• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    2020-11-30 04:43:18SHAOGuihangandLIYuguo
    Journal of Ocean University of China 2020年6期

    SHAO Guihang, and LI Yuguo, 2), *

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    SHAO Guihang1), and LI Yuguo1), 2), *

    1),,,,266100,2),,266237,

    In this paper, we present a numerical simulation method of electromagnetic (EM) fields induced by a moving ship (EMFMS), which consist of both the shaft-rate EM field and the static EM field. The shaft-rate EM fields in the frequency domain are first obtained by solving the partial differential equations together with suitable boundary conditions, and then they are transformed into the time domain by using the inverse Fourier transform. Finally, the static fields are added to obtain the EM fields of a moving ship. The effects of the source current intensity and the source position on the EM fields of a moving ship are discussed in detail. A field example of EM response of a moving ship is presented and its characteristics are analyzed.

    moving ship; shaft-rate EM field; static EM field; numerical simulation

    1 Introduction

    In order to prevent seawater corrosion, ships are often equipped with cathodic protection devices. The currents pro- duced by cathodic protection devices usually form two circuits as shown in Fig.1 (Jeffrey and Brooking, 1999). The one flowing through the ship’s propeller is modulated by the varying bearing resistance, and generates shaft-rate electromagnetic fields (Holtham., 1999). The other flowing through the ship’s coating damage point generates static electromagnetic fields (Nain., 2013). Thus, the electric and magnetic fields induced by a moving ship (EMFMS) consist of both the shaft-rate field and the sta- tic field.

    The study of ship’s EM fields began in the 1960s (Zolotarevskii., 2005), and many studies on EMFMS have been conducted since then (Holmes, 2006). In these studies, however, simulation problems are often simplified. For instance, the geoelectric model is designed as an air- sea two-layer model (Sun., 2003; Lu., 2004; Liu., 2004; Zhang and Wang, 2016), in which the current source of a moving ship is assumed to be equivalent to a horizontal electric dipole (Lu., 2005; Ni., 2006), or the shaft-rate EM fields are neglected (Bao., 2011; Li., 2012). Although these simplifications can reduce the complexity of numerical simulation, they donot sufficiently simulate the real situation. Therefore, three types of problems can be caused by the simplifications. Firstly, in shallow water areas, the seafloor sediment layer has a great influence on the EM responses of a moving ship, hence the two-layer model is improper. Secondly, since the location of the ship’s propeller is different from the coating damage points (Liu, 2009; Cheng., 2016), the ship cannot be equivalent to a horizontal electric dipole. Third, the EM fields of a moving ship consist of both the shaft-rate field and the static field, so both of them should be considered.

    In this paper, we consider an air-seawater-seafloor three- layer geoelectric model. Both the shaft-rate field and the static field are simulated in the frequency domain by using both the horizontal and vertical electric dipoles, then the results are transformed into the time domain by using the inverse Fourier transform, and the EMFMS are obtained by adding the shaft-rate field to the static field. Finally, the shaft-rate field and the static field are separated from the measured EMFMS data, and the characteristics of them are discussed.

    2 Simulation of the EMFMS

    2.1 Theory

    The EMFMS consists of the shaft-rate EM field and the static EM field. They can be approximated by the EM fields of the tilted electric dipole source in the air-sea- seafloor three-layer geoelectric model (Fig.2a). The EM fields generated by a tilted dipole source can be seen as the superposition of those caused by the horizontal and vertical electric dipoles (Fig.2b), and can be expressed as

    where,,andare EM fields generated by the horizontal and vertical electric dipoles, respe- ctively.

    The electromagnetic fields generated by both the horizontal electric dipole (HED) and vertical electric dipole (VED) sources in the layered earth have been well studied (Li and Li, 2016).

    To obtain the EMFMS, both the shaft-rate field and the static field need to be transformed into time domain from frequency domain. Assuming that a ship starts to move at time1and position1along the-axis at a constant velocity, the ship’s position at timet(Fig.3a) can be expressed as:

    where t1, x1and v are known. The ship arrives at location xi at time ti, and ri is the distance from the mid-point of an electric dipole source to a receiver positioned at the seafloor.

    The procedure for calculating the EMFMS is listed as follows.

    1) Calculate shaft-rate fields(x,) (=1, 2,…,) in the frequency domain;

    Fig.2 Schematic diagrams of (a) a moving ship in the air-sea-seafloor three-layer geoelectric model and (b) electric dipole vector decomposition.

