• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers

    2015-04-22 07:48:22LAODazhong老大中ZHAOShanshan趙珊珊LAOTianfu老天夫

    LAO Da-zhong(老大中), ZHAO Shan-shan(趙珊珊), LAO Tian-fu(老天夫)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Dandong Design Institute of Chemical Fibre, Dandong, Liaoning 118002, China;2.China National General Machinery Engineering Corporation,Beijing 100050, China)

    ?

    Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers

    LAO Da-zhong(老大中)1, ZHAO Shan-shan(趙珊珊)2, LAO Tian-fu(老天夫)3

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Dandong Design Institute of Chemical Fibre, Dandong, Liaoning 118002, China;2.China National General Machinery Engineering Corporation,Beijing 100050, China)

    Based on the differential equation of the deflection curve for the beam, the equation of the deflection curve for the simple beam is obtained by integral. The equation of the deflection curve for the simple beam carrying the linear load is generalized, and then it is expanded into the corresponding Fourier series. With the obtained summation results of the infinite series, it is found that they are related to Bernoulli numbers andπ.TherecurrentformulaofBernoullinumbersispresented.Therelationshipsamongthecoefficientsofthebeam,BernoullinumbersandEulernumbersarefound,andtherelativemathematicalformulasarepresented.

    Bernoulli numbers; Euler numbers; coefficients of beam; simple beam; equation of deflection curve; Fourier series

    It is well known that Euler numbers and Bernoulli numbers are the very important because they are used in many mathematical calculations. For example, according to the theory of summation of series[1], there are following formulas

    (1)

    (2)

    (3)

    whereB2kis a Bernoulli number,E2kis an Euler number.

    Through the Fourier series expansion of the equation of the deflection curve for the simple beam carrying the linear load in the present work, the relationships among the coefficients of beam, Bernoulli numbers and Euler numbers are established, therefore the recurrence formula of Bernoulli numbers is derived, and the above-mentioned summation formulas of series are generalized.

    1 Equation of the deflection curve for the simple beam and its generalization

    Let a small deflection beam carry the distributed loadq(x),Lis the length of the beam,EIis the flexural rigidity, it is known from the theory of mechanics of material[2]that the differential equation of the deflection curve of the beam is

    (EIy″)″-q(x)=0

    (4)

    whereyis the deflection of the beam.

    IfEIis a constant, then Eq. (4) can be written as

    EIy(4)=q(x)

    (5)

    The relationship of the deflection and bending momentMof the beam is

    EIy″=-M

    (6)

    (7)

    Theboundaryconditionsare

    y(0)=y(L)=0,y″(0)=y″(L)=0

    (8)

    (9)

    BecausebothEIandq0are constants, the function can also be constructed like this, Eq. (5) is written as

    (10)

    IntegratingEq. (10)fourtimes,andmakinguseoftheboundaryconditions(8),weobtain

    (11)

    (12)

    Theboundaryconditionsare

    y4m+1(0)=y4m+1(L)=0,y4m-1(0)=y4m-1(L)=0

    (13)

    where the two left boundary conditions have been satisfied.

    (14)

    (15)

    It is known from Eq. (14) and Eq. (15) that when the indices ofxare permuted according to descending order of powers, the various coefficients of the beam function appear alternately with the different signs, and the algebraic sum of various coefficients is zero; the times of factorial is just the highest powerful number ofx; the lower order polynomial can be obtained by the derivative of the higher order one.

    2 Fourier sine series expansion of the beam function

    According to the boundary conditions (8), in the interval [0,L], Eq. (11) can be expanded into the Fourier sine series, its form is

    (16)

    wherethecoefficientbncan be written as

    (17)

    SubstitutingEq. (17)intoEq. (16),thensubstitutingEq. (16)intoEq. (11),weobtain

    (0≤x≤L)

    (18)

    (19)

    AccordingtoEq. (19),theFouriersineseriesofEq.(12)canbewrittenas

    (0≤x≤L)

    (20)

    IfL=1 is chosen, then there is

    (0≤x≤1)

    (21)

    Applying odd time derivative to the Fourier sine series, the Fourier cosine series can be obtained. No matter whether Fourier sine series or Fourier cosine series, their sum relates toπ,andthepowerexponentofπequalstothepowerexponentofn.

