• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation

    2020-11-30 03:22:18ZHONGGuoqiangQUJianzhangWANGHaizhenLIUBenxiuJIAOWencongFANZhenlinMIAOHongliandHEDJAMRachid
    Journal of Ocean University of China 2020年6期

    ZHONG Guoqiang, QU Jianzhang, WANG Haizhen, LIU Benxiu, JIAO Wencong, FAN Zhenlin, MIAO Hongli, and HEDJAM Rachid

    Trace-Norm Regularized Multi-Task Learning for Sea State Bias Estimation

    ZHONG Guoqiang1), *, QU Jianzhang1), WANG Haizhen1), LIU Benxiu1), JIAO Wencong1), FAN Zhenlin1), MIAO Hongli2), and HEDJAM Rachid3)

    1),,266100,2),,266100,3),, P. O. B 36,123,,

    Sea state bias (SSB) is an important component of errors for the radar altimeter measurements of sea surface height (SSH). However, existing SSB estimation methods are almost all based on single-task learning (STL), where one model is built on the data from only one radar altimeter. In this paper, taking account of the data from multiple radar altimeters available, we introduced a multi-task learning method, called trace-norm regularized multi-task learning (TNR-MTL), for SSB estimation. Corresponding to each individual task, TNR-MLT involves only three parameters. Hence, it is easy to implement. More importantly, the convergence of TNR-MLT is theoretically guaranteed. Compared with the commonly used STL models, TNR-MTL can effectively utilize the shared information between data from multiple altimeters. During the training of TNR-MTL, we used the JASON-2 and JASON-3 cycle data to solve two correlated SSB estimation tasks. Then the optimal model was selected to estimate SSB on the JASON-2 and the HY-2 70-71 cycle intersection data. For the JSAON-2 cycle intersection data, the corrected variance () has been reduced by 0.60cm2compared to the geophysical data records (GDR); while for the HY-2 cycle intersection data,has been reduced by 1.30cm2compared to GDR. Therefore, TNR-MTL is proved to be effective for the SSB estimation tasks.

    sea state bias (SSB); radar altimeter; geophysical data records (GDR); trace-norm; multi-task learning

    1 Introduction

    One of the goals of remote sensing is to measure the sea surface height (SSH) using satellite altimeter techno- logy. The SSH measurement is very important for determining and monitoring ocean currents and eddies (Wunschand Stammer, 1998), climate change, wave height and wind speed, and for studies in geodesy and ocean geophysics (Barrick, 1972). Sea level has continued to rise in recent years, mainly due to the melting of polar glaciers and the thermal expansion of upper seawater, which is induced by climate changes. Studies have showed that global sea level has risen by 10 to 20 centimeters over the past 100 years and will accelerate in the future (Dasgupta., 2009). Sea level rising has a significant impact on the so- cio-economy, natural environment and ecosystems inthe coastal areas. First of all, sea level rising may submerge some low-lying coastal areas. Second, it may increase the intensity of storm surges. Frequent of storm surges may not only endanger the lives and property of the people in the coastal areas, but also increase the level of land salini-zation and seawater intrusion. Without intervention, by 2100 most large coastal cities will face sea levels that are more than three feet higher than they are currently (Moore., 2018). Therefore, accurate measurement of the SSH has become more and more important and has received extensive attentions from experts in the areas related to marine sciences.

    The satellite radar altimeter can efficiently measure glo- bal SSH (Wan, 2015), significant wave height (SWH), and wind speed (U). However, since the radius of curvatureof the wave trough is larger than the radius of curvature of the crest, the troughs can reflect more electromagnetic energy, which makes the measured average levels of sea surface generally lower than the true average levels. This effect is named as electromagnetic bias (Ghavidel., 2016). Electromagnetic bias and skewness bias are collectively referred to as the sea state bias (SSB). An illustration of SSB is given in Fig.1. With the development of precise orbit determination technology, SSB has replaced the orbital error and become the first error source for the SSH measurement (Yaplee., 1971; Elfouhaily., 2000; Coleman, 2001). Therefore, the estimation of SSB is very important for the accurate measurement of SSH.

    The SSB estimation methods can be divided into theoretical models and empirical models. Theoretical models are generally not practical because it is difficult to obtain the required parameters (Coleman, 2001). The currently applicable empirical models include parametric models (Chelton, 1994; Gaspar., 1994; Zhou., 2012), non-parametric models (Gaspar and Florens, 1998; Gaspar., 2002; Labroue., 2004), and direct estimation methods (Vandemark., 2002). However, for empirical models, certain errors are always involved. Tran. (2010) pro- posed a method to improve the precision of satellite-de- rived sea-level measurements, which used a non-parametric model,., an enhanced three-dimensional (3D) SSB cor- rection model, to improve the accuracy of SSB estimation. The evaluation over the years on the JASON-1 data showed that the sea level height variance was reduced by 1.26±0.2cm2compared to the previous parametric models. In the paper of Miao. (2016), based on the HY-2 altimeter data, a non-parametric estimation method based on local linear regression was used to estimate the SSB on the 70-71 cycle intersections data, and it was proved that the effect was superior to the existing parametric models. However, the SSB estimation accuracies can be further improved.