    Fig.3 Schematic diagrams of (a) three-layer model for a moving ship and (b) the shaft-rate EM fields in the time domain.

    2) Transform(x,) into time domain response(x,t) (,=1, 2,…,, note thatandare not equal all the time) (shown as red lines in Fig.3b) by using the discrete inverse Fourier transform (Press., 1992), and get the EM field(x,t) (shown as black point in Fig.3b), which is the shaft-rate part of EMFMS;

    3) Set the source frequency to 0 and calculate the static field(x) (=1, 2,…,), then get the time domain static field(t) according to Eq. (3);

    4) Get EMFMS by adding the shaft-rate field(x,t) to static field(t).

    2.2 Numerical Examples

    To demonstrate the procedure described previously, we set an air-seawater-seafloor three-layer model, which is called model M0 (Fig.4a). The resistivity of the air, the seawater and the seafloor is set to be 1010Ωm, 0.3Ωm and 10Ωm, respectively, and the seawater depth is 500m.

    Assuming that a ship travels from1=?1250m to2= 1250m at a constant speed of 3ms?1, the EMFMS can be simulated by using two moving electric dipoles. The one is the alternating electric dipole with a frequency of 3.6Hz and the other is static electric dipole. Both the dipoles are located at the same place and the positive and negative electrodes are at the points (?25, 0, 3) and (+25, 0, 3), respectively. Both of them have a current of 20A. A receiver is positioned at point (0, 0, 500) on the seafloor. Both the frequency domain shaft-rate field (=3.6Hz) and steady field are calculated and shown in Figs.4b and 4c. Assuming that the centers of the dipole sources are equidistantly placed along the line from=?1250m to=1250m at a depth of 3m, the frequency domain shaft-rate fields are transformed into the time domain by using the discrete fast Fourier transform (iFFT), where the frequency interval Δis set to be 0.0012Hz and the number of sample points is equal to 213. The time domain shaft-rate fields at all 213points are obtained by using discrete iFFT (Press., 1992). Finally, the shaft-rate field at the receiver site is synthetized by extracting corresponding value from the 213data set and shown as the red lines in Figs.4d and 4e.

    Fig.4 The numerical example of the EMFMS. (a), Schematic diagram of model M0; (b), Frequency domain Ey component; (c), Hx component; (d), Time domain Ey component; (e), Hx component; (f), Ey component and (g) Hx component of EM- FMS.

    From Figs.4b–4e, one can see that the amplitude of the shaft-rate fields differs from the static field in both the frequency domain (Figs.4b and 4c) and the time domain (Figs.4d and 4e). This means that the EMFMS is different from either the shaft-rate EM field or the static field. Thus, both of them need to be simulated and investigated.

    3 Analysis of EMFMS

    The characteristics of EMFMS responses are related to several parameters in the model M0 shown in Fig.4a. In this section, the effects of both the source current intensity and source position on EMFMS are investigated, re- spectively.

    3.1 Source Current Intensity

    The current intensity of the shaft-rate field might be dif- ferent from that of the static field, thus there is a need to investigate their influences on the EMFMS, respectively.

    Firstly, we investigate the influence of the direct current intensity on the EMFMS. Assuming that the direct current intensities are 4A (model M1, Fig.5a) and 100A (model M2, Fig.5b), respectively, and the other parameters are the same as those in model M0 (Fig.4a), the simulated EMFMS for models M1 and M2 are shown in Figs.5c–5e.

    Fig.5 Schematic diagrams of (a) model M1 and (b) model M2 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of direct current intensity on the EMFMS.

    From Figs.5c–5e, one can see that the EMFMS has the following features:

    1) The horizontal components of both the electric and magnetic fields (EandH) have a single peak in their variation curves and is symmetric with respect to the axis of=416.5s (Figs.5c and 5e), while the vertical component of the electric fieldEhas two peaks, one of which is positive at=334s and the other is negative at=499s (Fig.5d). The EMFMS attenuates faster and faster when the ship approaches to the receiver, but this trend slows down when it is far away from the receiver. The EMFMS envelope is crescent-shaped for models M0 and M2, but is spindle-shaped for model M1.

    2) The EMFMS’s amplitude increases with the increase of the direct current intensity, and the influence of direct current intensity on the magnetic field (H) is much greater than on the electric fields (EandE).

