陳玉飛,魏思怡,張林
(1.華北理工大學(xué) 建筑工程學(xué)院,河北 唐山 063210;2. 華北理工大學(xué) 礦業(yè)工程學(xué)院,河北 唐山 063210)
據(jù)統(tǒng)計資料顯示,2019年上半年我國機動車保有量已增長至3.4億輛,道路交通事故年死亡人數(shù)已達到6.3萬。隨著我國經(jīng)濟和道路交通的迅猛發(fā)展,車道數(shù)量不斷增加、車道寬度不斷拓寬、汽車擁有量不斷增多、車速得到大大提高,同時道路交通事故問題越來越突出[1-3]。道路交通事故問題不僅困擾著國內(nèi)安全,同時,全球都遭受著這一"公害"困擾,各國政府和社會都在密切關(guān)注這一問題。全球每年因交通事故而喪生的人數(shù)在逐年增加,因交通事故而造成的直接財產(chǎn)損失也呈上升趨勢。交通事故的發(fā)生不僅影響著受害者及其家庭,打擾其正常的生活秩序,使其家庭失去勞動力和經(jīng)濟收入來源,還會造成車輛損傷、交通擁堵等嚴(yán)重后果,影響社會的穩(wěn)定性??偠灾?,交通事故的發(fā)生無論是從個人、家庭角度還是社會角度而言均會帶來不利影響,避免或減少交通事故的發(fā)生可有效降低人員傷亡率和財產(chǎn)損失。目前,人、車、道路等因素錯綜復(fù)雜且發(fā)展不均衡,各種因素的影響程度尚不清晰,中國的道路安全仍然受到很多方面的影響,道路安全建設(shè)還需要解決很多復(fù)雜的問題。因此,根據(jù)交通事故發(fā)生規(guī)律進行合理預(yù)測,對于保障人民生命安全,提前采取防范措施減少交通事故死亡人數(shù)具有十分重大的現(xiàn)實意義。
人、車、路等不同因素共同影響交通事故的發(fā)生,再者交通事故發(fā)生的概率不僅隨機性較大,而且存在模糊性與偶然性。因此,本文對已有交通事故歷史數(shù)據(jù)應(yīng)用灰色基本理論進一步分析研究交通事故發(fā)生的內(nèi)在規(guī)律,根據(jù)原始數(shù)據(jù)科學(xué)合理地預(yù)測未來交通事故發(fā)生的次數(shù)。GM(1,1)灰色預(yù)測模型中G表示grey(灰色),M表示model(模型)。GM(1,1)灰色預(yù)測模型在交通事故預(yù)測研究應(yīng)用領(lǐng)域中得到許多學(xué)者的認(rèn)可,但是,其預(yù)測值往往會因原始數(shù)據(jù)統(tǒng)計過程中存在誤差等不可避免的因素而達不到預(yù)測精度要求,而且該模型也并未考慮到諸如人口數(shù)、公路里程以及機動車數(shù)量等其他因素影響,此外該模型也不適用于長期交通事故預(yù)測[4-6]?;诖耍疚奶岢隽艘环N考慮多種影響因素的GM(1,N)預(yù)測模型,并將該模型應(yīng)用于我國道路交通事故的預(yù)測。該方法所需樣本量較少,而且計算量小,彌補了直接用歷史數(shù)據(jù)建立時間序列預(yù)測模型的缺陷,可進一步提高預(yù)測結(jié)果可信度。
人、車、路以及道路環(huán)境構(gòu)成了復(fù)雜的道路交通系統(tǒng)。因此在研究道路交通事故,選取系統(tǒng)行為特征序列時,也應(yīng)考慮影響系統(tǒng)特征指標(biāo)的因素[7,8]。