    Fig.1 Sea state bias (SSB) induced by waves troughs shadowing when measuring off-nadir at low elevation angles with high amplitude and frequency of waves.

    2 Related Works

    Recently, machine learning has developed rapidly, and been successfully applied in many fields. Particularly, many researchers try to use machine learning algorithms to estimate SSB. Based on the JASON-1 altimetry data, Li. (2013) have studied on a parametric model for SSB estimation, using linear regression to estimate the parameters, and obtained the optimal model. Miao. (2015) estimated SSB by fitting 32 ordinary least square (OLS) mo- dels with SWH and U on the JASON-2 radar altimeter data, and selected the optimal one for other SSB estimation tasks. Zhong. (2018) introduced an effective and efficient linear model called LASSO to the SSB estimation. It used the significant wave height and wind speed to fit the LASSO model.

    However, all of the above methods were based on single task learning (STL) models and did not make use of the data from multiple altimeters for SSB estimation. In many applications, STL models usually solve the confronted tasks independently, but ignore the connection between the tasks. On the contrary, multi-tasking learning (MTL) models can deal with related tasks at the same time by extracting and utilizing the shared information across different tasks. Zhou. (2011) introduced a variety of MTL algorithms, such as Robust Low-Rank MTL, Clustered MTL, and Mean-Regularized MTL methods. Moreover, Bickel. (2008) utilized MTL methods to predict the effect of human immunodeficiency virus (HIV) therapy based on possible combinations of drugs. Even for drug combinations with few or no training examples, MTL models can still perform predictions (Bickel., 2008). Liu. (2019) proposed an MTL method for Alzheimer’s disease diagnosis, which achieved state-of-the-art performance in both tasks of disease classification and clinical score regression. Chen. (2018) used MTL for dangerous object detection in autonomous driving and achieved better object detection abilities and distance prediction performances compared to STL methods. Moreover, Wang. (2018) proposed a novel MTL approach for improving product title compression with user search log data, which outperformed the compared STL methods in both compression qualities and online business values (Wang., 2018). Although MTL methods have been successfully used in many applications, they have rarely been applied in the SSB estimation.

    In the field of sea state bias estimation, data from multiple radar altimeters are available. Taking this into consideration, we introduce an MTL model, which is called trace-norm regularized multi-task learning (TNR-MTL), for the SSB estimation. Compared with traditional STL models, data from multiple radar altimeters are used and multiple correlated tasks are learnt simultaneously by ex- ploiting the shared information across the tasks, which greatly improves the generalization performance of TNR- MTL for SSB estimation.

    In this work, we used the JASON-2 and JASON-3 cycle data to train TNR-MTL models and selected the optimal one, which is called Selected_TNR-MTL (SD_TNR- MTL), for new SSB estimation tasks. As we mentioned above, SSB is mainly composed of the electromagnetic bias and the skewness bias. The former usually depends on the SWH and U, while the latter is relatively much smaller. Hence, most works consider the electromagnetic bias as the main component of SSB and only estimate it instead. Following these previous works, we only estimate the electromagnetic bias as well. We use the SWH and U data to fit the TNR-MTL model, and only 3 parameters were set for each task (corresponding to two inputs and one bias, respectively). This improves the efficiency of TNR-MTL to a certain extent. In this paper, we evaluated the SD_TNR-MTL model for the SSB estimation on the JASON-2, JASON-3 and HY-2 cycle data. The results showed that SD_TNR-MTL obtained more accurate SSB estimation values than those of geophysical data records (GDR), which indicates that the SSB estimated by SD_TNR-MTL facilitates the correct measure-ment of SSH. Therefore, SD_TNR-MTL is feasible and effective for SSB estimation.

    3 Trace-Norm Regularized Multi-Task Learning (TNR-MTL)

    The STL models only learn one task at a time and ignorethe correlation between tasks, while MTL models can learnmultiple correlated tasks simultaneously by extracting and utilizing shared information across tasks. Fig.2 illustrates the difference between STL and MTL models. Fig.2a shows the STL training process, where each task is learnt independently. Fig.2b shows the multi-task learning process, where multiple correlated tasks are learnt simultaneously by sharing important information among the tasks.

    Fig.2 Illustration of training process of STL and MTL methods. (a), In the STL method, each task is learnt independently; (b), In MTL models, multiple correlated tasks are learnt simultaneously by extracting and utilizing shared information across tasks.

    In this paper, in order to improve the effectiveness of the proposed MTL model, we add the trace-norm regularization on the objective function and call the model TNR-MTL. In the following section, the formulation, op- timization and convergence of TNR-MTL method are in- troduced in detail.

