• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of Housekeeping Genes for Gene Expression Analysis in Iwagaki Oyster (Crassostrea nippona) Under Salinity Stress by Quantitative Real-Time PCR

    2020-11-30 03:53:00GONGJianwenLIQiYUHongLIUShikaiandKONGLingfeng
    Journal of Ocean University of China 2020年6期

    GONG Jianwen, LI Qi, 2), *, YU Hong, LIU Shikai, and KONG Lingfeng

    Validation of Housekeeping Genes for Gene Expression Analysis in Iwagaki Oyster () Under Salinity Stress by Quantitative Real-Time PCR

    GONG Jianwen1), LI Qi1), 2), *, YU Hong1), LIU Shikai1), and KONG Lingfeng1)

    1),,,266003,2),,266237,

    Hypo-salinity can reduce the immunological reaction in, even lead to massive mortality. It is important to understand the molecular mechanism of oyster defense system, while quantitative real-time PCR can be employed inthe study. However, the accuracy of quantitative real-time PCR relies on the use of suitable reference genes. In this study, the expression stability of 14 candidate reference genes including traditional housekeeping genesEF1A, TUB, TUA, GAPDH, RO21,as well as new candidate reference genes RPL5, RPL8, RPS27, RPL14, RPL4, CO3, RPS8, RPS4, CYTB in different tissues ofunder salinity stress has been validated by quantitative real-time PCR. Ribosomal protein genes selected through expression analysis of transcriptome data fromgenerally were more stable than traditional reference genes. According to the geNorm analysis, RPL4 and RPS4 could be used as internal controls for studying gene expression inwith real-time PCR under salinity stress.

    ; reference gene; hypo-salinity stress; ribosomal protein genes

    1 Introduction

    Quantitative real-time PCR (qRT-PCR) has been wide- ly used to measure gene expression because of its high sensitivity, flexibility, and reproducibility (Heid, 1996). The variations caused by differences in samples, RNA ex- traction, efficiency of enzyme and transcriptional activity can influence the experimental accuracy (Mackay, 2002). For accurate and reliable analysis of target gene expression, normalization of qRT-PCR data with suitable internal reference gene(s) is required (Radoni?, 2004). An ideal reference gene should express at stable level in all tissues, regardless of the experimental conditions or treatments (Vandesompele, 2002; Radoni?, 2004). Commonly used reference genes usually are those involv- ed in basic cellular processes, such as the components of cytoskeleton, glycolytic pathway, protein folding and de- gradation (Eisenberg and Levanon, 2003). However, evidences show that transcription levels of housekeeping genes vary considerably in different tissues and under variable conditions (Greer, 2010). Therefore, selecting mul-tiple stably expressed reference genes, other than the com- monly used housekeeping genes, is important for the ac- curate normalization of gene expression levels.

    is an important aquaculture species for it is edible during summer when other oysters are not available (Itoh, 2004).naturally ben- thic in shallow water along the coast of the seas of East Asia (Boudry, 2003). It is more sensitive to the salinity change of ambient seawater compared with euryha- line oysters, such as, which live in intertidal zones (Zhang, 2016). In the natural habitat, salinity declines with tidal cycles, rainfall and with drainage from the adjacent terrestrial sites (Drouin, 1985; Philippart, 2011). Hypo-salinity induces the immunological activity of oysters, such as the overexpression of heat shock proteins (HSPs) and phenoloxidase (Gagnaire, 2006; Kuchel, 2010; Li, 2016), and even lead to massive mortality (Meng, 2011).

    In this study, we compared the performance of 14 candidate reference genes (consisting of 5 commonly used housekeeping genes of animals, and 9 new candidate reference genes detected fromtranscriptome) in order to identify the most stable internal controls for nor- malization of real-time PCR data inunder sa- linity stress.

    2 Materials and Methods

    2.1 Biological Materials

    2.1.1 Unstressed samples (group A)

    Adultwere cultured in the fish farm of Rongcheng, Shandong Province, China. Tissues from the mantle (M), visceral mass (V), adductor muscle (A) and gill (S) were collected from 12 healthy oysters. They were immediately placed into liquid nitrogen to free- ze and then stored at ?80℃ for the subsequent analysis.

    2.1.2 Salinity stressed samples (group B)

    The experimentalwere maintained in 70L tanks containing aerated sand-filtered seawater (salinity: 30) for one week prior to experimentation. Then they were randomly divided into 3 groups under hypo-salinity stress in seawater with 30 (S3), 20 (S2), and 10 (S1) for one week (3 pools with 9 individuals each). The low salinity water was prepared by diluting sea water with tap water. Gill tissues of the experimental group were collected from 27 oysters under variant salinity stresses. They were im- mediately placed into liquid nitrogen to freeze and then stored at ?80℃ for subsequent analysis.

    2.2 RNA Isolation, Library Construction and Sequencing of C. nippona

    Total RNA was extracted from the samples using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. The purity and integrity of total RNA was de- termined using a Nanodrop 2000 spectrophotometer (Ther- mo, USA) and an Agilent 2100 BioAnalyzer (Agilent Technologies, USA). The RNA was pooled proportionally from three oysters in each experimental group (group A: M, V, A, S; group B: S1, S2, S3).