    3 Relationships among the coefficients of the beam, Bernoulli numbers and Euler numbers

    (22)

    (23)

    InEqs. (22) (23),changing2mintok, then there are

    (24)

    (25)

    (26)

    ThesolutionoftheinitialcoefficientCkfrom Eq.(26) is

    (27)

    Ofcourse,fork=0 Eq.(27) can hold too.

    (28)

    (29)

    Changing2mintok, then Eq.(29) can be written as

    (30)

    Especially, for the first coefficient of the beam, there is

    (31)

    Obviously,forthelastcoefficientofthebeam,thereis

    (32)

    SubstituteingEq.(30)intoEq.(25),andmakeuseofEq.(1),thereis

    (33)

    ItcanbeobtainedfromEq.(33)

    (k=0,1,…,n,…)

    (34)

    Eq.(34) can be rewritten as

    (35)

    B2kissolvedfromEq.(34)orEq.(35)

    (k≥2)

    (36)

    For examples

    (37)

    (38)

    (39)

    (40)

    ItisknownfromEqs.(3) (40)thatEulernumbersandthecoefficientsofthebeamhavethefollowingrelationships

    (41)

    or

    (42)

    SubstitutingEq.(30)intoEq.(42),therelationshipsbetweenEulernumbersandBernoullinumbersare

    (43)

    OfcourseEq.(43)alsoholdsfork=0, in this case,k

    It is necessary to point out that there are many formulas of Euler numbers expressed by Bernoulli numbers. Refs.[5-10] also give the similar formulas, it shows that the formulas of Euler numbers expressed by Bernoulli numbers are not unique.

    According to calculations of Eqs.(27) (36) (43), 11 Bernoulli numbers, corresponding Euler numbers and coefficients of the beam are given in Tab.1. It can be seen from Tab.1 that the numerators and denominators of the initial coefficients are all odd numbers. Euler numbers and the initial coefficients have the same symbols, but they are contrary to the symbols of Bernoulli numbers. The absolute values of Bernoulli numbers, Euler numbers and the initial numbers are all rapid rising series.

    Tab.1 Table of Bernoulli numbers, Euler umbers and initial coefficients

    Making use of date provided by Tab.1, the coefficients of the beam can be conveniently calculated by Eq.(30), such as

    (44)

    (45)

    Itcanbeseenthatthetwocoefficientsarerespectivelythecoefficientsofx3andxin Eq.(9). The other examples are

    (46)

    (47)

    Theabove-mentionedresearchresultsshowthattheFourierseriesexpandedbythereflectionequationofthesimplebeamcarryingthelinearload,nomatterwhethertheFouriersineseries,ortheFouriercosineseriesobtainedthroughderivation,thecoefficientsofthebeam,theinitialcoefficientsandEulernumbers,areallrelatedtoBernoullinumbers,theycanallexpressedwithBernoullinumbers,andallBernoullinumberscanbecalculatedbymeansofrecurrenceformula(36).Therearecertainrelationshipsamongthecoefficientsofthebeam,BernoullinumbersandEulernumbers.

    4 Applies of the coefficients of the beam in the summation of the series

    (48)

    (49)

    (50)

    (51)

    (52)

    (53)

    (54)

    InEq.(20),choosingm=2, then deriving Eq.(20), we obtain

    (55)

    (56)

    (57)

    (58)

    (59)

    (60)

    (61)

    5 Conclusions

    ①Through the equation of the deflection curve for the simple beam carrying the linear load and the expansion of the generalized Fourier series, the recurrence formula Eq.(36) of Bernoulli numbers has been derived, and it can calculate all Bernoulli numbers. The result is that the bigger numbering Bernoulli number can be expressed by the combination of the smaller numbering Bernoulli numbers.