    3.1 Problem Formulation

    where>0 is the trade-off parameter. We assume that the gradient of(?), denoted as?(?), is Lipschitz continuous with constant,.,

    3.2 The Optimization Method of TNR-MTL

    The extended gradient algorithm is a kind of gradient descent algorithm that can solve the non-smooth problem based on the subgradient algorithm (Ji and Ye, 2009). Be- cause the objective function of TNR-MTL contains the trace-norm term that is non-smooth, in order to find the local minimum solution of the learning problem, we use the extended gradient algorithm to optimize TNR-MTL. Therefore,can be iteratively learned using the following equation:

    where

    In this case, we can use singular value decomposition (SVD) to solve the minimization problem of Eq. (5) and iteratively optimize the TNR-MTL model.

    3.3 Convergence Analysis

    Theorem. Let {} be the sequence generated by using the extended gradient algorithm for Problem (3). Then for any≥1, we have

    where>1and*=argminF() .

    The proof of this theorem can be referred to that for Theorem 3.2 in Ji and Ye, (2009).

    4 Numerical Experiments

    In the following section, we report the used data sets, measure criterion and the obtained experimental results. As mentioned above, we selected the optimal model from TNR-MTL, which is called SD_TNR-MTL, for SSB estimation on new altimeter data. As a baseline, the SSB value in geophysical data records (GDR) was compared.

    4.1 Measure Criteria

    To evaluate the performance of SD_TNR-MTL for SSB estimation on the intersection data, we used the corrected variance () to measure the effect of SSB estimation. The corrected variance () is defined as

    whereis the size of data, ?stands for the SSH difference between the ascending and descending orbits, and ?stands for the difference of SSB between the ascending and descending orbits.

    4.2 Datasets

    In this experiment, we used the data of three altimeters, including JASON-2, JASON-3 and HY-2. The JASON-2 includes 9 cycles of data and 3 cycles of intersection data. The JASON-3 includes 3 cycles of data, and the HY-2 in- cludes 2 cycles of intersection data,., cycle 70 and 71.

    In details, the JASON-2 includes 3594131 data of 9 cy- cles and 4699 intersection data of 3 cycles. JASON-3 in- cludes 1350966 data of cycle 008, 010 and 015. HY-2 in- cludes 2997 intersection data. We used SWH and U as the inputs and SSB as the output to train the TNR-MTL mo- del for SSB estimation. Independent data were used to test the performance of SD_TNR-MTL.

    According to the requirements of the GDR data (Li., 2013) on the original altimeter data, we added some error correction terms including instrument error, dry and wet tropospheric delay, ionospheric delay, atmospheric inverse pressure, high frequency oscillation, ocean tide, polar tide, solid earth tide and load tide, and moreover, we removed abnormal data which include SWH<0m or SWH>10m, U<0m or U<10ms?1and SSB>0m or SSB

    4.3 Training and Test of TNR-MTL

    We used the JASON-2 and JASON-3 cycle data to train TNR-MTL and selected the optimal model, which is called SD_TNR-MTL, to estimate SSB on the JASON-2 cycle intersection data and the HY-2 70-71 cycle intersection data. In the experiment, we set=10?5. As shown in Fig.3, in TNR-MTL, two tasks were learnt simultaneously by extracting and utilizing appropriate shared information across the tasks. So that TNR-MTL model can be trained for two tasks at the same time, and can take the correlation between the two tasks into account during training, in contrast to the STL models that are trained for each task separately. Therefore, multi-task learning effectively enhances the generalization ability of TNR-MTL.

    Fig.3 Schematic diagram of the TNR-MTL method for SSB estimation. JASON-2 and JASON-3 cycle data are input- ted to train the model simultaneously by sharing information between the combined tasks.

    We trained TNR-MTL on the JASON-2 and JASON-3 cycle data, and tested it on the JASON-2 cycle intersection data. The probability density of difference value ?=TNR-MTL?GDRis shown in Fig.4 and most of them are nearly zero. From the diagram of Fig.5, we can see that the estimated SSB by the SD_TNR-MTL model is linearly correlated with the SSB of GDR. Furthermore, the training time of the SD_TNR-MTL is only 37.78s and the test time is only 2.6s. Therefore, TNR-MTL is effective and efficient for the SSB estimation tasks.

    Fig.4 The probability density of the difference values between the estimated SSB and the value in the GDR data.

    Fig.5 Scatter plot of SSBSD_TNR-MTLvs. SSBGDR. Their relationship is accurately fitted by the linear function.

    In order to compare the results of SD_TNR-MTL and GDR further, we calculate the correlation between SWH and SSB, and between U and SSB, recorded in the GDR and estimated by the SD_TNR-MTL model, respectively. The establishment of the model is based on the basic assumption that SSB is related to SWH and U. Therefore, the larger the fit coefficients between SSB and SWH or U are, the smaller the residual is, indicating that the model is more effective. The fitting results of SD_TNR-MTL and GDR with respect to SWH and U are shown in Fig.6.