    The mRNA was enriched by Oligo(dT) beads and then fragmented. The cDNA was synthesized with random he- xamersmRNA fragments as templates. The cDNA fragments were purified and resolved with EB buffer for end repair, single-nucleotide adenine (A) addition and adap- tor connections. After PCR amplification, the 150bp li- brary was then sequenced via Illumina HiseqTM4000.

    2.3 De novo Assembly, Reads Mapping and Gene Clustering

    Clean reads were obtained by removing ‘dirty’ reads containing adapter sequences, sequences with more than 10% unknown bases, and low-quality reads containing more than 40% of low quality (-value<10) bases. Clean reads from four tissues were pooled together to assemble a comprehensive reference transcriptome by Trinity v2.8.4 (Grabherr., 2011). Then clean reads from each sample were mapped against the reference transcriptome using alignment tool Bowtie2 (Langmead and Salzberg, 2012) by default parameters. RSEM v1.3.1 (Li and Dewey, 2011) was used to quantify the mapped reads. The gene abundances were calculated and normalized to the number of reads per kb per million reads (RPKM) (Mortazavi., 2008). Gene clustering was performed with RPKM in group A and group B using kmeans command of the R statistical software.

    2.4 Primer Design and Real-Time qRT-PCR Assays

    The primers were designed using Primer Premier 5 soft- ware (http://www.premierbiosoft.com/). A series of 5-fold of 5 dilutions of cDNA were made to determine the gene specific PCR amplification efficiency for each primer pair using the following equation: Efficiency(%)=10(?1/slope)×100%.

    The purified RNA samples were reversely transcribed using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Dalian, China), following the manufacturer’s pro-tocol. Real-time qPCR was performed with Roche480 ins- trument and software, while QuantiNovaTMSYBR Green PCR Kit (Qiagen) was employed for RT-PCR. The PCR mixture contained 0.5μL diluted cDNA, 5μL 2× SYBR Green PCR Master Mix, 0.7μL forward (reverse) primers, and 3.1μL distilled water in a final volume of 10μL. Cycling conditions were 95℃ for 2min, followed by 40 cycles of 95℃ for 5s and 60℃ for 10s and then a melt curve stage after the cycling stage. The melting curve and agarose gel electrophoresis for all the genes demonstrated single peaks and bands, confirming gene-specific amplification. Real-time PCR was performed in triplicate for each sample. A no-template control was analyzed in parallel for each gene.

    2.5 Statistical Analysis

    Following PCR data collection, geNorm (Vandesompele, 2002) was used to rank the expression stability of reference genes. Briefly, the geNorm program is based on pairwise comparisons and stepwise exclusion of candidate genes according to their expression stability measure (M) values. In general, the lower thevalue, the higher the gene expression stability. The program recommends<1.5 to identify sets of reference genes with stable expression. The pairwise variation (GeNorm:/(+1) is used to determine the number of genes required for reliable normalization. A threshold value of 0.15 was report- ed by Vandesompele. (2002).

    3 Results

    3.1 Selection of New Candidate Reference Genes

    We identified 5 distinct clusters representing a variety of gene expression patterns in different tissues (group A) and under different salinity stresses (group B) respective- ly. Genes in cluster 3 (1491/37451 unigenes) of group A and in cluster 1 (1954/33157 unigenes) of group B show- ed the more stable and higher expression trends (Fig.1). A total of 1472 unigenes are presented in both groups (Fig.2). Among those common unigenes, nine unigenes with high and stable expression trends were selected to be new candidate reference genes (Table 1). In addition, five commonly used reference genes, RO21, EF1A, TUA, TUB and GAPDH, were selected as candidate reference genes.

    Fig.1 Clusters of genes in different tissues of C. nippona and under different salinity stresses. Different tissues include mantle (M), visceral mass (V), adductor muscle (A) and gill (S). Different salinity stresses include 30 (S3), 20 (S2), 10 (S1).

    Fig.2 Venn diagram of genes in cluster 3 of different tissues and cluster 1 under different salinity stresses.

    Table 1 Candidate reference genes and their primer sequences used for real-time PCR

    ()

    ()

    Gene nameAbbreviationPrimer sequence (5’–3’)Product size (bp) Cytochrome c oxidase subunit IIICO3F: CTATTAGTGGCATCTTCAGCR: ACAGACAGCCCCAAAGTAAC107 40S ribosomal protein S8RPS8F: GATAAATGGCACAAGAGGAGR: AGACGAAGGGCTCTGTATTT164 40S ribosomal protein S4RPS4F: AGGGACGCTTCACAGTTCACR: GGGTGGTGATGTAGGGAACG108 Cytochrome bCYTBF: AATAAACTCCACGGGCGACR: ATTATTCGGCAGATGAGCAG150 Elongation factor 1-alphaEF1AF: CTGGATGGCACGGAGATAACR: GACGAAGAGGTAAGTCAGTTGG162 Heterogeneous nuclear ribonucleoprotein A2/B1RO21F: TAGATTGGGCTGACCCTGTGR: CTGATGGTGGTTTGGCAAGT273 Glyceraldehyde 3-phosphate dehydrogenaseGAPDHF: CTACAGGGTGCTTCACTACTR: GATGTTCTGGTCTTTGGAGT146 α-tubulinTUAF: CGAGGCTATCTACGACATCTGCR: GCCAGAGGGAAGTGGATACG155 β-tubulinTUBF: CCTTAGCCCAGTTGTTTCCAGR: GCCAGAGGGAAGTGGATACG192