    ② The relationships among the coefficients of the beam, Euler numbers and Bernoulli numbers, or the relationship between the coefficients and Bernoulli numbers are expressed by Eq.(29) or Eq.(30), the relationship between Euler numbers and the coefficients of the beam is Eq.(41) or Eq.(42), The relationship between Euler numbers and Bernoulli numbers is Eq.(43). The relationship between Euler numbers and Bernoulli numbers has many expressions.

    ③ The summation of alternating series composed by the reciprocals of the odd powers of the natural numbers can be obtained by the beam function of the simple beam carrying the linear load being expanded into Fourier sine series. The summation of alternating series composed by the reciprocals of the even powers of the natural numbers can be obtained by the derivatives of the above Fourier sine series.They are all the concrete expressional forms of the beam function (12) being expanded into a Fourier series.

    ④ The Fourier series expanded by the reflection equation of the simple beam carrying the linear load, no matter whether the Fourier sine series, or the Fourier cosine series obtained through derivation, are all related to Bernoulli numbers, they can all expressed with Bernoulli numbers.

    ⑤ The summation results of all the above-mentioned series relate to π, and the power exponent of π equals the power exponent ofn.

    [1]NeitzH.Mathematicalformulas[M].ShiShengwen,transl.Beijing:OceanPress, 1983. (inChinese)

    [2]StephenPTimoshenko,JamesMGere.Mechanicsofmaterials[M].NewYork:VanNostrandReinholdCompany, 1972.

    [3]ZhuWeiyi.TworeausiveformulaofcalculatingBernoulli’snumbers[J].JournalofShangqiuTeachersCollege, 2003, 19(2):43-45.(inChinese)

    [4]GuJiangmin,ZhuWeiyi.TwokindsofnewexpressionsofBernoullinumbers[J].JournalofWeinanTeachersUniversity, 2010, 25(2):6-8. (inChinese)

    [5]ChenZhiming.SomeidentitiesEulernumbersandBernoullinumbers[J].PureandAppliedMathematics, 1994, 10(1): 7-10.(inChinese)

    [6]WangDuanzhong.TherelationbetweenEulernumberandBernoullinumberandtheirapplication[J].JournalofNingxiaInstituteofTechnology, 1997, 9(4): 18-20. (inChinese)

    [7]LuoQiuming,GuoTianfen,QiFeng.RelationsofBernoullinumbersandEulernumbers[J].JournalofHenanNormalUniversity,2003, 31(2): 9-11. (inChinese)

    [8]ZhangSheng.SomeidentitiesrelatedtoEulernumbers[J].JournalofInnerMongoliaNormalUniversity, 2006, 35(1): 44-46. (inChinese)

    [9]LaoDazhong,ZhaoBaoting.Fourierseriesbasedonthedeflectionequationexpansionofthesimplebeam[J].TransactionsofBeijinginstituteoftechnology, 2010, 30(1): 1-4. (inChinese)

    [10] Wang Chenying, Zong Zhaoyu. Some identities involving Bernoulli and Euler numbers[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2012, 4(3): 285-288. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0303

    O 156.4; O 174.21 Document code: A Article ID: 1004- 0579(2015)03- 0298- 07

    Received 2014- 01- 08

    Supported by the National Natural Science Foundation of China (51276017)