    Next, we investigate the influence of alternative current intensity on the EMFMS. We assume that the alternative current intensity is 4A (model M3, Fig.6a) and 100A (mo-del M4, Fig.6b), respectively, and the other parameters are the same as those in model M0 (Fig.4a). The simulated EMFMS for models M3 and M4 are shown in Figs.6c–6e.

    From Figs.6c–6e, one can see that the EMFMS has the following features:

    1) The peak’s position and symmetric feature of EM- FMS response in models M3 and M4 are similar to those in models M1 and M2.

    2) The range of the EMFMS envelope increases with the increase of the alternating current intensity.

    From Figs.5 and 6, one can see that the direct current intensity affects the peak’s position and symmetric feature of the EMFMS, while the alternating current intensity af- fects the range of the envelope.

    3.2 Source Position

    The alternating current source is not usually located at the same position as the direct current source. In the following, we discussed the influence of the source position on EMFMS.

    We assume that the alternating current source shifts 50 m horizontally from its position in model M0 (Fig.4a) along the positive and negative-axis direction, respectively, as shown in Fig.7a (model M5) and Fig.7b (model M6), and the other parameters are same as those in model M0 (Fig.4a). The simulated results of EMFMS for models M5 and M6 are shown in Figs.7c–7e.

    From Figs.7c–7e, one can see that the EMFMS is no longer symmetric with respect to the axis of=416.5s, this is because the symmetric centers of the shaft-rate field and the static field are at different position.

    Considering the shallow sea environments, we assume that the thickness of the seawater layer is 100m in models M7 and M8 (Figs.8a and 8b), and the other parameters are same as those in models M5 and M6. The simulated EMFMS for models M7 and M8 are shown in Figs.8c–8e.

    Fig.6 Schematic diagrams of (a) model M3 and (b) model M4 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of alternating current intensity on the EMFMS.

    Fig.7 Schematic diagrams of (a) model M5 and (b) model M6 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of the source position on the EM- FMS.

    By comparing Figs.7 and 8, one can find that when the seawater depth is much larger than the length of the current source, the source position has very little influence on the EMFMS, and vice versa. There are two reasons for this. One is that the shaft-rate field is of the same order in magnitude as the static field in shallow water. The other is the offsets of symmetric centers between the shaft-rate field and the static field are much larger in shallow water than in deep water.

    3.3 Combined Effect of HED and VED Sources

    In order to investigate the combined effect of HED and VED sources on EMFMS, we build the model M9 and M10. In model M9, there is a HED source, and both the alternating and static horizontal dipole sources are located at the same position and their positive and negative electrodes are at (?25, 0, 15) and (+25, 0, 15), respectively, as shown in Fig.9a. In model M10, the dipole source is tilted at an angle of 30? relative to the-axis and its center is at (, 0, 15), as shown in Fig.9b. The simulated EM- FMS of both models are shown in Figs.9c–9e.

    From Figs.9c–9e, one can see that for the tilted dipole source (model M10), the electric fields are no longer symmetrical with respect to the axis of=416.5s. The electrical field amplitude on the left side becomes smaller and that on the right side becomes larger, and the amplitude of the magnetic field is smaller than that due to the horizontal dipole source (model M9). It is obvious that these features are resulting from the combined effect of the HED and VED sources.

    Fig.8 Schematic diagrams of (a) model M7 and (b) model M8 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the effect of the source position on the EMFMS in shallow water.

    Fig.9 Schematic diagrams of (a) model M9 and (b) model M10 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the combined effect of HED and VED sources.

    4 Measured Data

    We conducted an EMFMS test in the South Yellow Sea. An ocean bottom EM receiver (OBEM) was positioned on the seabed and recorded three electric field components and two horizontal components of the magnetic field. The sampling rate is 500Hz, and the water depth is 37m.

    The research vessel ‘’ traveled across over the OBEM. The recorded data are processed. The shaft-rate of the vessel is about 3.667Hz.

    Figs.10a and 10b show the measuredEand Hfields during a period of 216s, respectively. The measured fields are divided into the shaft-rate field and static field by using the sliding window technique (Figs.10c and 10d).

    From Figs.10c and 10d, one can see the following features.

    1) The anomaly of the shaft-rate magnetic field is greater than the shaft-rate electric field (in SI unit).

    2) TheEcomponent and theHcomponent of the sta- tic field in Figs.10c and 10d are very similar to the static fields in Figs.4d and 4e.

    3) The amplitude of static magnetic field is much larger than that of the shaft-rate magnetic field.