    3.2 Real-Time PCR Amplification of Candidate Housekeeping Genes

    All the primer pairs amplified single PCR product with expected size, and the specificity of amplicon was confirmed by the single peak of the melt curve and the sequencing analysis. PCR efficiencies of primers ranged from 94%–106%. The meant values of reference genes ranged from 22.02–29.36.

    3.3 Expression Stability of Candidate Housekeeping Genes

    RPS4 (=0.52), EF1A (=0.52) and RPL4 (=0.59) were the most stable genes in different tissues, while RPS8 (=2.40), CO3 (=2.02) and CYTB (=1.7) were the least stable. RPL4 and RPS4 (=0.21) were the most stable genes in gill tissue under salinity stress, while the most common used internal controls TUB (=1.36), RO21 (=1.05), TUA (=0.97), EF1A (=0.79) and GAPDH (=0.67) appeared less stable (Fig.3).

    Fig.3 Expression stability of reference genes calculated by GeNorm in different tissues (A) and under different salinity stresses (B).

    3.4 Optimum Number of Housekeeping Genes

    The2/3 value was 0.12 in different tissues, while it was 0.15 in gill tissue under salinity stress (Fig.4). This suggests that RPL4 and RPS4 can be chosen as reference genes to study the gene expression levels inunder salinity stress.

    4 Discussion

    This is the first study to analyze the stability of potential reference genes selected from transcriptome dataset ofunder different salinity stresses. The candidate reference genes detected from transcriptome datasets are almost ribosomal protein genes and mitochondrial respi- ratory chain protein genes (CO3 and CYTB). The less stable expression of respiratory chain genes can be explained by the energy demand of the organism under different salinity conditions (Ellison and Burton, 2008). Ribo- somal protein genes generally performed better than com- mon housekeeping genes.

    Fig.4 Determination of the optimal number of reference genes required for accurate normalization in different tissues (A) and under different salinity stresses (B), based on pairwise variation (Vn/n+1) between reference genes using GeNorm analysis.

    The ribosome, as a catalyst for protein synthesis, is uni- versal and essential for all organisms. A mammalian ribo- some has 79 ribosomal proteins, one more than a yeast ri- bosome encoded by 137 genes, of which L is for large subunit and S is for small subunit (Warner, 1999). Ribo- some protein genes are considered good reference genes because of their participation in all types of cells for the synthesis of new ribosomes (Hisao., 2001). Several recently published reports have validated that ribosomal protein genes showed high stability in diverse abiotic and biotic conditions, indicating that they may become ano- ther source of reference genes (Shakeel, 2018). They have been widely used as internal genes in both human and other animals, as well as in plants and algae (Barsalobres-Cavallari, 2009; Rosic, 2011; Liu, 2012). RPL4 and RPS4 are the most stably expressed genes in different tissues under salinity stress in the current study. RPS4 was demonstrated to be the best housekeeping genes in the algaunder thermal stress (Rosic, 2011).

    EF1A, TUB, TUA, GAPDH and RO21 are commonly used as internal controls for qRT-PCR in oysters (Boutet, 2004; Gonzalez, 2007; Meistertzheim, 2007). EF1A is a member of the G-protein family, which plays a key role in protein translation (Browne and Proud, 2002). Although EF1A has stable expression levels in the gill tissue under variant salinity stresses, it has less stable expression compared among each tissue, implying that it is not suitable to be a reference gene under salinity stress. The heterodimeric protein α, β-tubulin assembles the mi- crotubule in a head-to-tail arrangement (McKean, 2001). GAPDH functions in nuclear RNA export, DNA replication, DNA repair, exocytotic membrane fusion, cyto- skeletal organization and phosphotransferase activity (Tri- stan, 2011); RO21 is heterogeneous nuclear ribonucleo-protein (hnRNP) and plays a significant role in the regulation of mRNA-related processes (Siomi and Drey- fuss, 1997). None of these five commonly used housekeeping genes showed high stability under salinity stress, suggesting that they were unsuitable as internal controls in this situation.

    The unstable expression levels of commonly used house- keeping genes mean that there is no ‘one-size-fits-all’gene that can be used for the normalization of gene expression data under all conditions (Barber, 2005). Vandesompele(2002) have proposed the use of the mean expression level of several genes for normalization. Pairwise variation in the A and B groups were both below the cut-off value of 0.15, showing that the use of RPL4 and RPS4 as reference genes is sufficient in gene expression studies inunder salinity stress, irrespective of different tissues.