    E-mail: laodazhong@tsinghua.org.cn

    精品不卡国产一区二区三区| 七月丁香在线播放| 超碰av人人做人人爽久久| 精品一区二区三区视频在线| 啦啦啦韩国在线观看视频| 看免费成人av毛片| 久久精品夜夜夜夜夜久久蜜豆| 一级a做视频免费观看| 美女cb高潮喷水在线观看| 中文字幕免费在线视频6| 国产精品不卡视频一区二区| 国产亚洲5aaaaa淫片| 一级a做视频免费观看| 国产亚洲精品久久久com| 国产91av在线免费观看| 人妻制服诱惑在线中文字幕| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| 大香蕉97超碰在线| 中文字幕久久专区| 国产白丝娇喘喷水9色精品| 午夜日本视频在线| 国产综合精华液| 非洲黑人性xxxx精品又粗又长| 最近最新中文字幕大全电影3| 成人高潮视频无遮挡免费网站| 亚洲精品视频女| 有码 亚洲区| 久久久色成人| 久久久精品免费免费高清| 亚洲电影在线观看av| 最新中文字幕久久久久| 午夜亚洲福利在线播放| 内地一区二区视频在线| 熟女电影av网| 国产精品久久久久久精品电影| 国产高清国产精品国产三级 | 国产亚洲最大av| 亚洲国产色片| 国产亚洲精品av在线| 日韩欧美 国产精品| 日日撸夜夜添| 亚洲欧美清纯卡通| 美女被艹到高潮喷水动态| 高清午夜精品一区二区三区| 亚洲精品日韩在线中文字幕| 久久精品久久久久久噜噜老黄| 美女主播在线视频| 五月伊人婷婷丁香| 日韩av不卡免费在线播放| 国产一区二区三区av在线| 九九久久精品国产亚洲av麻豆| 亚洲乱码一区二区免费版| 91午夜精品亚洲一区二区三区| 1000部很黄的大片| 久久久久久九九精品二区国产| 亚洲精品视频女| 街头女战士在线观看网站| 日本wwww免费看| 成人特级av手机在线观看| 啦啦啦中文免费视频观看日本| 性插视频无遮挡在线免费观看| 国产白丝娇喘喷水9色精品| 日本黄大片高清| 神马国产精品三级电影在线观看| 午夜福利在线在线| 搡女人真爽免费视频火全软件| 亚洲国产欧美在线一区| 18禁在线无遮挡免费观看视频| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 色尼玛亚洲综合影院| 一级av片app| 中文字幕人妻熟人妻熟丝袜美| 在线观看人妻少妇| 不卡视频在线观看欧美| 亚洲第一区二区三区不卡| 精品人妻视频免费看| 亚洲av男天堂| 搡老乐熟女国产| 18禁裸乳无遮挡免费网站照片| 在线免费十八禁| 中文字幕制服av| a级一级毛片免费在线观看| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美日韩国产mv在线观看视频 | 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 成人国产麻豆网| 能在线免费看毛片的网站| 午夜久久久久精精品| 在线a可以看的网站| 久久久成人免费电影| 最后的刺客免费高清国语| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 成人特级av手机在线观看| 建设人人有责人人尽责人人享有的 | 久久精品综合一区二区三区| 在线免费十八禁| av专区在线播放| 日韩av在线免费看完整版不卡| 亚洲国产欧美在线一区| 超碰97精品在线观看| 亚洲,欧美,日韩| 国产不卡一卡二| 好男人视频免费观看在线| av在线老鸭窝| 只有这里有精品99| 一二三四中文在线观看免费高清| 国产高清三级在线| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 亚洲精品国产av蜜桃| 久久久久久久久久人人人人人人| 热99在线观看视频| 午夜爱爱视频在线播放| 国产成人freesex在线| 亚洲欧美成人综合另类久久久| 天天躁日日操中文字幕| 国产精品麻豆人妻色哟哟久久 | 成年免费大片在线观看| 亚洲经典国产精华液单| 精品久久国产蜜桃| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 中文精品一卡2卡3卡4更新| 国产美女午夜福利| 精品酒店卫生间| 在线免费观看的www视频| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品电影小说 | 国产成人aa在线观看| 欧美高清成人免费视频www| 国产黄频视频在线观看| 日本一二三区视频观看| 免费看不卡的av| 国产高清有码在线观看视频| 国产高清三级在线| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 久久久久久久亚洲中文字幕| 街头女战士在线观看网站| av卡一久久| 成人美女网站在线观看视频| 哪个播放器可以免费观看大片| 欧美zozozo另类| 国产在线一区二区三区精| 