• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An active temperature compensated fiber Bragg grating vibration sensor for high-temperature application

    2020-11-25 08:27:14CHENBaojieJIAPinggangQIANJiangFENGFeiHONGYingpingLIUWenyiXIONGJijun

    CHEN Bao-jie,JIA Ping-gang,QIAN Jiang,F(xiàn)ENG Fei,HONG Ying-ping,LIU Wen-yi,XIONG Ji-jun

    (1. Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China),Ministry of Education,Taiyuan 030051,China;2. Science and Technology on Electronic Test & Measurement Laboratory, North University of China,Taiyuan 030051,China)

    Abstract: An active temperature compensated fiber Bragg grating (FBG) vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration, and the sensor is verified by a temperature compensation feedback system. The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating. The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration. On this basis, the performance of the sensor is tested and analyzed within the range of 20-400 ℃ by setting up a high-temperature vibration test system. The experimental results show that the sensitivity of the sensor is about 132.33 mV/g, and the nonlinearity is about 3.33%. The sensitivity between the laser wavelength and temperature is about 0.013 07 nm/℃. In addition, the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure, stable performance, easy demodulation and high sensitivity. Moreover, the sensor can achieve high temperature vibration signal monitoring and has good practical application value.

    Key words: fiber Bragg grating (FBG); vibration sensor; active temperature compensation; cantilever beam; feedback control

    0 Introduction

    Measurement of vibrations in harsh environments is of great significance for the monitoring of parameters such as bridge construction, oil well extraction, biomedicine, power industry, aircraft engines and so on[1-4]. At present, high-temperature vibration sensors commonly used in engineering applications mainly include magnetoelectric vibration sensors, piezoresistive vibration sensors, capacitive vibration sensors, piezoelectric vibration sensors and optical vibration sensors[5-9]. Compared with the traditional electrical vibration sensor, the optical sensors have the characteristics of small volume, light weight and good anti electromagnetic interference ability, which is especially suitable for the measurement of physical quantities in a strong magnetic field or during exposure to radiation, corrosion, high temperatures and other environments[10-12]. Because fiber has many advantages in sensing, the sensing technology of the fiber Bragg grating (FBG) has also been researched and developed.

    FBG vibration sensors mainly include the simple beam FBG vibration sensor, the non-contact FBG vibration sensor and the equal strength beam FBG high/low frequency vibration sensor[13-15]. Because it has advantages of small size, embeddability, multi-point distributed measurement, reusability and so on, it has attracted significant attention in many industries.

    In recent years, there has been some research and exploration on fiber grating vibration sensors. Casas-Ramos et al developed a cantilever beam FBG vibration sensor based on the axial property of the FBG with a sensitivity of 339 pm/g[16]. Satoshi et al designed a fiber-optic mechanical vibration sensor that uses a land piezoelectric geophone (LPG) as a sensing element, which has a dynamic response range of 90 dB[17]. Zhang et al designed a new type of special structure vibration sensor based on the FBG with a measurement range of 0 Hz-100 Hz[18]. Khan et al studied a FBG accelerometer based on L-shaped cantilever, with a sensitivity of 306 pm/g under 150 Hz frequency[19]. However, the FBG vibration sensors studied currently cannot meet the test requirements in a high-temperature environment, and FBG sensors will have a temperature coupling phenomenon in high-temperature environments, which reduces their measurement accuracy[20-21].

    Based on these factors, a high-temperature resistant vibration sensor which uses quartz as a cantilever beam and the femtosecond Bragg grating as a sensing element is proposed in this paper. We adopt a demodulation method for the active feedback control system which can adjust the laser wavelength to stabilize the grating offset point to test the performance of the high-temperature fiber grating vibration sensor. Moreover, a proportional-integral-derivative (PID) feedback control system is used to control the laser wavelength in real time, which can not only demodulate the vibration signal, but also eliminate the influence of temperature on the grating drift[22-23]. The performance of the sensor is tested and analyzed within the range of 20 ℃-400 ℃ by setting up a high-temperature vibration test system.

    1 Sensing principle

    The structure of the active temperature compensated FBG vibration sensor is shown in Fig.1.