    Fig.6 Scatter plot of SSB vs. SWH and U, respectively. (a), The scatter plot of SSB of GDR vs. SWH; (b), The scatter plot of SSB of GDR vs. U; (c), The scatter plot of SSB of SD_TNR-MTL vs. SWH; (d), The scatter plot of SSB of SD_ TNR-MTL vs. U.

    The fitting coefficients of SSB and SWH for the GDR data is 0.8899, while the fitting coefficients of SSB and SWH for SD_TNR-MTL is 0.9939. The fitting coefficients of SSB and U for the GDR data is 0.4325, while the fitting coefficients of SSB and U for SD_TNR-MTL is 0.4539. Hence, it is easy to see that the fitting results for SD_TNR-MTL are better than that for GDR.

    4.4 Results on the Cycle Intersection Data

    To better demonstrate the effectiveness of the SD_TNR-MTL model, we applied the SD_TNR-MTL to the JASON- 2 cycle intersection data and the HY-2 70-71 cycle intersection data. The experimental results are shown in Table 1. As we can see, for the JASON-2 cycle intersection data, the(noted1) values of SD_TNR-MTL and GDR are 76.64cm2and 77.24cm2respectively. For the HY-2 70-71 cycle intersection data, we can see that the(noted2) value of GDR is 145.27cm2, while that of SD_TNR-MTL is 143.97cm2. Obviously, thevalue of SD_TNR-MTL is smaller than that of GDR. It indicates that the SSB estimated by SD_TNR-MTL is more accurate than that of the GDR data.

    Through all the experiments above, it can be seen that thevalue of SD_TNR-MTL is consistently better than that of GDR, which demonstrates the effectiveness of SD_TNR-MTL for SSB estimation. In addition, in these experiments, since our model has only three parameters, the training of the TNR-MTL is much faster. Therefore, TNR-MTL is not only effective but also efficient for SSB estimation tasks.

    Table 1 Results on the JASON-2 cycle intersection data and the HY-2 70-71 cycle intersection data

    Notes:1 represents the corrected variance of SD_TNR-MTL on the JASON-2 cycle intersection data;2 represents the result of SD_TNR-MTL on the HY-2 70-71 cycle intersection data.

    5 Conclusions

    In this paper, we introduced an effective and efficient multi-task learning method called TNR-MTL for SSB es- timation. For each individual task, only three parameters (corresponding to the two inputs and one bias, respec- tively) were involved in TNR-MTL. More importantly, the convergence of TNR-MLT is theoretically guaranteed. Compared with the commonly used single task learning models, TNR-MTL can use the correlations between the combined tasks. In this paper, we have trained TNR-MTL with the JASON-2 and JASON-3 cycle data simultaneously and selected the optimal model that is called SD_ TNR-MTL to estimate the SSB on the JASON-2 cycle intersection data and the HY-2 70-71 cycle intersection data. Particularly, when SSB is estimated on the JSAON- 2 cycle intersection data, the corrected variance () has been reduced by 0.60cm2compared to GDR, andhas been reduced by 1.30cm2compared to GDR for the HY-2 cycle intersection data. Therefore, TNR-MTL is proved to be very efficient for SSB estimation and generally delivers more accurate results than GDR.

    Acknowledgements

    This work was supported by the Major Project for New Generation of AI (No. 2018AAA0100400), the National Natural Science Foundation of China (No. 41706010), the Joint Fund of the Equipments Pre-Research and Ministry of Education of China (No. 6141A020337), and the Fundamental Research Funds for the Central Universities of China.

    Barrick, D., 1972. Remote sensing of sea state by radar.–. Newport, USA, 186-192.

    Bickel, S., Bogojeska, J., and Lengauer, T., 2008. Multi-tasklearning for HIV therapy screening.. Helsinki, Fin- land, 56-63.

    Chelton, D. B., 1994. The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data., 99 (C12): 24995-25008.

    Chen, Y. R., Zhao, D. B., and Zhang, Q. C., 2018. Multi-task learning for dangerous object detection in autonomous driving., 432: 559-571.

    Coleman, R., 2001. Satellite altimetry and earth sciences: A hand- book of techniques and applications., 82 (34): 376-376.

    Dasgupta, S., Laplante, B., and Murray, S., 2009. Climate change and the future impacts of storm-surge disasters in developing countries.. Washington, D. C., USA, 1-28.

    Elfouhaily, T., Thompson, D., and Chapron, B., 2000. Improved electromagnetic bias theory: Inclusion of hydrodynamic mo- dulations., 105 (C1): 1299-1310.

    Gaspar, P., and Florens, J., 1998. Estimation of the sea state bias in radar altimeter mea-surements of sea level: Results from a new nonparametric method., 103 (C8): 15803-15814.