免费观看av网站的网址| 天美传媒精品一区二区| 国产色婷婷99| 91av网一区二区| 成人无遮挡网站| 可以在线观看毛片的网站| 国产黄色免费在线视频| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| 国产精品国产三级专区第一集| 亚洲自偷自拍三级| 视频中文字幕在线观看| 国产一区二区在线观看日韩| 麻豆国产97在线/欧美| 一个人观看的视频www高清免费观看| 好男人在线观看高清免费视频| 久久久精品欧美日韩精品| 精品少妇黑人巨大在线播放| 精品国产露脸久久av麻豆 | 亚洲成人精品中文字幕电影| 床上黄色一级片| 国模一区二区三区四区视频| 亚洲av不卡在线观看| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在| 97人妻精品一区二区三区麻豆| 日韩一区二区三区影片| 国产色婷婷99| 亚洲电影在线观看av| 街头女战士在线观看网站| 欧美另类一区| 水蜜桃什么品种好| 久久久精品免费免费高清| 久久久久久九九精品二区国产| xxx大片免费视频| 日本欧美国产在线视频| 亚洲精品一区蜜桃| 岛国毛片在线播放| 国产真实伦视频高清在线观看| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 成年av动漫网址| 熟妇人妻久久中文字幕3abv| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 亚洲最大成人中文| 精品人妻偷拍中文字幕| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 久久精品熟女亚洲av麻豆精品 | 国产av不卡久久| 久久精品国产亚洲网站| 精品熟女少妇av免费看| 日韩av在线大香蕉| 免费人成在线观看视频色| 五月伊人婷婷丁香| 国产成人aa在线观看| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 男人狂女人下面高潮的视频| 久久精品人妻少妇| av国产久精品久网站免费入址| 精品国内亚洲2022精品成人| 热99在线观看视频| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 一级毛片aaaaaa免费看小| 亚洲成人中文字幕在线播放| 久久国内精品自在自线图片| 黄色一级大片看看| 超碰av人人做人人爽久久| 一级爰片在线观看| 草草在线视频免费看| 好男人在线观看高清免费视频| 人妻一区二区av| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 精品酒店卫生间| 综合色av麻豆| av黄色大香蕉| 男女下面进入的视频免费午夜| 在线 av 中文字幕| 国产男女超爽视频在线观看| 久久6这里有精品| 日韩欧美一区视频在线观看 | 亚洲天堂国产精品一区在线| 国产精品无大码| 日韩亚洲欧美综合| 亚洲成人av在线免费| 国产精品女同一区二区软件| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 亚洲精品日本国产第一区| 精品酒店卫生间| 国产精品爽爽va在线观看网站| 国产在线一区二区三区精| 国产精品福利在线免费观看| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 国产av国产精品国产| 天堂av国产一区二区熟女人妻| 黄片wwwwww| 久久人人爽人人片av| 永久网站在线| 能在线免费看毛片的网站| 欧美激情国产日韩精品一区| 久久久国产一区二区| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 简卡轻食公司| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 最近最新中文字幕大全电影3| 国产三级在线视频| 国内精品宾馆在线| 久久久久久久久久久免费av| 国产黄片视频在线免费观看| 中国美白少妇内射xxxbb| 99热网站在线观看| 国产成人a∨麻豆精品| 久久久久久久午夜电影| 性插视频无遮挡在线免费观看| 一本久久精品| 久久精品夜色国产| 国产在线男女| 亚洲精品自拍成人| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 国产伦理片在线播放av一区| 美女主播在线视频| 日本一二三区视频观看| 亚洲图色成人| 成年女人看的毛片在线观看| 床上黄色一级片| 午夜激情福利司机影院| 国产精品人妻久久久久久| 男人舔女人下体高潮全视频| 少妇猛男粗大的猛烈进出视频 | 青春草国产在线视频| 国产精品人妻久久久久久| 国产大屁股一区二区在线视频| 久久久久免费精品人妻一区二区| 欧美xxⅹ黑人| 高清av免费在线| 亚洲一区高清亚洲精品| 免费看光身美女| 国产 