    Fig.1 Schematic diagram of vibration sensor

    The femtosecond FBG is bonded to a full quartz constant section cantilever beam (length: 20 mm, width: 5 mm, thickness: 0.2 mm) with a quartz mass (length: 5 mm, width: 5 mm, thickness: 1 mm) on the surface of the free end. At the other end of the constant section, the quartz cantilever beam integrated with the mass at the free end is fixed to the Hastelloy base to form a mass-spring-damper system. The length of the femtosecond FBG is 3 mm. When the FBG is excited by the acceleration in the vertical direction of the cantilever beam, the mass generates relative movement under the action of the inertial force, so that the reflection spectrum signal of the femtosecond FBG changes accordingly. The constant section cantilever beam structure is analyzed and the periodic variation in the intensity of the grating’s spectral signal is obtained, allowing the measurement of the vibration signal.

    In a constant section cantilever structure, when the cantilever with fiber grating is excited by the acceleration along the vertical direction of the cantilever, the structure of the sensor can be simplified as a single degree of freedom forced vibration system. If the influence of the volume of the mass on the deflection of the cantilever beam is ignored, the strain on the surface of the constant section cantilever beam with mass at the free end can be expressed as

    (1)

    whereEis the elastic modulus;Fis the force on the inertial mass;xis the distance from any point on the cantilever to the fixed end;L,bandhare the length, width, and thickness of the constant section cantilever beam, respectively.

    When the external physical quantity acts on the fiber grating, the center wavelength of the grating drifts, which can be expressed as

    (2)

    whereneffis the effective refractive index of the fiber core,Λis the period of the fiber grating,Peis the effective elastic coefficient of the fiber grating,εxis the strain at any point on the cantilever, andλBis the center wavelength of the fiber grating.

    Therefore, the change in the center wavelength of the Bragg grating at any point on the cantilever can be expressed as

    (3)

    According to Newton's second law, Eq.(3) can be expressed as

    (4)

    wheremis the equivalent mass of the mass-spring-damper system. From Eq.(4), it can be seen that acceleration is linear related to the wavelength change of the fiber grating.

    When the fiber grating is subjected to temperature change, the drift of the central wavelength of the FBG can be expressed as[24]

    (5)

    where ΔλBis the change in the center wavelength of the fiber grating, Δneffis the change in the refractive index of the core, ΔΛis the change in the period of the fiber grating grid, and ΔTis the change in temperature. Therefore, the fiber grating can be calibrated before the experimental test, and then the sensitivity of the central wavelength with temperature can be obtained based on Eq.(4), so that the influence of temperature on the fiber grating can be detected. The active feedback system and PID control can be used to stabilize the offset point of the FBG to compensate for the temperature.

    The principle diagram of grating intensity demodulation is shown in Fig.2.

    Fig.2 Demodulation schematic

    Due to the small change in the grating caused by acceleration, it can be regarded as a linear change of light intensity in a small wavelength range; that is, FBG is subject to uniform strain. Then, the wavelength bar of the tunable laser is adjusted to the offset point of the FBG, that is, the position of the wavelength (λ0) corresponding to point Q in the linear part of the reflection spectrum. When the vibration signal causes the reflection spectrum to shift, the reflected light intensity changes accordingly, and vibration information is obtained by detecting the change in light intensity. Considering that the intensity between the reflection spectra A and B is linear, and the slope at the wavelength (λ0) position at point Q isk, then the spectral shift is Δλunder the acceleration. At the same time, the change in reflected light intensity is

    ΔI=kΔλ.

    (6)

    The corresponding light intensity signal is converted into a voltage output signal through a photodetector (Model 2053, New Focus, San Jose, CA, America), that is, the output voltage change is

    ΔV=DηΔI,

    (7)

    whereDis the product of the photodetector wavelength influence factor and the magnification factorηis the attenuation coefficient of light in the system.