    Gaspar, P., Labroue, S., and Ogor, F., 2002. Improving nonpa- rametric estimates of the sea state bias in radar altimeter measurements of sea level., 19 (10): 1690-1707.

    Gaspar, P., Ogor, F., and Traon, P., 1994. Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences., 99 (C12): 24981-24994.

    Ghavidel, A., Schiavulli, D., and Camps, A., 2016. Numerical computation of the electromagnetic bias in GNSS-R altimetry., 54 (1): 489-498.

    Ji, S., and Ye, J., 2009. An accelerated gradient method for trace norm minimization.. Montreal, Canada, 457-464.

    Labroue, S., Gaspar, P., Dorandeu, J., and Zanife, O., 2004. Non- parametric estimates of the sea state bias for the Jason-1 radar altimeter., 27 (3-4): 453-481.

    Li, S., Wang, Y., Miao, H., Zhou, X., and Zhang, J., 2013. A pa- rametric model of estimating sea state bias based on Jason-1 altimetry., 37 (2): 181-185.

    Liu, M. X., Zhang, J., and Shen, D. G., 2019. Joint classification and regressiondeep multi-task multi-channel learning for Alzheimer’s disease diagnosis., 66: 1195-1206.

    Miao, H., Wang, X., Wang, G., Zhang, G., and Zhang, J., 2015. Study on the improved sea state bias parametric estimation model., 45 (12): 119- 124.

    Miao, H., Zhang, G., Wang, G., Guo, Y., Jing, Y., and Zhang, J., 2016. Study on nonparametric estimations model of the sea state bias for the HY-2 altimeter., 31 (6): 1031-1036.

    Moore, J., Gladstone, R., Zwinger, T., and Wolovick, M., 2018. Geoengineer polar glaciers to slow sea-level rise., 555 (7696): 303-305.

    Pong, T. K., Ji, S., and Ye, J., 2010. Trace norm regularization: Reformulations, algorithms, and multi-task learning., 20 (6): 3465-3489.

    Srebro, N., and Shraibman, A., 2005. Rank, trace-norm and max- norm.. Bertinoro, Italy, 545-560.

    Tran, N., Vandemark, D., Labroue, S., Feng, H., Chapron, B., Tolman, H., Lambin, J., and Picot, N., 2010. Sea state bias in altimeter sea level estimates determined by combining wave model and satellite data., 115 (C3): C03020.

    Vandemark, D., Tran, N., Beckley, B., Chapron, B., and Gaspar, P., 2002. Direct estimation of sea state impacts on radar altimeter sea level measurements., 29 (24): 1-1-1-4.

    Wan, J., 2015. Study on HY-2 altimeter system delay in-orbit absolute calibration using reconstructive transponder. PhD thesis. National Space Science Center, Chinese Academy of Sciences, Beijing.

    Wang, J. A., Tian, J. F., and Li, S., 2018. A multi-task learning approach for improving product title compression with user search log data.. New Orleans, USA, 451-458.

    Wunsch, C., and Stammer, D., 1998. Satellite altimetry, the marine geoid, and the oceanic general circulation., 26 (1): 219-253.

    Yaplee, B., Shapiro, A., Hammond, D., Au, B., and Uliana, E., 1971. Nanosecond radar observations of the ocean surface from a stable platform., 9 (3): 170-174.

    Zhong, G., Liu, B., Guo, Y., and Miao, H., 2018. Sea state bias estimation with least absolute shrinkage and selection operator (LASSO)., 17 (5): 1019-1025.

    Zhou, J., Chen, J., and Ye, J., 2011. MALSAR: Multi-task learningstructural regularization. Version 1.1. Arizona State University, Phoenix, USA, 1-50.

    Zhou, X., Miao, H., Wang, Y., Fan, C., Cui, Y., and Zhang, J., 2012. Study on the determination of crossovers by piecewise fitting of satellite ground track., 41 (6): 811-815.

    . Tel: 0086-532-66781719

    E-mail: gqzhong@ouc.edu.cn

    June 21, 2019;

    January 30, 2020;

    March 30, 2020

    (Edited by Chen Wenwen)

