劉亞輕 縱封磊
[摘 要]冪指函數(shù)是冪底數(shù)和冪指數(shù)都是自變量的函數(shù),通過(guò)對(duì)一元冪指函數(shù)的求導(dǎo)進(jìn)行教學(xué)研究與分析,并推廣到多元冪指函數(shù)和n階冪指函數(shù)求導(dǎo)問(wèn)題,進(jìn)一步應(yīng)用實(shí)際問(wèn)題結(jié)合MATLAB數(shù)學(xué)軟件使學(xué)生對(duì)所學(xué)的知識(shí)靈活掌握并學(xué)以致用。
[關(guān)鍵詞]冪指函數(shù);復(fù)合函數(shù);偏導(dǎo)數(shù)
[基金項(xiàng)目]2017年度北京信息科技大學(xué)高教研究課題“促進(jìn)學(xué)生自主學(xué)習(xí)的課程考核方式研究”(2017GJYB03)
[作者簡(jiǎn)介]劉亞輕(1981—),女,河北石家莊人,理學(xué)博士,北京信息科技大學(xué)理學(xué)院副教授(通信作者),主要從事數(shù)學(xué)教育、可積系統(tǒng)等方面的研究。
[中圖分類號(hào)] O172.1[文獻(xiàn)標(biāo)識(shí)碼] A[文章編號(hào)] 1674-9324(2020)45-0-02[收稿日期] 2020-05-14
冪底數(shù)和冪指數(shù)都是自變量的函數(shù),形如y=f(x)g(x)(x∈E,E是數(shù)集)的函數(shù)稱為冪指函數(shù)。冪指函數(shù)形式上既像冪函數(shù),又像指數(shù)函數(shù)。在高等數(shù)學(xué)的教學(xué)中,冪指函數(shù)的求導(dǎo)運(yùn)算是學(xué)生學(xué)習(xí)的一個(gè)難點(diǎn),對(duì)學(xué)生來(lái)說(shuō)非常棘手。筆者結(jié)合多年的教學(xué)經(jīng)驗(yàn)對(duì)一元冪指函數(shù)的求導(dǎo)進(jìn)行教學(xué)研究與分析,將其推廣到多元冪指函數(shù)和n階冪指函數(shù)求導(dǎo),并應(yīng)用例子結(jié)合MATLAB數(shù)學(xué)軟件使學(xué)生能夠靈活掌握并學(xué)以致用。
一、冪指函數(shù)的求導(dǎo)法則
(一)復(fù)合指數(shù)函數(shù)求導(dǎo)法
將冪指函數(shù)化成指數(shù)函數(shù)的形式,然后利用符合函數(shù)求導(dǎo)法則。計(jì)算過(guò)程:
(二)對(duì)數(shù)隱函數(shù)求導(dǎo)法
四、結(jié)語(yǔ)
本文研究了一元冪指函數(shù)求導(dǎo)四種方法,證明了冪指函數(shù)求導(dǎo)公式,即冪指函數(shù)的導(dǎo)數(shù)等于相應(yīng)的冪函數(shù)和指數(shù)函數(shù)導(dǎo)數(shù)的和。進(jìn)一步推廣了多元冪指函數(shù)和n階冪指函數(shù)求導(dǎo)公式,應(yīng)用實(shí)際問(wèn)題結(jié)合MATLAB數(shù)學(xué)軟件進(jìn)行驗(yàn)證。本文有助于學(xué)生掌握冪指函數(shù)的求導(dǎo)方法,提高學(xué)生計(jì)算的準(zhǔn)確率,使教師的教學(xué)簡(jiǎn)單易行,有增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的運(yùn)用能力。
參考文獻(xiàn)
[1]賀電鵬.冪指函數(shù)求導(dǎo)法的探索[J].學(xué)科探索,2017:40-42.
[2]章棟恩,馬玉蘭,等.Matlab高等數(shù)學(xué)實(shí)驗(yàn)[M].北京:電子工業(yè)出版社,2008.
Derivation and Application of Power Exponential Function
LIU Ya-qing1, ZONG Feng-lei2
(1. School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, China;
2. Beijing Fengtai No.2 Middle School, Beijing 100071, China)
Abstract: Power exponential function is the function in which both the power base and power index are independent variables. This paper conducts teaching research and analysis on the derivation of unary power exponential function, which can be generalized to the derivation of multiple power finger function and order power exponential function, and applies to practical problems combined with MATLAB mathematical software to help students master the knowledge flexibly and apply what they have learned to practical use.
Key words: power exponential function; complex functions; partial derivative