| 国产 一区精品| 亚洲18禁久久av| 国产精品久久视频播放| 国产v大片淫在线免费观看| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 99热只有精品国产| 一区二区三区免费毛片| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 亚洲天堂国产精品一区在线| 一边摸一边抽搐一进一小说| 99久国产av精品| 亚洲久久久久久中文字幕| 精品不卡国产一区二区三区| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 成年av动漫网址| 啦啦啦观看免费观看视频高清| 国产精品久久久久久久电影| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 男人狂女人下面高潮的视频| 看黄色毛片网站| 三级经典国产精品| 国产精品久久久久久久电影| 午夜a级毛片| av视频在线观看入口| 久久精品夜色国产| 国产久久久一区二区三区| 欧美变态另类bdsm刘玥| 国产精品1区2区在线观看.| 国产 一区精品| 欧美日韩乱码在线| 热99re8久久精品国产| 成年av动漫网址| 国产毛片a区久久久久| 日韩欧美 国产精品| 国内揄拍国产精品人妻在线| 搡老妇女老女人老熟妇| 51国产日韩欧美| 国产成人精品一,二区 | 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 久久久久免费精品人妻一区二区| 亚洲激情五月婷婷啪啪| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| www.色视频.com| 亚洲av一区综合| 亚洲一区高清亚洲精品| 久久久久久久久中文| 亚洲av二区三区四区| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| av黄色大香蕉| 国产高清不卡午夜福利| 免费av毛片视频| 一本一本综合久久| 成人鲁丝片一二三区免费| 高清在线视频一区二区三区 | 国产精品久久久久久久久免| 成人永久免费在线观看视频| 国产午夜精品久久久久久一区二区三区| 国产成人91sexporn| 91久久精品国产一区二区成人| 国产黄色视频一区二区在线观看 | 麻豆精品久久久久久蜜桃| 女的被弄到高潮叫床怎么办| 老师上课跳d突然被开到最大视频| av在线亚洲专区| 小说图片视频综合网站| 欧美精品一区二区大全| 美女大奶头视频| 国产精品国产三级国产av玫瑰| 淫秽高清视频在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产日韩欧美精品在线观看| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 久久精品国产99精品国产亚洲性色| 麻豆av噜噜一区二区三区| 桃色一区二区三区在线观看| 99久久人妻综合| 久久这里有精品视频免费| 婷婷亚洲欧美| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 哪里可以看免费的av片| 校园人妻丝袜中文字幕| 成人无遮挡网站| 一级黄片播放器| 别揉我奶头 嗯啊视频| 国产激情偷乱视频一区二区| 久久鲁丝午夜福利片| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 国产精品国产三级国产av玫瑰| 久久久久九九精品影院| 在线播放国产精品三级| 国产一级毛片七仙女欲春2| 成人特级av手机在线观看| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 一级黄色大片毛片| 国产成年人精品一区二区| 久久人人爽人人片av| 免费av观看视频| 村上凉子中文字幕在线| 淫秽高清视频在线观看| 99热6这里只有精品| 人妻制服诱惑在线中文字幕| 亚洲综合色惰| 美女 人体艺术 gogo| 黄色一级大片看看| 国产精品一及| 久久午夜亚洲精品久久| 成人美女网站在线观看视频| 我的老师免费观看完整版| 亚洲欧洲日产国产| 女人被狂操c到高潮| 久久久久国产网址| 国产精品免费一区二区三区在线| 秋霞在线观看毛片| 国产精品人妻久久久久久| 神马国产精品三级电影在线观看| 色综合站精品国产| 免费观看的影片在线观看| a级一级毛片免费在线观看| 久久人人精品亚洲av| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 寂寞人妻少妇视频99o| 丰满人妻一区二区三区视频av| 一级毛片我不卡| 国产在线精品亚洲第一网站| 午夜福利高清视频| 亚洲精品国产成人久久av| 亚洲一区高清亚洲精品| 天堂中文最新版在线下载 | 亚洲自拍偷在线| 亚洲av第一区精品v没综合| 