    In conclusion, our data suggest that the novel genes detected from transcriptome data performed better than commonly used reference genes of. The results of the present study will facilitate sensitive and accurate quantification of gene expression in, which could also be extrapolated to related oyster species.

    Acknowledgements

    This study was supported by grants from the National Natural Science Foundation of China (No. 31772843), the Natural Science Foundation of Guangxi Province (No. AA17204080-4), the Fundamental Research Funds for the Central Universities (No. 201762014), and the Ocean Uni- versity of China-Auburn University Joint Research Cen- ter for Aquaculture and Environmental Science.

    Barber, R. D., Harmer, D. W., Coleman, R. A., and Clark, B. J., 2005. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues., 21: 389-395.

    Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., and Maia, I. G., 2009. Identification of suitable internal control genes for expression studies inunder different experimental conditions., 10: 1.

    Boudry, P., Heurtebise, S., and Lapègue, S., 2003. Mitochondrial and nuclear DNA sequence variation of presumedandspecimens: A new oyster species in Hong Kong?, 228: 15-25.

    Boutet, I., Tanguy, A., and Moraga, D., 2004. Response of the Pacific oysterto hydrocarbon contamination under experimental conditions., 329: 147-157.

    Browne, G. J., and Proud, C. G., 2002. Regulation of peptide-chain elongation in mammalian cells., 269: 5360-5368.

    Drouin, G., Himmelman, J. H., and Béland, P., 1985. Impact of tidal salinity fluctuations on echinoderm and mollusc populations., 63: 1377-1387.

    Eisenberg, E., and Levanon, E. Y., 2003. Human housekeeping genes are compact., 19: 362-365.

    Ellison, C. K., and Burton, R. S., 2008. Genotype-dependent va- riation of mitochondrial transcriptional profiles in interpopulation hybrids., 105: 15831-15836.

    Gagnaire, B., Frouin, H., Moreau, K., Thomas-Guyon, H., and Renault, T., 2006. Effects of temperature and salinity on hae- mocyte activities of the Pacific oyster,(Thun- berg)., 20: 536-547.

    Gonzalez, M., Gueguen, Y., Desserre, G., De Lorgeril, J., Romestand, B., and Bachère, E., 2007. Molecular characterization of two isoforms of defensin from hemocytes of the oyster., 31: 332-339.

    Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome., 29: 644-652.

    Greer, S., Honeywell, R., Geletu, M., Arulanandam, R., and Rap- tis, L., 2010. Housekeeping genes; expression levels may change with density of cultured cells., 355: 76-79.

    Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M., 1996. Real time quantitative PCR., 6: 986-994.

    Hsiao, L. L., Dangond, F., Yoshida, T., Hong, R., Jensen, R. V., Misra, J., Dillon, W., Lee, K. F., Clark, K. E., Haverty, P., Weng, Z., Mutter, G. L., Frosch, M. P., MacDonald, M. E., Milford, E. L., Crum, C. P., Bueno, R., Pratt, R. E., Mahadevappa, M., Warrington, J. A., Stephanopoulos, G., and Gullans, S. R., 2001. A compendium of gene expression in normal human tissues., 7: 97-104.

    Itoh, N., Tun, K. L., Komiyama, H., Ueki, N., and Ogawa, K., 2004. An ovarian infection in the Iwagaki oyster,, with the protozoan parasite., 27: 311-314.

    Kuchel, R. P., Raftos, D. A., and Nair, S., 2010. Immunosuppressive effects of environmental stressors on immunological function in., 29: 930-936.

    Langmead, B., and Salzberg, S. L., 2012. Fast gapped-read align- ment with Bowtie 2., 9: 357-359.

    Li, B., and Dewey, C. N., 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome., 12: 323.

    Li, J., Zhang, Y., Liu, Y., Zhang, Y., Xiao, S., and Yu, Z., 2016. Co-expression of heat shock protein (HSP) 40 and HSP70 inresponse to thermal, low salinity and bacterial challenges., 48: 239-243.

    Liu, C., Wu, G., Huang, X., Liu, S., and Cong, B., 2012. Validation of housekeeping genes for gene expression studies in an ice algaduring freezing acclimation., 16: 419-425.

    Mackay, I. M., Arden, K. E., and Nitsche, A., 2002. Real-time PCR in virology., 30: 1292-1305.

    McKean, P. G., Vaughan, S., and Gull, K., 2001. The extended tubulin superfamily., 114: 2723-2733.

    Meistertzheim, A. L., Tanguy, A., Moraga, D., and Thébault, M. T., 2007. Identification of differentially expressed genes of the Pacific oysterexposed to prolonged ther- mal stress., 274: 6392-6402.

    Meng, X., Dong, Y., Dong, S., Yu, S., and Zhou, X., 2011. Mortality of the sea cucumber,Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression., 316: 88-92.

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-seq., 5: 621-628.

    Philippart, C. J., Anadón, R., Danovaro, R., Dippner, J. W., Drink- water, K. F., Hawkins, S. J., Oguz, T., O’Sullivan, G., and Reid, P. C., 2011. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators., 400: 52-69.