    国产精品成人在线| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 纵有疾风起免费观看全集完整版| 只有这里有精品99| 一级片免费观看大全| 久久亚洲国产成人精品v| 国产乱人偷精品视频| 18禁动态无遮挡网站| 久久久久久久亚洲中文字幕| av线在线观看网站| 欧美97在线视频| 色94色欧美一区二区| 天天操日日干夜夜撸| 国产一区二区在线观看av| 亚洲av成人精品一二三区| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 一二三四在线观看免费中文在 | 免费看不卡的av| 亚洲精品美女久久av网站| 制服丝袜香蕉在线| 熟女av电影| 美女脱内裤让男人舔精品视频| a级毛片在线看网站| 亚洲精品自拍成人| 男女边摸边吃奶| 欧美激情极品国产一区二区三区 | 天堂8中文在线网| 亚洲国产最新在线播放| 日日爽夜夜爽网站| 成年人午夜在线观看视频| 另类精品久久| 国产日韩欧美在线精品| 亚洲久久久国产精品| 欧美激情 高清一区二区三区| 免费看光身美女| 九草在线视频观看| 精品国产露脸久久av麻豆| 制服丝袜香蕉在线| 欧美日韩视频精品一区| 亚洲国产精品专区欧美| 精品久久国产蜜桃| 精品第一国产精品| 国产免费一区二区三区四区乱码| 午夜老司机福利剧场| 一本大道久久a久久精品| 秋霞在线观看毛片| 精品99又大又爽又粗少妇毛片| 亚洲国产看品久久| 成年人免费黄色播放视频| www.av在线官网国产| 亚洲人成77777在线视频| 国产成人精品福利久久| 国产欧美亚洲国产| 欧美人与善性xxx| 赤兔流量卡办理| 久久久久久久久久久免费av| 香蕉丝袜av| 久久99精品国语久久久| 日韩伦理黄色片| 啦啦啦在线观看免费高清www| 青春草亚洲视频在线观看| 国产1区2区3区精品| 国内精品宾馆在线| 国产精品久久久久久精品古装| 高清在线视频一区二区三区| 国产av一区二区精品久久| 捣出白浆h1v1| 人成视频在线观看免费观看| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 一级毛片我不卡| 极品少妇高潮喷水抽搐| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 欧美xxxx性猛交bbbb| 另类亚洲欧美激情| 日本午夜av视频| 日日摸夜夜添夜夜爱| 自线自在国产av| 99精国产麻豆久久婷婷| 777米奇影视久久| 精品一区二区三区视频在线| 熟女av电影| 超色免费av| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 香蕉丝袜av| 国产成人精品婷婷| 天堂俺去俺来也www色官网| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久久电影| 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 国产又色又爽无遮挡免| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看 | 国产日韩欧美亚洲二区| 22中文网久久字幕| 搡老乐熟女国产| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| 国产成人91sexporn| 午夜福利影视在线免费观看| 久热这里只有精品99| 18在线观看网站| av天堂久久9| 超碰97精品在线观看| 免费大片黄手机在线观看| 亚洲欧洲国产日韩| av不卡在线播放| 青春草视频在线免费观看| 天天躁夜夜躁狠狠久久av| 欧美精品av麻豆av| 中文字幕亚洲精品专区| 色网站视频免费| 啦啦啦在线观看免费高清www| 亚洲欧美日韩另类电影网站| 国产成人精品在线电影| 亚洲欧洲日产国产| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 有码 亚洲区| 秋霞在线观看毛片| 国产欧美亚洲国产| 国产男女内射视频| 黄网站色视频无遮挡免费观看| 看免费成人av毛片| 少妇的逼好多水| 少妇熟女欧美另类| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 三级国产精品片| 尾随美女入室| 成人国语在线视频| 秋霞在线观看毛片| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 97精品久久久久久久久久精品| 欧美激情国产日韩精品一区| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 国产精品.久久久| 99久久中文字幕三级久久日本| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 久久久久久伊人网av| 亚洲欧美中文字幕日韩二区| 久久av网站| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 久久久久久久国产电影| 美女大奶头黄色视频| 观看美女的网站| 丝瓜视频免费看黄片| 亚洲国产精品一区二区三区在线| 免费观看性生交大片5| 男女午夜视频在线观看 | 国产一级毛片在线| 99视频精品全部免费 在线| 一边亲一边摸免费视频| 久久久久久人人人人人| 成人毛片a级毛片在线播放| 亚洲情色 制服丝袜| 亚洲图色成人| a级毛片在线看网站| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| 亚洲色图 男人天堂 中文字幕 | 久久精品国产亚洲av涩爱| www.