美女高潮的动态| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩| 搡老妇女老女人老熟妇| 国产大屁股一区二区在线视频| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 亚洲成人久久爱视频| 日韩大尺度精品在线看网址| 日韩欧美精品v在线| 春色校园在线视频观看| 内射极品少妇av片p| 我的女老师完整版在线观看| 色视频www国产| 高清午夜精品一区二区三区 | 成人永久免费在线观看视频| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| 日韩国内少妇激情av| 一进一出抽搐gif免费好疼| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂 | 嫩草影院新地址| 成年av动漫网址| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 久久鲁丝午夜福利片| 日韩中字成人| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 午夜福利高清视频| 久久亚洲精品不卡| 能在线免费看毛片的网站| 久久精品国产亚洲av天美| 久久精品91蜜桃| 久久久久久久久大av| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 九九久久精品国产亚洲av麻豆| 亚洲精品久久国产高清桃花| 黄色欧美视频在线观看| 男女啪啪激烈高潮av片| 亚洲av第一区精品v没综合| 亚洲三级黄色毛片| 国产一区二区三区av在线 | 97超碰精品成人国产| 久久欧美精品欧美久久欧美| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 婷婷亚洲欧美| 久久这里只有精品中国| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 一个人看的www免费观看视频| 国产精品国产三级国产av玫瑰| 99在线视频只有这里精品首页| 美女被艹到高潮喷水动态| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 日本黄大片高清| 日韩欧美三级三区| 久久精品夜色国产| 91狼人影院| 成人国产麻豆网| 一边摸一边抽搐一进一小说| 大又大粗又爽又黄少妇毛片口| 99久久久亚洲精品蜜臀av| 欧美一区二区亚洲| 老女人水多毛片| 亚洲精品日韩在线中文字幕 | 精品人妻熟女av久视频| 国产在线精品亚洲第一网站| 成年版毛片免费区| 久久久久久国产a免费观看| 日韩欧美精品免费久久| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| 亚洲精品亚洲一区二区| videossex国产| 如何舔出高潮| 女同久久另类99精品国产91| 久久精品国产亚洲av香蕉五月| 成人漫画全彩无遮挡| 国产日韩欧美在线精品| 人人妻人人看人人澡| 全区人妻精品视频| 一区福利在线观看| 精品一区二区免费观看| 女人被狂操c到高潮| 亚洲精华国产精华液的使用体验 | 午夜福利视频1000在线观看| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说 | 99热这里只有是精品50| 在线a可以看的网站| 久久久久久久久大av| 日韩欧美精品免费久久| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 天堂√8在线中文| 99久久久亚洲精品蜜臀av| 搞女人的毛片| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 99热全是精品| 在线国产一区二区在线| 91久久精品电影网| 精品免费久久久久久久清纯| 韩国av在线不卡| 久久精品国产亚洲av涩爱 | 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 国产av在哪里看| 丝袜美腿在线中文| 欧美高清性xxxxhd video| 看十八女毛片水多多多| 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 国产伦在线观看视频一区| 久久99蜜桃精品久久| 一级毛片久久久久久久久女| 中文字幕制服av| 国产精品一区二区三区四区免费观看| 日韩精品青青久久久久久| 六月丁香七月| 老师上课跳d突然被开到最大视频| 三级国产精品欧美在线观看| 亚洲内射少妇av| 午夜激情福利司机影院| 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 国产伦精品一区二区三区四那| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 