    Radoni?, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., and Nitsche, A., 2004. Guideline to reference gene selection for quantitative real-time PCR., 313: 856-862.

    Rosic, N. N., Pernice, M., Rodriguez-Lanetty, M., and Hoegh- Guldberg, O., 2011. Validation of housekeeping genes for gene expression studies inexposed to thermal and light stress., 13: 355-365.

    Shakeel, M., Rodriguez, A., Tahir, U. B., and Jin, F., 2018. Gene ex- pression studies of reference genes for quantitative realtime PCR: An overview in insects., 40: 227-236.

    Siomi, H., and Dreyfuss, G., 1997. RNA-binding proteins as re- gulators of gene expression., 7: 345-353.

    Tristan, C., Shahani, N., Sedlak, T. W., and Sawa, A., 2011. The diverse functions of GAPDH: Views from different subcellular compartments., 23: 317-323.

    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes., 3: research0034.1.

    Warner, J. R., 1999. The economics of ribosome biosynthesis in yeast., 24: 437-440.

    Zhang, G., Li, L., Meng, J., Qi, H., Qu, T., Xu, F., and Zhang, L., 2016. Molecular basis for adaptation of oysters to stressful marine intertidal environments., 4: 357-381.

    . Tel: 0086-532-82031622

    E-mail: qili66@ouc.edu.cn

    December 26, 2019;

    February 13, 2020;

    June 30, 2020

    (Edited by Qiu Yantao)