    From the time-frequency spectrograms (Figs.10e and 10f), one can see the following features:

    1) The static electric field is dominated at a frequency very close to 0Hz and the shaft-rate field is very clear at the fundamental frequency of 3.67Hz and its harmonics.

    2) The amplitude of the static magnetic field is much larger than the shaft-rate magnetic field, which is generated by the metal material of the vessel.

    Fig.10 Time series of (a) Ey and (b) Hx for measured EMFMS, time series of (c) Ey and (d) Hx for shaft-rate EM field and static field and spectrogram of (e) Ey and (f) Hx for EMFMS.

    5 Conclusions

    In this paper, we present a simulation method of electric and magnetic fields of a moving ship (EMFMS), which consisted of both the shaft-rate field generated by alterna- ting electric currents and the static field excited by static electric current. Then we investigated the effects of the current intensity and the source positions on the EMFMS. The numerical simulation and real measured data show that the seafloor, the shaft-rate field and the static field all have great impacts on EMFMS, so none of them could be neglected for EMFMS study.

    Acknowledgements

    This study is supported by the Fundamental Research Funds for the Central Universities (No. 201861020) and the Wenhai Program of Qingdao National Laboratory for Marine Science and Technology (QNLM) (No. 2017WH ZZB0201). We thank Drs. Ying Liu, Yunju Wu, Jie Lu, and Baoqiang Zhang for helpful suggestions on formula derivation of shaft-rate EM fields and data processing. We also thank two anonymous reviewers for valuable comments on our manuscript.

    Bao, Z., Gong, S., Sun, J., and Li, J., 2011. Localization of a horizontal electric dipole source embedded in deep sea by using two vector-sensors., 23 (3): 53-57, DOI: 10.3969/j.issn.1009-3486.2011. 03.012 (in Chinese with English abstract).

    Cheng, R., Jiang, R., and Gong, S., 2016. Calculation method of vessels’ shaft rate electric field equivalent source magnitude., 38 (2): 138-143, DOI: 10.11887/j.cn.201602023 (in Chinese with Eng- lish abstract).

    Holmes, J., 2006.. Morgan & Claypool Publishers, London, 78pp.

    Holtham, P., Jeffrey, I., Brooking, B., and Richards, T., 1999. Electromagnetic signature modeling and reduction.. London, UK, 97-100.

    Jeffrey, I., and Brooking, B., 1999. A survey of new electromagnetic stealth technologies.. Biloxi, Mississippi, 1-7.

    Li, D., Chen, C., Liu, H., and Yang, S., 2012. Green function method for extrapolating of ship’s underwater static electric field., 24 (3): 1-6, DOI: 10.3969/j.issn.1009-3486.2012.03.001 (in Chinese with English abstract).

    Li, Y., and Li, G., 2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles., 13 (4): 505-515, DOI: 10.1088/1742-2132/13/4/505.

    Liu, S., Xiao, C., and Gong, S., 2004. Electromagnetic field of DC electric dipole in two-layer model., 28 (5): 641-644, DOI: 10.3963/j.issn.2095-3844.2004.05. 004 (in Chinese with English abstract).

    Liu, Y., 2009. The measurement method of ship’s electric field. Master thesis. Harbin Engineering University (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Liu, S., 2005. Quasi-near field localization of a time-harmonic HED in sea water., 29 (3): 331-334, DOI: 10.3963/j.issn.2095-3844. 2005.03.001 (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Sun, M., 2004. Analytical expressions of the electromagnetic fields produced by an ELF time-harmonic HED embedded in the sea., 19 (3): 290-295, DOI: 10.13443/j.cjors.2004. 03.008 (in Chinese with English abstract).

    Nain, H., Isa, M. C., Mohd, M., Yusoff, N. H. N., Yati, M. S. D., and Nor, I. M., 2013. Management of naval vessel’s electromagnetic signatures: A review of sources and countermeasures., 6 (2): 93-110.

    Ni, H., Sun, M., and Gong, S., 2006. Calculation of the electromagnetic fields generated by horizontal current element in semi-infinite space of seawater., 20 (1): 63-65, DOI: 10.3969/j.issn. 1672-1497.2006.01.016 (in Chinese with English abstract).

    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992.. Press Syndicate of the University of Cambridge, New York, 1574pp.

    Sun, M., Gong, S., Zhou, J., and Lu, X., 2003. Calculation of the electromagnetic fields generated by DC horizontal current element in semi-infinite space of seawater.. Istanbul, Turkey, 734-736.