首先選擇2005~2014年時間段內(nèi)每年全國道路交通事故死亡人數(shù)統(tǒng)計數(shù)據(jù)作為特征序列X1,其次初步選取每年全國人口總數(shù)統(tǒng)計數(shù)據(jù)作為因素序列X2、駕駛員數(shù)量統(tǒng)計數(shù)據(jù)作為因素序列X3、公路里程統(tǒng)計數(shù)據(jù)作為因素序列X4、客運量統(tǒng)計數(shù)據(jù)作為因素序列X5、貨運量統(tǒng)計數(shù)據(jù)作為因素序列X6、客運周轉(zhuǎn)量統(tǒng)計數(shù)據(jù)作為因素序列X7、貨運周轉(zhuǎn)量統(tǒng)計數(shù)據(jù)作為因素序列X8,相關(guān)影響因素的統(tǒng)計數(shù)據(jù)如表1所示。具體灰色關(guān)聯(lián)度計算主要步驟如下:
Step1: 各序列數(shù)據(jù)無量綱化本文采用均值化數(shù)據(jù)處理方法如式(1)所示:
(1)
(2)
Step2:關(guān)聯(lián)系數(shù)求解:
(3)
Step3:關(guān)聯(lián)度計算:
(4)
根據(jù)灰色關(guān)聯(lián)度計算公式可得:
γ1=[0.82,0.62,0.76,0.70,0.64,0.74,0.56]
(5)
綜上所述,根據(jù)灰色關(guān)聯(lián)矩陣可知各因素序列與死亡人數(shù)序列灰色關(guān)聯(lián)度均較高,其中全國人口總數(shù)與交通事故死亡人數(shù)灰色關(guān)聯(lián)度為0.82,屬于較大影響因素,公路里程、客運周轉(zhuǎn)量、客運量、貨運量、駕駛員數(shù)量、貨運周轉(zhuǎn)量與交通事故死亡人數(shù)關(guān)聯(lián)度依次為0.76、0.74、0.7、0.64、0.62、0.56。表1所示為計算所用原始統(tǒng)計數(shù)據(jù)值。
表1 2005~2014年原始統(tǒng)計數(shù)據(jù)匯總表
注:表1數(shù)據(jù)主要源自《2015年中國統(tǒng)計年鑒》
在分析道路交通事故影響因素的基礎(chǔ)上,選取關(guān)聯(lián)度大于等于0.7的X2,X4,X7,X5變量作為因素行為序列,建立基于GM(1,5)的道路交通事故死亡人數(shù)預(yù)測模型。根據(jù)表1數(shù)據(jù)構(gòu)建式(6)所示初始序列。
(6)
(7)
(8)
ξ=(2.676,4.677 6,-1 110.4,-0.031 8,5.926 8)
(9)
則建立的GM(1,N)道路交通事故死亡人數(shù)預(yù)測模型為:
(10)
道路交通事故死亡人數(shù)GM(1,N)模型實際值、預(yù)測值以及相對誤差如表2所示,由表2可知GM(1,5)模型預(yù)測效果較好,平均相對誤差約為6.38%。
表2 GM(1,5)模型預(yù)測值與實際值對比
通過建立不同維數(shù)GM(1,N)預(yù)測模型驗證GM(1,5)是否為最優(yōu)預(yù)測模型,所選因素依然按照灰色關(guān)聯(lián)度進行排列。選取初始序列如下所示:
不同維數(shù)GM(1,N)模型預(yù)測值與實際值的平均相對誤差對比如表3所示。由表3可知GM(1,5)模型較其它維數(shù)模型預(yù)測精度較高。
表3 不同維數(shù)GM(1,N)模型平均相對誤差對比
(1)根據(jù)灰色關(guān)聯(lián)度計算結(jié)果,與道路交通事故死亡人數(shù)關(guān)聯(lián)度較高的因素行為序列依次為全國人口總數(shù)序列、公路里程序列、客運周轉(zhuǎn)量序列、客運量序列、貨運量序列。
(2)建立的GM(1,N)模型不僅可以有效地預(yù)測事故死亡人數(shù),而且精度較高,其中5維預(yù)測模型的精度最高,平均相對誤差僅為6.38%。