    全区人妻精品视频| 超碰av人人做人人爽久久| 免费看a级黄色片| 亚洲欧美日韩高清在线视频| 久久久久九九精品影院| 九九久久精品国产亚洲av麻豆| 久久香蕉精品热| 最近最新中文字幕大全电影3| 国产精品久久久久久人妻精品电影| 国产精品av视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 男女那种视频在线观看| 国产人妻一区二区三区在| 亚洲国产欧美人成| 精品人妻视频免费看| 久久国产乱子伦精品免费另类| 精品不卡国产一区二区三区| 国产成人a区在线观看| 麻豆成人午夜福利视频| 中文字幕熟女人妻在线| 国内少妇人妻偷人精品xxx网站| 欧美高清成人免费视频www| 能在线免费观看的黄片| 成年女人永久免费观看视频| 午夜福利在线在线| 少妇高潮的动态图| 亚洲人成网站高清观看| 国产麻豆成人av免费视频| 超碰av人人做人人爽久久| 久久精品国产亚洲av香蕉五月| 精品一区二区三区人妻视频| 看黄色毛片网站| 如何舔出高潮| 亚洲欧美清纯卡通| 久久久久久大精品| 97人妻精品一区二区三区麻豆| h日本视频在线播放| 亚洲在线观看片| 一级黄片播放器| 日韩av在线大香蕉| 99热只有精品国产| 国产精品精品国产色婷婷| 日韩av在线大香蕉| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 男女那种视频在线观看| 激情在线观看视频在线高清| 人人妻,人人澡人人爽秒播| 少妇丰满av| 国产精品爽爽va在线观看网站| 国产精品久久视频播放| 俺也久久电影网| 18禁在线播放成人免费| 日韩大尺度精品在线看网址| 美女 人体艺术 gogo| 99久久无色码亚洲精品果冻| 亚洲av成人av| 日韩欧美精品v在线| 在线天堂最新版资源| 人人妻人人看人人澡| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 亚洲国产精品成人综合色| 最近最新免费中文字幕在线| 香蕉av资源在线| 波多野结衣高清无吗| 在线观看66精品国产| 看黄色毛片网站| 国产av一区在线观看免费| 可以在线观看的亚洲视频| 亚洲av熟女| 少妇的逼好多水| 国产高清激情床上av| 男人舔奶头视频| 国产乱人伦免费视频| 少妇的逼水好多| 尤物成人国产欧美一区二区三区| 很黄的视频免费| 99riav亚洲国产免费| 国产伦人伦偷精品视频| 有码 亚洲区| 在线观看一区二区三区| 嫩草影视91久久| 欧美最新免费一区二区三区 | 日韩 亚洲 欧美在线| 91在线精品国自产拍蜜月| 精品久久国产蜜桃| 国产伦精品一区二区三区视频9| 大型黄色视频在线免费观看| 在线a可以看的网站| 久久精品人妻少妇| 少妇人妻一区二区三区视频| 国产三级在线视频| 免费看a级黄色片| 亚洲熟妇熟女久久| 一个人免费在线观看电影| 简卡轻食公司| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 国产免费一级a男人的天堂| 久久精品人妻少妇| 精品午夜福利在线看| 噜噜噜噜噜久久久久久91| 国产精品免费一区二区三区在线| 日韩欧美精品v在线| 悠悠久久av| 亚洲av二区三区四区| 欧美日本视频| 高潮久久久久久久久久久不卡| 中文字幕免费在线视频6| 欧美色欧美亚洲另类二区| 久久久国产成人免费| 亚洲精华国产精华精| 制服丝袜大香蕉在线| 国产亚洲欧美在线一区二区| 国产精品,欧美在线| 一区福利在线观看| 欧美日本亚洲视频在线播放| 一区二区三区高清视频在线| 小说图片视频综合网站| 免费看光身美女| 国产精品人妻久久久久久| 日本一本二区三区精品| 亚洲不卡免费看| 蜜桃亚洲精品一区二区三区| 午夜激情福利司机影院| 久久午夜亚洲精品久久| 亚洲精品影视一区二区三区av| 日本免费a在线| 久久精品综合一区二区三区| 国产91精品成人一区二区三区| eeuss影院久久| 午夜福利18| 亚洲av成人不卡在线观看播放网| 国内精品美女久久久久久| 亚洲人成网站在线播放欧美日韩| 婷婷亚洲欧美| 亚洲最大成人中文| 国产伦一二天堂av在线观看| 日日摸夜夜添夜夜添小说| 亚洲在线观看片| 国产又黄又爽又无遮挡在线| 欧美国产日韩亚洲一区| 中出人妻视频一区二区| 夜夜夜夜夜久久久久| 一级黄片播放器| 午夜激情欧美在线| 亚洲国产色片| 最近在线观看免费完整版| 高清毛片免费观看视频网站| 69av精品久久久久久| 亚洲激情在线av| 此物有八面人人有两片| 国产av麻豆久久久久久久| 淫妇啪啪啪对白视频| 乱码一卡2卡4卡精品| 内地一区二区视频在线| 中文字幕av在线有码专区| 啦啦啦韩国在线观看视频| 国产成人a区在线观看| 真实男女啪啪啪动态图| 国产在视频线在精品| 丰满人妻熟妇乱又伦精品不卡| 内地一区二区视频在线| 亚洲人成网站在线播| 中文字幕免费在线视频6| 欧美极品一区二区三区四区| 最新在线观看一区二区三区| 国产中年淑女户外野战色| 国产中年淑女户外野战色| 国产美女午夜福利| 三级毛片av免费| 中文字幕精品亚洲无线码一区| 1024手机看黄色片| 好男人在线观看高清免费视频| 亚洲av免费高清在线观看| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 欧美日本亚洲视频在线播放| 国产精品日韩av在线免费观看| 日韩高清综合在线| 欧美极品一区二区三区四区| 在线播放无遮挡| 亚洲av成人不卡在线观看播放网| 少妇的逼好多水| 久久午夜福利片| 午夜激情欧美在线| 成年人黄色毛片网站| 国产91精品成人一区二区三区| 久久精品91蜜桃| 亚洲专区国产一区二区| 内射极品少妇av片p| 中文字幕高清在线视频| 亚洲欧美日韩高清在线视频| 天堂影院成人在线观看| 中文字幕久久专区| 淫妇啪啪啪对白视频| 精品久久久久久久久久免费视频| 午夜精品一区二区三区免费看| 丁香六月欧美| 99久久99久久久精品蜜桃| 国产午夜精品论理片| 成人高潮视频无遮挡免费网站| 国内精品一区二区在线观看| 激情在线观看视频在线高清| 三级男女做爰猛烈吃奶摸视频| 中文亚洲av片在线观看爽| 亚洲第一区二区三区不卡| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 精品久久久久久,| 国内揄拍国产精品人妻在线| www.