欧美最黄视频在线播放免费| or卡值多少钱| 久久久国产成人精品二区| 不卡视频在线观看欧美| 成人国产麻豆网| 午夜老司机福利剧场| 国产日韩欧美在线精品| av天堂在线播放| 综合色丁香网| 国产午夜精品一二区理论片| 国产精品无大码| 亚洲av熟女| 国产午夜精品一二区理论片| 亚洲乱码一区二区免费版| 国产精品久久久久久av不卡| 特大巨黑吊av在线直播| 女同久久另类99精品国产91| 岛国在线免费视频观看| 黄色欧美视频在线观看| 国产精品,欧美在线| 免费看av在线观看网站| 神马国产精品三级电影在线观看| 乱系列少妇在线播放| 亚洲电影在线观看av| 国产不卡一卡二| 国产精品爽爽va在线观看网站| 黄色欧美视频在线观看| 日日撸夜夜添| 久久人妻av系列| 国产精品,欧美在线| 国产在视频线在精品| 久久这里只有精品中国| 欧美3d第一页| 亚洲精品乱码久久久久久按摩| 欧美色视频一区免费| 色5月婷婷丁香| 国产 一区精品| 禁无遮挡网站| 亚洲在线自拍视频| 国内精品一区二区在线观看| 日韩欧美精品v在线| 毛片女人毛片| 国产精品人妻久久久久久| 免费电影在线观看免费观看| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 亚洲成人久久性| av卡一久久| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 中文字幕熟女人妻在线| 日本在线视频免费播放| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说 | 国产 一区精品| 午夜爱爱视频在线播放| www.av在线官网国产| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 在线观看午夜福利视频| 免费人成在线观看视频色| 久久久成人免费电影| 午夜激情欧美在线| 小说图片视频综合网站| 日日摸夜夜添夜夜爱| 国产欧美日韩精品一区二区| 26uuu在线亚洲综合色| 国产中年淑女户外野战色| av天堂中文字幕网| 久久综合国产亚洲精品| 可以在线观看毛片的网站| eeuss影院久久| 桃色一区二区三区在线观看| 天堂中文最新版在线下载 | 成人三级黄色视频| 久99久视频精品免费| .国产精品久久| 亚洲七黄色美女视频| 国产在线男女| 日日撸夜夜添| 亚洲久久久久久中文字幕| 亚洲激情五月婷婷啪啪| 性色avwww在线观看| 老熟妇乱子伦视频在线观看| 国产视频首页在线观看| 老师上课跳d突然被开到最大视频| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 高清午夜精品一区二区三区 | 色5月婷婷丁香| 国产av不卡久久| 级片在线观看| 最新中文字幕久久久久| 国产日本99.免费观看| 身体一侧抽搐| 97热精品久久久久久| 成人永久免费在线观看视频| 99在线人妻在线中文字幕| 成熟少妇高潮喷水视频| 日日啪夜夜撸| 欧美色视频一区免费| 日韩,欧美,国产一区二区三区 | 国产亚洲91精品色在线| 99久国产av精品| 黄片无遮挡物在线观看| 成人av在线播放网站| 小说图片视频综合网站| 卡戴珊不雅视频在线播放| 日本熟妇午夜| 激情 狠狠 欧美| 国产精品野战在线观看| 中文精品一卡2卡3卡4更新| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 人人妻人人看人人澡| а√天堂www在线а√下载| 婷婷精品国产亚洲av| 日本一二三区视频观看| 欧美精品一区二区大全| 一级黄片播放器| 91aial.com中文字幕在线观看| 亚洲av不卡在线观看| 久久久成人免费电影| 精品久久久噜噜| 国产黄a三级三级三级人| 99久久精品一区二区三区| 日韩强制内射视频| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| kizo精华| 免费大片18禁| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| av在线播放精品| 少妇熟女aⅴ在线视频| 一区二区三区四区激情视频 | 嫩草影院精品99| 亚洲欧美日韩东京热| 99国产精品一区二区蜜桃av| 人体艺术视频欧美日本| 精品欧美国产一区二区三| 国产一级毛片七仙女欲春2| 午夜爱爱视频在线播放| 2021天堂中文幕一二区在线观| 99久国产av精品| 色综合亚洲欧美另类图片| 免费观看精品视频网站| 99久久人妻综合| 国产伦精品一区二区三区视频9| 国产精品麻豆人妻色哟哟久久 | 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕日韩| 久99久视频精品免费| 日韩欧美精品v在线| 国产精品永久免费网站| 少妇的逼好多水| 看黄色毛片网站|