    Zhang, J., and Wang, X., 2016. Arithetic research about electric- field intensity of horizontal-harmonic current in the deep sea., 38 (1): 90-93, DOI: 10.3404/j. issn.1672-7649.2016.1.019 (in Chinese with English abstract).

    Zolotarevskii, Y. M., Bulygin, F. V., Ponomarev, A. N., Narchev,V. A., and Berezina, L. V., 2005. Methods of measuring the low- frequency electric and magnetic fields of ships., 48 (11): 1140-1144, DOI: 10.1007/s11018-006- 0035-6.

    . E-mail: yuguo@ouc.edu.cn

    September 18, 2019;

    February 26, 2020;

    April 18, 2020

    (Edited by Chen Wenwen)

    九九爱精品视频在线观看| 99久久综合免费| 在线观看免费午夜福利视频| av.在线天堂| 精品国产乱码久久久久久男人| 精品亚洲成国产av| 中文字幕制服av| 国产精品99久久99久久久不卡 | 91老司机精品| 日本欧美视频一区| 欧美精品亚洲一区二区| 国产精品嫩草影院av在线观看| 欧美日韩国产mv在线观看视频| 精品久久久精品久久久| 色婷婷久久久亚洲欧美| 九色亚洲精品在线播放| 亚洲国产欧美日韩在线播放| 飞空精品影院首页| 97在线人人人人妻| 国产免费又黄又爽又色| av视频免费观看在线观看| kizo精华| 女人久久www免费人成看片| 国产精品av久久久久免费| 永久免费av网站大全| 黄片无遮挡物在线观看| 亚洲国产av新网站| 国产精品三级大全| 美女福利国产在线| av不卡在线播放| 国产精品一区二区精品视频观看| 欧美日韩亚洲高清精品| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 成人影院久久| 丝袜脚勾引网站| 国产一区有黄有色的免费视频| 老汉色av国产亚洲站长工具| 日本色播在线视频| 久久 成人 亚洲| 婷婷成人精品国产| 99国产精品免费福利视频| 视频在线观看一区二区三区| 9色porny在线观看| 国产精品蜜桃在线观看| 午夜福利在线免费观看网站| 最近最新中文字幕免费大全7| 99久久综合免费| 久久人人97超碰香蕉20202| 在线精品无人区一区二区三| 看非洲黑人一级黄片| 综合色丁香网| 午夜精品国产一区二区电影| 久久久久久久久久久免费av| 人人妻人人澡人人看| 一区二区三区四区激情视频| 亚洲图色成人| 狠狠婷婷综合久久久久久88av| 视频区图区小说| 丁香六月欧美| 丰满饥渴人妻一区二区三| 亚洲精华国产精华液的使用体验| 国产熟女午夜一区二区三区| 人人妻人人添人人爽欧美一区卜| www.自偷自拍.com| 最近中文字幕2019免费版| 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 晚上一个人看的免费电影| 国产探花极品一区二区| 日本一区二区免费在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲伊人色综图| 午夜福利免费观看在线| 日韩中文字幕视频在线看片| 国产精品免费视频内射| 亚洲在久久综合| 免费观看a级毛片全部| 黄片播放在线免费| 纯流量卡能插随身wifi吗| 亚洲欧美成人精品一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 伊人久久国产一区二区| 大话2 男鬼变身卡| 男女国产视频网站| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 超碰成人久久| 国产一卡二卡三卡精品 | 亚洲欧美一区二区三区久久| 波多野结衣av一区二区av| 在线天堂最新版资源| 国产成人免费观看mmmm| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 亚洲av福利一区| 欧美日韩av久久| 欧美变态另类bdsm刘玥| 国产黄频视频在线观看| 中文字幕高清在线视频| 国产免费又黄又爽又色| 一区二区三区精品91| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 看十八女毛片水多多多| 日韩中文字幕视频在线看片| 麻豆乱淫一区二区| 国产成人精品福利久久| 大码成人一级视频| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 十八禁人妻一区二区| 狂野欧美激情性xxxx| 9191精品国产免费久久| 国产日韩欧美视频二区| 亚洲精华国产精华液的使用体验| 