色视频.com| 亚洲av成人av| 噜噜噜噜噜久久久久久91| 性色av乱码一区二区三区2| 欧美黑人巨大hd| 久久午夜亚洲精品久久| 中文字幕精品亚洲无线码一区| 欧美丝袜亚洲另类 | 一区二区三区四区激情视频 | 亚洲国产精品成人综合色| 久久午夜福利片| 麻豆国产av国片精品| 欧美色欧美亚洲另类二区| 色av中文字幕| 中文字幕人妻熟人妻熟丝袜美| 日韩大尺度精品在线看网址| 亚洲午夜理论影院| 99国产精品一区二区三区| 老熟妇乱子伦视频在线观看| 精品国产亚洲在线| 大型黄色视频在线免费观看| 亚洲国产精品sss在线观看| 在线观看一区二区三区| 黄片小视频在线播放| 99在线人妻在线中文字幕| 亚洲性夜色夜夜综合| 夜夜爽天天搞| 国产精品嫩草影院av在线观看 | 九色成人免费人妻av| 美女xxoo啪啪120秒动态图 | 国产伦在线观看视频一区| 国产白丝娇喘喷水9色精品| 全区人妻精品视频| 亚洲 国产 在线| 3wmmmm亚洲av在线观看| 男女做爰动态图高潮gif福利片| 国产成年人精品一区二区| 成人特级av手机在线观看| 久久久久久久久大av| 宅男免费午夜| 一级a爱片免费观看的视频| 国内揄拍国产精品人妻在线| 哪里可以看免费的av片| 51午夜福利影视在线观看| 18美女黄网站色大片免费观看| 人妻久久中文字幕网| 国产在视频线在精品| 精品福利观看| 国产91精品成人一区二区三区| 久久久久国内视频| 欧美乱妇无乱码| 国产 一区 欧美 日韩| 波野结衣二区三区在线| 身体一侧抽搐| 91字幕亚洲| 少妇熟女aⅴ在线视频| 国产伦精品一区二区三区四那| 十八禁网站免费在线| 久久人人爽人人爽人人片va | 久久精品人妻少妇| 小蜜桃在线观看免费完整版高清| 久久久久久久久中文| 国产伦一二天堂av在线观看| 看免费av毛片| 人妻制服诱惑在线中文字幕| 国产乱人伦免费视频| 国产男靠女视频免费网站| 亚洲自拍偷在线| 亚洲成人中文字幕在线播放| 美女免费视频网站| 美女大奶头视频| 亚洲激情在线av| 国产一区二区三区在线臀色熟女| 色播亚洲综合网| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 亚洲久久久久久中文字幕| a在线观看视频网站| 69av精品久久久久久| 乱人视频在线观看| 国产亚洲欧美在线一区二区| 88av欧美| 天美传媒精品一区二区| 俺也久久电影网| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 国产色婷婷99| 欧美激情国产日韩精品一区| 在线十欧美十亚洲十日本专区| av福利片在线观看| 欧美最新免费一区二区三区 | 熟妇人妻久久中文字幕3abv| 淫妇啪啪啪对白视频| 国产精品久久电影中文字幕| 国产精品亚洲av一区麻豆| 亚洲人成电影免费在线| 国产69精品久久久久777片| 亚洲第一欧美日韩一区二区三区| 99热这里只有是精品在线观看 | 波野结衣二区三区在线| 夜夜看夜夜爽夜夜摸| 少妇熟女aⅴ在线视频| 波野结衣二区三区在线| 亚洲中文字幕日韩| 国产爱豆传媒在线观看| 国产高清视频在线播放一区| 日韩欧美精品v在线| 久久国产乱子伦精品免费另类| 此物有八面人人有两片| 精品久久久久久,| 午夜a级毛片| 国产私拍福利视频在线观看| 亚洲18禁久久av| 最近视频中文字幕2019在线8| www.999成人在线观看| 精品免费久久久久久久清纯| а√天堂www在线а√下载| 国产高清有码在线观看视频| 有码 亚洲区| 天堂动漫精品| 午夜亚洲福利在线播放| 搡老妇女老女人老熟妇| 一区二区三区免费毛片| 最近最新免费中文字幕在线| 成人性生交大片免费视频hd| 欧美乱妇无乱码| 国产淫片久久久久久久久 | 熟女人妻精品中文字幕| 久久草成人影院| 高清在线国产一区| 国产精品一区二区免费欧美| 亚洲第一欧美日韩一区二区三区| 99久久成人亚洲精品观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品伦人一区二区| 国产色爽女视频免费观看| 中文字幕久久专区| 99热精品在线国产| 国产熟女xx| 亚洲专区国产一区二区| 免费av不卡在线播放| 1000部很黄的大片| 久久热精品热| av中文乱码字幕在线| 久久久久久九九精品二区国产| 欧美日本亚洲视频在线播放| 久久婷婷人人爽人人干人人爱| 欧美bdsm另类| 成人三级黄色视频| 亚洲自拍偷在线| 亚洲av.av天堂| 麻豆国产97在线/欧美| a级毛片a级免费在线| 嫩草影院新地址| 精品人妻熟女av久视频| 色综合欧美亚洲国产小说| 国产在线精品亚洲第一网站| 亚洲欧美日韩高清在线视频| 在线播放无遮挡| 久久久久国产精品人妻aⅴ院| 一级黄色大片毛片| 午夜福利在线在线| 精品久久国产蜜桃| 国产黄色小视频在线观看| 成年人黄色毛片网站| 麻豆av噜噜一区二区三区| 精品人妻一区二区三区麻豆 | 中出人妻视频一区二区| 国产av麻豆久久久久久久| 欧美日韩国产亚洲二区| 欧美区成人在线视频| 午夜免费成人在线视频| 五月伊人婷婷丁香| 亚洲激情在线av| 91久久精品国产一区二区成人| 在线观看午夜福利视频| 热99re8久久精品国产| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 夜夜看夜夜爽夜夜摸| 小蜜桃在线观看免费完整版高清| 啦啦啦观看免费观看视频高清| 欧美国产日韩亚洲一区| 99久久精品一区二区三区| 亚洲av免费在线观看| 丰满乱子伦码专区| 国产人妻一区二区三区在| 国产成人欧美在线观看| 国产在线精品亚洲第一网站| 午夜福利在线在线| 毛片一级片免费看久久久久 | 午夜激情福利司机影院| 国产探花极品一区二区| 欧美午夜高清在线| 美女 人体艺术 gogo| 亚洲,欧美,日韩| 亚洲精品色激情综合| 蜜桃亚洲精品一区二区三区| 日本成人三级电影网站| 少妇的逼好多水| 国产69精品久久久久777片| 亚洲av二区三区四区| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 婷婷精品国产亚洲av| 波多野结衣高清作品| 校园春色视频在线观看| 午夜福利高清视频| 观看美女的网站| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 免费黄网站久久成人精品 | 亚洲精品久久国产高清桃花| 欧美高清性xxxxhd video| 日韩精品青青久久久久久| av在线天堂中文字幕| 精品久久久久久成人av| 好男人电影高清在线观看| 老鸭窝网址在线观看| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| a在线观看视频网站| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 国产成人欧美在线观看| 国产极品精品免费视频能看的| av视频在线观看入口| 国产伦精品一区二区三区四那| www.