色视频.com| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 各种免费的搞黄视频| 黄网站色视频无遮挡免费观看| 波野结衣二区三区在线| 中国国产av一级| 欧美成人午夜免费资源| 国产精品偷伦视频观看了| 久久精品国产综合久久久 | 欧美性感艳星| 国产色婷婷99| 搡女人真爽免费视频火全软件| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 一边亲一边摸免费视频| av黄色大香蕉| av在线观看视频网站免费| 18禁在线无遮挡免费观看视频| 美女中出高潮动态图| 制服诱惑二区| 亚洲国产精品成人久久小说| 色94色欧美一区二区| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美日韩在线播放| 22中文网久久字幕| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 国产成人精品婷婷| av黄色大香蕉| 中文字幕人妻熟女乱码| 少妇 在线观看| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久 | 国产成人免费无遮挡视频| 免费人成在线观看视频色| 国产熟女午夜一区二区三区| 精品国产国语对白av| av视频免费观看在线观看| 一区二区av电影网| 久久99热6这里只有精品| 国产高清不卡午夜福利| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 久久这里只有精品19| 一级黄片播放器| 欧美最新免费一区二区三区| av一本久久久久| 亚洲伊人色综图| 18在线观看网站| 亚洲精品国产av成人精品| 赤兔流量卡办理| av片东京热男人的天堂| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 国产免费一区二区三区四区乱码| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 日本91视频免费播放| 午夜av观看不卡| www日本在线高清视频| 免费看光身美女| 精品久久国产蜜桃| 亚洲第一av免费看| 草草在线视频免费看| 三级国产精品片| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 女性被躁到高潮视频| 国产欧美亚洲国产| 天堂8中文在线网| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 黄色配什么色好看| 成人漫画全彩无遮挡| 欧美精品高潮呻吟av久久| 日本色播在线视频| 少妇 在线观看| 狠狠婷婷综合久久久久久88av| 国产精品女同一区二区软件| 久热这里只有精品99| 一级毛片 在线播放| 久热久热在线精品观看| 超色免费av| 在线 av 中文字幕| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 亚洲内射少妇av| videos熟女内射| 国产熟女午夜一区二区三区| 欧美3d第一页| 只有这里有精品99| 99热全是精品| 国产福利在线免费观看视频| 99久久综合免费| 国产伦理片在线播放av一区| 中文字幕最新亚洲高清| 欧美变态另类bdsm刘玥| 国产激情久久老熟女| 久久精品国产a三级三级三级| 街头女战士在线观看网站| 美女国产高潮福利片在线看| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 久久久久久久久久久免费av| 黄色毛片三级朝国网站| www.av在线官网国产| 亚洲国产精品一区三区| 蜜桃在线观看..| 五月玫瑰六月丁香| 午夜福利视频在线观看免费| 亚洲综合色惰| 老熟女久久久| 亚洲欧美成人综合另类久久久| 性色av一级| 22中文网久久字幕| 97人妻天天添夜夜摸| 永久网站在线| 欧美国产精品va在线观看不卡| 成人亚洲欧美一区二区av| 亚洲欧美日韩卡通动漫| 成年人免费黄色播放视频| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区 | 久久精品久久精品一区二区三区| 亚洲久久久国产精品| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av天美| 男人操女人黄网站| 久热久热在线精品观看| 美女主播在线视频| 女人被躁到高潮嗷嗷叫费观| 看非洲黑人一级黄片| 另类精品久久| 成人黄色视频免费在线看| 青春草国产在线视频| 22中文网久久字幕| 97精品久久久久久久久久精品| 永久免费av网站大全| 中文字幕精品免费在线观看视频 | 水蜜桃什么品种好| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 黄片播放在线免费| 99国产精品免费福利视频| 欧美性感艳星| 91精品三级在线观看| 在线观看国产h片| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 人妻一区二区av| 久久久久人妻精品一区果冻| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 少妇被粗大的猛进出69影院 | 一个人免费看片子| 日韩三级伦理在线观看| 涩涩av久久男人的天堂| 久久久久视频综合| 日韩视频在线欧美| 一边亲一边摸免费视频| 考比视频在线观看| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 波多野结衣一区麻豆| 一本大道久久a久久精品| 国产成人精品一,二区| 视频在线观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 久久久久久久久久久免费av| 777米奇影视久久| 中文字幕制服av| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 午夜福利乱码中文字幕| 亚洲美女视频黄频| 秋霞在线观看毛片| 色网站视频免费| 在线观看美女被高潮喷水网站| 国产精品久久久av美女十八| 国产精品一国产av| 欧美 亚洲 国产 日韩一| 黄色配什么色好看| 一级毛片电影观看| av黄色大香蕉| 午夜av观看不卡| 曰老女人黄片| 黄色一级大片看看| 狂野欧美激情性xxxx在线观看| 亚洲欧美色中文字幕在线| 日韩精品有码人妻一区| 在线观看人妻少妇| 91国产中文字幕| 狂野欧美激情性xxxx在线观看| 满18在线观看网站| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 国产1区2区3区精品| 亚洲人成网站在线观看播放| 亚洲国产精品专区欧美| 久久久久精品性色| 亚洲,欧美,日韩| 中文欧美无线码| 日日摸夜夜添夜夜爱| 国产色爽女视频免费观看| 女性生殖器流出的白浆| 亚洲国产欧美在线一区| 中文字幕制服av| 1024视频免费在线观看| 亚洲欧美清纯卡通| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 