国产精品av久久久久免费| 中文天堂在线官网| 七月丁香在线播放| 少妇人妻久久综合中文| 国产高清国产精品国产三级| 精品久久久精品久久久| 婷婷成人精品国产| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 欧美亚洲 丝袜 人妻 在线| 久久久久视频综合| 卡戴珊不雅视频在线播放| 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 成人午夜精彩视频在线观看| 久久婷婷青草| 国产亚洲av高清不卡| 又黄又粗又硬又大视频| 日韩制服丝袜自拍偷拍| 欧美人与善性xxx| 国产高清不卡午夜福利| 亚洲一卡2卡3卡4卡5卡精品中文| 成人影院久久| 老司机在亚洲福利影院| 美女午夜性视频免费| 老汉色av国产亚洲站长工具| 中文欧美无线码| 日韩中文字幕视频在线看片| 无限看片的www在线观看| 999精品在线视频| h视频一区二区三区| 亚洲av电影在线进入| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 久久韩国三级中文字幕| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 免费黄色在线免费观看| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 高清在线视频一区二区三区| 亚洲人成电影观看| 我要看黄色一级片免费的| 成人午夜精彩视频在线观看| 操美女的视频在线观看| 国产乱来视频区| 大香蕉久久网| 国产男人的电影天堂91| 亚洲专区中文字幕在线 | 久热爱精品视频在线9| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 久久久久网色| 五月开心婷婷网| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 一级片免费观看大全| 久久久久久久精品精品| 少妇精品久久久久久久| 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 捣出白浆h1v1| 日本猛色少妇xxxxx猛交久久| 久久久久久免费高清国产稀缺| 久久女婷五月综合色啪小说| 欧美久久黑人一区二区| 搡老岳熟女国产| 麻豆av在线久日| 少妇猛男粗大的猛烈进出视频| 搡老岳熟女国产| 欧美精品一区二区免费开放| 久久精品国产综合久久久| 日韩视频在线欧美| 99热国产这里只有精品6| 热99国产精品久久久久久7| 亚洲欧美成人精品一区二区| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 亚洲人成77777在线视频| 男女边吃奶边做爰视频| 丁香六月天网| 大香蕉久久成人网| 亚洲精品日本国产第一区| 国产毛片在线视频| 午夜激情久久久久久久| 亚洲国产精品国产精品| 久久性视频一级片| 水蜜桃什么品种好| 90打野战视频偷拍视频| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 黑丝袜美女国产一区| 搡老乐熟女国产| 国产乱人偷精品视频| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 黄片小视频在线播放| 日日撸夜夜添| 欧美 日韩 精品 国产| 大话2 男鬼变身卡| 久久久久精品国产欧美久久久 | 精品一区在线观看国产| 亚洲av在线观看美女高潮| av有码第一页| 亚洲av成人精品一二三区| 欧美人与性动交α欧美软件| 国产xxxxx性猛交| 汤姆久久久久久久影院中文字幕| 久久久久网色| 精品国产乱码久久久久久男人| 黑人欧美特级aaaaaa片| 精品一区二区三卡| 色婷婷av一区二区三区视频| 婷婷成人精品国产| 婷婷色麻豆天堂久久| 欧美乱码精品一区二区三区| 人妻一区二区av| 各种免费的搞黄视频| 婷婷成人精品国产| 最新的欧美精品一区二区| 国语对白做爰xxxⅹ性视频网站| 国产毛片在线视频| 久久久精品94久久精品| 精品亚洲成国产av| 日本wwww免费看| 亚洲精品第二区| 色网站视频免费| 中国国产av一级| tube8黄色片| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 国产99久久九九免费精品| 精品国产一区二区三区四区第35| 99热网站在线观看| 中文字幕亚洲精品专区| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 美女高潮到喷水免费观看| 亚洲av福利一区| 亚洲美女搞黄在线观看| 午夜av观看不卡| 777久久人妻少妇嫩草av网站| videosex国产| 啦啦啦在线免费观看视频4| 少妇被粗大的猛进出69影院| 亚洲av男天堂| 亚洲av成人不卡在线观看播放网 | 满18在线观看网站| 国产免费视频播放在线视频| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 搡老岳熟女国产| 亚洲欧洲国产日韩| 飞空精品影院首页| 老司机靠b影院| 