色视频.com| 久久久久九九精品影院| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va | 欧美极品一区二区三区四区| 精品日产1卡2卡| 国产精品亚洲av一区麻豆| 亚洲不卡免费看| 免费黄网站久久成人精品 | 免费一级毛片在线播放高清视频| 亚洲不卡免费看| 三级男女做爰猛烈吃奶摸视频| 一二三四社区在线视频社区8| 一级黄片播放器| 特大巨黑吊av在线直播| 国产三级中文精品| 亚洲国产色片| 日本成人三级电影网站| 亚洲欧美日韩卡通动漫| 99久久99久久久精品蜜桃| 精品久久久久久久久av| 在线播放国产精品三级| 久久精品国产自在天天线| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 美女cb高潮喷水在线观看| 欧美日韩瑟瑟在线播放| 成人特级av手机在线观看| av专区在线播放| 美女高潮喷水抽搐中文字幕| av黄色大香蕉| 精品人妻视频免费看| 亚洲成人久久爱视频| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 国产毛片a区久久久久| a级毛片a级免费在线| 天堂网av新在线| 亚州av有码| 欧美高清性xxxxhd video| 亚洲国产精品999在线| 一级作爱视频免费观看| 日本黄色视频三级网站网址| 啪啪无遮挡十八禁网站| 特级一级黄色大片| 我要看日韩黄色一级片| av专区在线播放| 长腿黑丝高跟| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄 | 搡老岳熟女国产| 久久99热6这里只有精品| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 亚洲最大成人手机在线| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 中文字幕精品亚洲无线码一区| 国产精品久久久久久亚洲av鲁大| 成人性生交大片免费视频hd| 国产高潮美女av| 欧美成狂野欧美在线观看| 久久国产精品影院| 亚洲av熟女| 日本熟妇午夜| 免费看美女性在线毛片视频| 欧美日韩国产亚洲二区| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 国产三级黄色录像| 窝窝影院91人妻| 国产一区二区在线av高清观看| 国产精品一区二区免费欧美| 亚洲无线观看免费| 欧美性猛交黑人性爽| 看片在线看免费视频| 国产一区二区激情短视频| 怎么达到女性高潮| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 成人性生交大片免费视频hd| 一进一出抽搐gif免费好疼| 俺也久久电影网| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 中亚洲国语对白在线视频| 欧美最新免费一区二区三区 | 亚洲美女搞黄在线观看 | 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 免费av毛片视频| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 日本一本二区三区精品| 免费av毛片视频| www.熟女人妻精品国产| 国产精品一及| 天堂影院成人在线观看| 深夜精品福利| 中文字幕久久专区| 久久人人爽人人爽人人片va | ponron亚洲| 亚洲成人久久爱视频| 此物有八面人人有两片| 麻豆av噜噜一区二区三区| 亚洲国产精品999在线| 特大巨黑吊av在线直播| avwww免费| 亚洲第一电影网av| 日本精品一区二区三区蜜桃| 十八禁国产超污无遮挡网站| 国产成年人精品一区二区| 天堂网av新在线| 麻豆国产97在线/欧美| 日韩欧美在线乱码| 国产黄色小视频在线观看| 国内精品一区二区在线观看| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 麻豆国产av国片精品| 老熟妇仑乱视频hdxx| 国产视频内射| 亚洲国产精品sss在线观看| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 观看免费一级毛片| 国产av不卡久久| 在线播放无遮挡| 国产高清有码在线观看视频| 亚洲专区国产一区二区| 男人和女人高潮做爰伦理| 亚洲中文字幕日韩| 久9热在线精品视频| 99国产极品粉嫩在线观看| 欧美日韩亚洲国产一区二区在线观看| 高清日韩中文字幕在线| 亚洲三级黄色毛片| 色哟哟·www| 色5月婷婷丁香| 老鸭窝网址在线观看| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 97超级碰碰碰精品色视频在线观看| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 99精品在免费线老司机午夜| 欧美性感艳星| 亚洲专区国产一区二区| 成人性生交大片免费视频hd| 免费看a级黄色片| 欧美日韩亚洲国产一区二区在线观看| 国产精品,欧美在线| 99久久精品一区二区三区| 深爱激情五月婷婷| 白带黄色成豆腐渣| 久久久色成人| 亚洲精品一区av在线观看| 久久精品国产亚洲av天美| 亚洲内射少妇av| 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 人人妻,人人澡人人爽秒播|