国产成人精品一,二区| 国产欧美日韩综合在线一区二区| 久久精品夜色国产| 亚洲第一区二区三区不卡| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| 三上悠亚av全集在线观看| freevideosex欧美| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 大码成人一级视频| 精品人妻一区二区三区麻豆| 大片电影免费在线观看免费| 日韩在线高清观看一区二区三区| 中文字幕av电影在线播放| 国产高清不卡午夜福利| av女优亚洲男人天堂| 亚洲av国产av综合av卡| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 久热这里只有精品99| 精品第一国产精品| 色94色欧美一区二区| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 亚洲av综合色区一区| 亚洲欧美成人综合另类久久久| 日本91视频免费播放| 国产精品免费大片| 国产不卡av网站在线观看| 视频中文字幕在线观看| 色网站视频免费| 成年人午夜在线观看视频| 这个男人来自地球电影免费观看 | 伦理电影免费视频| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 国产国语露脸激情在线看| 久久久a久久爽久久v久久| 日本猛色少妇xxxxx猛交久久| 国产伦理片在线播放av一区| 99久久综合免费| 最近最新中文字幕大全免费视频 | 黑人高潮一二区| 夜夜爽夜夜爽视频| 久久人人爽av亚洲精品天堂| videosex国产| 成年人午夜在线观看视频| 欧美日韩成人在线一区二区| 国产爽快片一区二区三区| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院 | 免费看不卡的av| 久久97久久精品| 日本免费在线观看一区| 久久久久国产精品人妻一区二区| 欧美日韩精品成人综合77777| 日本91视频免费播放| 欧美少妇被猛烈插入视频| 日本黄色日本黄色录像| 大香蕉97超碰在线| av播播在线观看一区| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 国产精品久久久久久av不卡| 男的添女的下面高潮视频| 国产精品久久久久久精品古装| 美女国产视频在线观看| 精品人妻在线不人妻| av国产精品久久久久影院| 九九在线视频观看精品| 最近的中文字幕免费完整| 欧美bdsm另类| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 最近中文字幕2019免费版| 欧美xxxx性猛交bbbb| 久久精品国产自在天天线| 巨乳人妻的诱惑在线观看| 成人18禁高潮啪啪吃奶动态图| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| av.在线天堂| 99热这里只有是精品在线观看| 极品人妻少妇av视频| 80岁老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 人成视频在线观看免费观看| 亚洲国产成人一精品久久久| 亚洲综合色网址| 在线精品无人区一区二区三| 春色校园在线视频观看| 大香蕉久久成人网| 午夜福利视频在线观看免费| 9色porny在线观看| 最近中文字幕2019免费版| 99热6这里只有精品| 国产麻豆69| h视频一区二区三区| 免费观看无遮挡的男女| av网站免费在线观看视频| 中文字幕亚洲精品专区| 国产精品免费大片| 久久久国产精品麻豆| 国产成人aa在线观看| 国产极品粉嫩免费观看在线| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生| 精品熟女少妇av免费看| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 18禁国产床啪视频网站| 午夜老司机福利剧场| 免费高清在线观看视频在线观看| av在线app专区| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 99热这里只有是精品在线观看| 一级毛片 在线播放| 亚洲国产精品999| 人妻人人澡人人爽人人| 两性夫妻黄色片 | 草草在线视频免费看| 考比视频在线观看| 99九九在线精品视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人 | 女性生殖器流出的白浆| 一二三四在线观看免费中文在 | 国产精品久久久久久久久免| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 97精品久久久久久久久久精品| 亚洲国产av影院在线观看| 久久久欧美国产精品| 国语对白做爰xxxⅹ性视频网站| 免费人妻精品一区二区三区视频| 丝袜喷水一区| 午夜免费鲁丝| 男女下面插进去视频免费观看 | 一边亲一边摸免费视频| 看十八女毛片水多多多| 一级黄片播放器| 一本—道久久a久久精品蜜桃钙片| 99re6热这里在线精品视频| 老司机亚洲免费影院| 日韩伦理黄色片| 少妇被粗大的猛进出69影院 | 黄色一级大片看看| 日韩 亚洲 欧美在线| 精品一区二区免费观看| a级片在线免费高清观看视频| 一本久久精品| 日本午夜av视频| 久久久精品免费免费高清| 日韩欧美精品免费久久| 亚洲色图 男人天堂 中文字幕 | 日韩大片免费观看网站| 亚洲精品美女久久av网站| 熟女人妻精品中文字幕| 少妇人妻久久综合中文| 免费在线观看完整版高清| 老司机亚洲免费影院| 成人国产麻豆网| 中国美白少妇内射xxxbb| 免费日韩欧美在线观看| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久噜噜老黄| 免费看不卡的av| 亚洲四区av| 成人国产麻豆网| 久久av网站| 曰老女人黄片| 久久久久久伊人网av| 国产又爽黄色视频| 欧美性感艳星| 久久国产精品大桥未久av| 曰老女人黄片| 国产永久视频网站| 久热久热在线精品观看| 国产一区二区在线观看av| 精品一区二区三卡| 男女边吃奶边做爰视频| 日韩成人伦理影院| 卡戴珊不雅视频在线播放| av.在线天堂| 下体分泌物呈黄色|