高清欧美精品videossex| 久久久久精品人妻al黑| 国产亚洲最大av| tube8黄色片| 99热国产这里只有精品6| 亚洲熟女毛片儿| 国产成人精品无人区| 精品国产国语对白av| 99re6热这里在线精品视频| 美女扒开内裤让男人捅视频| 亚洲国产毛片av蜜桃av| 色吧在线观看| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一二三区在线看| 国产成人精品无人区| 咕卡用的链子| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 两个人免费观看高清视频| 一级毛片 在线播放| 国产精品蜜桃在线观看| 一区在线观看完整版| 欧美成人午夜精品| 又大又爽又粗| 精品少妇一区二区三区视频日本电影 | 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| a级毛片黄视频| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 久久精品国产亚洲av涩爱| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 一区二区av电影网| 亚洲图色成人| 少妇人妻久久综合中文| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 在现免费观看毛片| 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 国产成人免费无遮挡视频| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱人偷精品视频| 国产极品粉嫩免费观看在线| 18禁观看日本| 免费在线观看黄色视频的| 超碰97精品在线观看| 1024视频免费在线观看| 秋霞在线观看毛片| 在线观看免费日韩欧美大片| 啦啦啦啦在线视频资源| 亚洲熟女精品中文字幕| 欧美成人精品欧美一级黄| 欧美亚洲 丝袜 人妻 在线| 国产精品免费视频内射| 又大又爽又粗| 久久久精品区二区三区| 如日韩欧美国产精品一区二区三区| 免费日韩欧美在线观看| 亚洲精品aⅴ在线观看| 免费日韩欧美在线观看| 纵有疾风起免费观看全集完整版| 欧美日韩精品网址| 亚洲精品自拍成人| 亚洲三区欧美一区| 制服诱惑二区| 纯流量卡能插随身wifi吗| 日本色播在线视频| 国产精品久久久久久久久免| 日韩伦理黄色片| 国产 精品1| 日韩,欧美,国产一区二区三区| 成人漫画全彩无遮挡| 亚洲成人国产一区在线观看 | 久久久精品区二区三区| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 精品国产一区二区久久| videos熟女内射| 少妇人妻久久综合中文| 一个人免费看片子| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 天堂8中文在线网| 中文字幕人妻丝袜一区二区 | 在线天堂最新版资源| 亚洲精品国产av成人精品| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| 国产精品 国内视频| 国产精品99久久99久久久不卡 | 狠狠精品人妻久久久久久综合| 欧美日韩福利视频一区二区| 伊人久久国产一区二区| 可以免费在线观看a视频的电影网站 | 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 美女主播在线视频| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 在线亚洲精品国产二区图片欧美| 精品久久久久久电影网| 日本91视频免费播放| 久久久久国产一级毛片高清牌| 欧美在线黄色| 激情五月婷婷亚洲| 中文字幕人妻丝袜一区二区 | 国产成人精品久久久久久| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 成年人午夜在线观看视频| 久久99一区二区三区| av女优亚洲男人天堂| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区 | 精品少妇久久久久久888优播| 国产探花极品一区二区| 午夜日韩欧美国产| 免费观看人在逋| 91精品国产国语对白视频| 久久久国产精品麻豆| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 久久久精品区二区三区| 成人国产麻豆网| 新久久久久国产一级毛片| 精品久久蜜臀av无| 亚洲视频免费观看视频| 国产av国产精品国产| 免费高清在线观看日韩| 成年人午夜在线观看视频| 亚洲激情五月婷婷啪啪| 悠悠久久av| 精品国产一区二区久久| 免费少妇av软件| 国产精品免费大片| 久久亚洲国产成人精品v| 日本av手机在线免费观看| 岛国毛片在线播放| 又黄又粗又硬又大视频| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 