亚洲一区二区三区 | 亚洲av一区综合| 狠狠精品人妻久久久久久综合| 国产精品一区二区在线观看99 | 一本久久精品| a级一级毛片免费在线观看| 美女大奶头视频| av卡一久久| 80岁老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 18禁在线无遮挡免费观看视频| 少妇的逼水好多| 亚洲自偷自拍三级| 欧美97在线视频| 亚洲怡红院男人天堂| 国产伦一二天堂av在线观看| 大话2 男鬼变身卡| 一个人看的www免费观看视频| 男女边摸边吃奶| 舔av片在线| 久久草成人影院| 熟女电影av网| 九色成人免费人妻av| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 日本免费a在线| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩东京热| 黄片wwwwww| 亚洲国产色片| 欧美激情久久久久久爽电影| 亚洲精品色激情综合| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 3wmmmm亚洲av在线观看| av免费观看日本| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 精品人妻偷拍中文字幕| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 99久久精品热视频| 熟女人妻精品中文字幕| 日韩一区二区视频免费看| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看| 国产在线男女| 精品久久久久久电影网| 精品人妻熟女av久视频| h日本视频在线播放| 一级a做视频免费观看| 亚洲av电影不卡..在线观看| .国产精品久久| 欧美另类一区| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 久久亚洲国产成人精品v| av免费在线看不卡| 建设人人有责人人尽责人人享有的 | 99视频精品全部免费 在线| 99九九线精品视频在线观看视频| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| 亚洲成人久久爱视频| 黄色一级大片看看| av一本久久久久| 国产在视频线在精品| 国产黄色免费在线视频| 天美传媒精品一区二区| 久久午夜福利片| 中文字幕久久专区| 亚洲欧美日韩无卡精品| 日韩欧美精品免费久久| 免费无遮挡裸体视频| 久久久精品欧美日韩精品| 欧美 日韩 精品 国产| 日本-黄色视频高清免费观看| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 全区人妻精品视频| 久久久久久国产a免费观看| 精品久久久久久久久久久久久| av网站免费在线观看视频 | 一本久久精品| 亚洲欧美日韩东京热| 国产国拍精品亚洲av在线观看| 晚上一个人看的免费电影| 麻豆久久精品国产亚洲av| 视频中文字幕在线观看| 国产午夜精品一二区理论片| 日本wwww免费看| 韩国高清视频一区二区三区| 永久网站在线| 搡老妇女老女人老熟妇| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 免费在线观看成人毛片| 国产男女超爽视频在线观看| 一级二级三级毛片免费看| 美女被艹到高潮喷水动态| 色综合亚洲欧美另类图片| 51国产日韩欧美| 一个人看的www免费观看视频| 床上黄色一级片| 高清毛片免费看| 自拍偷自拍亚洲精品老妇| 成人av在线播放网站| 网址你懂的国产日韩在线| 欧美性猛交╳xxx乱大交人| 亚洲天堂国产精品一区在线| 亚洲精品,欧美精品| 成人鲁丝片一二三区免费| eeuss影院久久| 国产在线一区二区三区精| 日韩欧美三级三区| 秋霞伦理黄片| 国产综合精华液| 国产精品.久久久| 国产在视频线精品| 久久精品人妻少妇| 久久精品久久久久久久性| 美女主播在线视频| 观看免费一级毛片| 亚洲内射少妇av| 亚洲精品一二三| 日本爱情动作片www.在线观看| 国内精品一区二区在线观看| 六月丁香七月| 国产女主播在线喷水免费视频网站 | 国产探花极品一区二区| 国产精品久久久久久av不卡| 天堂中文最新版在线下载 | 人体艺术视频欧美日本| 亚洲精品,欧美精品| 一本一本综合久久| 欧美+日韩+精品| 国产成人福利小说| 亚洲人成网站高清观看| 亚洲欧美日韩无卡精品| 在线免费十八禁| 欧美xxⅹ黑人| 18禁裸乳无遮挡免费网站照片| 一个人看视频在线观看www免费| 国产亚洲5aaaaa淫片| 天堂俺去俺来也www色官网 | 免费观看无遮挡的男女| 免费观看av网站的网址| 一级黄片播放器| 3wmmmm亚洲av在线观看| 国产一区有黄有色的免费视频 | 美女被艹到高潮喷水动态| or卡值多少钱| 天天一区二区日本电影三级| 