69精品国产乱码久久久| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| av国产精品久久久久影院| 久久久国产精品麻豆| 婷婷色综合www| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 熟妇人妻不卡中文字幕| 黄频高清免费视频| 午夜激情av网站| 在线观看免费日韩欧美大片| 自线自在国产av| 亚洲精品乱久久久久久| 久久精品aⅴ一区二区三区四区| 成人漫画全彩无遮挡| 岛国毛片在线播放| 亚洲自偷自拍图片 自拍| 电影成人av| 国产精品国产三级国产专区5o| 制服诱惑二区| 涩涩av久久男人的天堂| 国产精品 欧美亚洲| 欧美黑人欧美精品刺激| 大片免费播放器 马上看| 欧美日韩一区二区视频在线观看视频在线| 老司机在亚洲福利影院| 国产 一区精品| 黑人巨大精品欧美一区二区蜜桃| 午夜激情久久久久久久| 欧美黑人欧美精品刺激| 99久久综合免费| 在线看a的网站| 国产日韩欧美视频二区| 亚洲美女视频黄频| avwww免费| 久久久久精品国产欧美久久久 | 成年av动漫网址| 国产一区亚洲一区在线观看| 熟女av电影| 男男h啪啪无遮挡| 亚洲七黄色美女视频| 久热爱精品视频在线9| 观看av在线不卡| av在线老鸭窝| 国产亚洲最大av| 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲 | 精品一区二区三卡| 人人澡人人妻人| 成人亚洲欧美一区二区av| 老司机在亚洲福利影院| 99香蕉大伊视频| 亚洲欧美色中文字幕在线| 成人影院久久| 老司机影院毛片| 欧美日韩av久久| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品高潮呻吟av久久| 搡老乐熟女国产| 色94色欧美一区二区| 曰老女人黄片| 99香蕉大伊视频| 亚洲欧美色中文字幕在线| 青春草亚洲视频在线观看| 国产成人精品在线电影| 日韩 亚洲 欧美在线| 少妇被粗大猛烈的视频| 国产免费又黄又爽又色| 观看美女的网站| 你懂的网址亚洲精品在线观看| 亚洲五月色婷婷综合| 少妇人妻 视频| 国产淫语在线视频| 久久97久久精品| 亚洲欧美精品自产自拍| 丰满饥渴人妻一区二区三| 99久久精品国产亚洲精品| 80岁老熟妇乱子伦牲交| 男男h啪啪无遮挡| 母亲3免费完整高清在线观看| 999精品在线视频| 少妇的丰满在线观看| 久久毛片免费看一区二区三区| 亚洲 欧美一区二区三区| 国产免费福利视频在线观看| 在线观看www视频免费| 成人国产av品久久久| 精品午夜福利在线看| 国产毛片在线视频| 亚洲精品国产av成人精品| 久久99精品国语久久久| 女人高潮潮喷娇喘18禁视频| 久久午夜综合久久蜜桃| 叶爱在线成人免费视频播放| 日韩一区二区三区影片| 日韩大片免费观看网站| 高清视频免费观看一区二区| 最近手机中文字幕大全| 麻豆av在线久日| 日韩一区二区三区影片| 免费观看a级毛片全部| 国产一区有黄有色的免费视频| 丰满迷人的少妇在线观看| 十八禁网站网址无遮挡| 91精品伊人久久大香线蕉| 黄频高清免费视频| 蜜桃国产av成人99| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 成年人午夜在线观看视频| 69精品国产乱码久久久| 免费少妇av软件| av在线播放精品| 永久免费av网站大全| 飞空精品影院首页| 2018国产大陆天天弄谢| 久久久久久久久久久免费av| 久久久久国产精品人妻一区二区| 少妇人妻久久综合中文| 久久av网站| 日本欧美国产在线视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲成av片中文字幕在线观看| 亚洲精品国产av成人精品| 日本av免费视频播放| 精品一区二区三卡| 午夜福利视频精品| 日韩av在线免费看完整版不卡| 日日啪夜夜爽| 91老司机精品| 男女之事视频高清在线观看 | 免费少妇av软件| 国产av国产精品国产| 日韩av不卡免费在线播放| 精品人妻一区二区三区麻豆| 天堂8中文在线网| 男女下面插进去视频免费观看| 久久人人97超碰香蕉20202| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区久久| 久久亚洲国产成人精品v| 不卡av一区二区三区| 操出白浆在线播放| 考比视频在线观看| 最近手机中文字幕大全| 婷婷色综合大香蕉| 久久毛片免费看一区二区三区| 国产在视频线精品| 哪个播放器可以免费观看大片| 日韩电影二区| 午夜91福利影院| 香蕉国产在线看| 秋霞伦理黄片| 天天躁日日躁夜夜躁夜夜| 成人黄色视频免费在线看| 人妻 亚洲 视频| 亚洲欧美清纯卡通| 免费在线观看黄色视频的| 国产一卡二卡三卡精品 | 黑丝袜美女国产一区| 亚洲精品中文字幕在线视频| 男女边吃奶边做爰视频| 精品国产露脸久久av麻豆| 女的被弄到高潮叫床怎么办| 国产亚洲最大av| 亚洲欧美一区二区三区黑人| 免费黄网站久久成人精品| 久久热在线av| 亚洲一码二码三码区别大吗| 国产在线一区二区三区精| 国产精品女同一区二区软件| 亚洲av欧美aⅴ国产|