亚洲高清免费不卡视频| 纵有疾风起免费观看全集完整版 | 全区人妻精品视频| 中文乱码字字幕精品一区二区三区 | 一二三四中文在线观看免费高清| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说 | 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 成人午夜高清在线视频| 夫妻性生交免费视频一级片| 简卡轻食公司| 精华霜和精华液先用哪个| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品 | 欧美一级a爱片免费观看看| 搡老乐熟女国产| h日本视频在线播放| 久久久久网色| 精华霜和精华液先用哪个| 国产在线一区二区三区精| 日韩av免费高清视频| 特级一级黄色大片| 美女内射精品一级片tv| 一区二区三区高清视频在线| 青春草国产在线视频| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 久久久久国产网址| 久久久久网色| 五月伊人婷婷丁香| 真实男女啪啪啪动态图| 深爱激情五月婷婷| 亚洲成人av在线免费| 久久精品夜色国产| 草草在线视频免费看| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 国产精品福利在线免费观看| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 内射极品少妇av片p| 99久久精品国产国产毛片| 日本与韩国留学比较| 中文在线观看免费www的网站| 国产成人福利小说| 99久久九九国产精品国产免费| 禁无遮挡网站| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| av又黄又爽大尺度在线免费看| 少妇的逼水好多| 六月丁香七月| 久久久午夜欧美精品| 欧美成人午夜免费资源| 久久久久久久午夜电影| 欧美激情久久久久久爽电影| 亚洲四区av| 深夜a级毛片| 免费少妇av软件| 嫩草影院新地址| av在线蜜桃| 国产精品久久久久久久久免| 国产成人精品婷婷| 国产毛片a区久久久久| 亚洲欧美中文字幕日韩二区| 日韩精品有码人妻一区| 国产激情偷乱视频一区二区| 成人午夜高清在线视频| 亚洲av日韩在线播放| 极品教师在线视频| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 午夜精品在线福利| 久久精品国产自在天天线| 欧美潮喷喷水| 亚洲高清免费不卡视频| 汤姆久久久久久久影院中文字幕 | 日韩欧美精品v在线| 日日啪夜夜爽| 免费看美女性在线毛片视频| 国产高清不卡午夜福利| 日本黄色片子视频| 亚洲国产欧美在线一区| 国产精品一区二区三区四区免费观看| 亚洲四区av| av免费观看日本| 日韩电影二区| 色播亚洲综合网| 精品一区二区三区人妻视频| 久热久热在线精品观看| 国产精品国产三级国产av玫瑰| 亚洲欧美成人精品一区二区| 日本一二三区视频观看| 国产精品福利在线免费观看| 国产免费又黄又爽又色| 欧美zozozo另类| 永久免费av网站大全| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 人人妻人人澡人人爽人人夜夜 | 日本-黄色视频高清免费观看| 麻豆精品久久久久久蜜桃| 97超视频在线观看视频| 精品少妇黑人巨大在线播放| 国产精品一区www在线观看| 精品久久久久久电影网| 高清视频免费观看一区二区 | 亚洲精品,欧美精品| 亚洲在线自拍视频| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 亚洲图色成人| 国产精品女同一区二区软件| 我的老师免费观看完整版| 如何舔出高潮| 激情五月婷婷亚洲| 精品国产一区二区三区久久久樱花 | 99热这里只有精品一区| 国产精品人妻久久久影院| 十八禁国产超污无遮挡网站| 日韩av免费高清视频| 国产亚洲精品av在线| 激情 狠狠 欧美| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频 | 久久久久免费精品人妻一区二区| 99九九线精品视频在线观看视频| 尾随美女入室| 天天躁日日操中文字幕| 国产成人精品久久久久久| 免费黄色在线免费观看| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 亚洲欧美成人综合另类久久久| 直男gayav资源| 亚洲精品色激情综合| 成人一区二区视频在线观看| 综合色av麻豆| 大香蕉久久网| 在现免费观看毛片| 日本与韩国留学比较| 亚洲av在线观看美女高潮| 国产男人的电影天堂91| 国产亚洲精品av在线| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区|