    From Eqs.(3), (6), (7) and Newton’s second law, the output voltage change is given as

    (8)

    2 System construction and experimental test

    A schematic diagram of the active temperature compensated FBG vibration sensor test system based on the constant section cantilever beam is shown in Fig.3. A high-temperature experimental device was set up to calibrate and test the FBG vibration sensor in real time. This experimental setup consisted of a ThermConcept (GSL-1100X-S, HF kejing, Hefei, China), a sensing and demodulation system, and a vibration calibration system. In the vibration calibration system, the signal generator and power amplifier controlled the vibration exciter (TV 50101, Tira, Thuringen, Germany) to apply the required vibration signal to the sensor. The high-temperature ThermConcept was fixed vertically above the vibration exciter, providing a high-temperature working environment for the sensor. In the sensing and demodulation system, when the tunable laser (GM82009, Guilin GM Technology Industry Ltd, Guilin, China) light source emitted a beam, it passed through the coupler (1310/1550-SSC) to the sensor and demodulation system. The FBG vibration sensor with Hastelloy base was fixed to the top of the quartz rod, and together put into the ThermConcept. The quartz rod was connected to the vibration exciter. Another path of light was reflected back through the photodetector and the feedback system to demodulate the vibration signal. Afterwards, the data passed through the data acquisition technology (USB2833, Beijing ART Technology, Beijing, China) and the PID feedback control module was established based on Labview software on the host computer to control the laser wavelength automatically. Continuous tracking deviation of the center wavelength stabilized the grating offset point and the use of a photodetector obtained the change in light intensity in the liner region. Thus real-time monitoring of temperature and vibration signals was finally achieved.

    Fig.3 High-temperature FBG vibration sensor test system

    2.1 Temperature experiment and test results

    In order to analyze the influence of temperature on the FBG, the temperature drift of the FBG was tested under static conditions. At the beginning of the experiment, the obtained initial central wavelength of the FBG sensor was 1 549.905 nm by an optical analyzer (Micron Optics Inc., SM125, America) at 20 ℃, and then the temperature was increased from 20 ℃ to 400 ℃ with an increment of 100 ℃ by using a ThermConcept. Each temperature was maintained for 10 min, and we tested the corresponding spectrum signals after the temperature stabilized. Then, the central wavelength of the fiber grating was analyzed and demodulated by Micron Optics Inc. (MOI) under static conditions, and the change value of the central wavelength was recorded at 20 ℃, 100 ℃, 200 ℃, 300 ℃ and 400 ℃, respectively. Fig.4(a) shows the optical spectrogram of the sensing fiber grating at different temperatures measured by the optical analyzer. It can be seen that the spectral signal of FBG demonstrates a shift phenomenon with a rise in temperature, that is, it moves in the long wavelength direction. Fig.4(b) shows the change in the central wavelength of the fiber grating with temperature. Through fitting, we found that the temperature drift coefficient is 0.013 05 nm/℃, and the correlation coefficientR2is 0.993 46.

    (a) Spectral diagram of FBG changes with temperature

    (b) Relationship of FBG central wavelength changes with temperature

    In order to eliminate the influence of temperature drift, as the temperature of the sensor increased in the high-temperature vibration experiment, the laser wavelength was controlled by PID feedback to stabilize the offset point of the grating, thereby achieving the effect of temperature compensation for the sensor. When the laser was working normally, we obtained the relationship between the working wavelength of the laser and the temperature at 20 ℃, 100 ℃, 200 ℃, 300 ℃ and 400 ℃, respectively. As shown in Fig.5, after feedback control, the laser wavelength and temperature demonstrate a linear relationship. The linear relationship has anR2value of 0.999 14, and the temperature sensitivity of the sensor is 0.013 07 nm/℃.

    Fig.5 Relationship between sensor temperature and laser wavelength controlled by PID feedback

    2.2 Vibration experiment and results

    In the vibration experiment test, the sensor was heated from 20 ℃ to 400 ℃ with an increment of 100 ℃ by a high-temperature ThermConcept, and the vibration signals were tested at different vibration accelerations from 0 g to 8 g. We tested vibration signal of the sensor at a frequency of 100 Hz and a acceleration of 5 g. The output signal and frequency response of the sensor are shown in Fig.6.

    (a) Waveform graph of output voltage over time

    (b) Fast Fourier transform spectrum of waveform

    It can be seen from Fig.6(a) that the sensor can output a stable sinusoidal vibration signal at 100 Hz. According to the peak-peak voltage value of the waveform, the voltage sensitivity of the system is about 132.33 mV/g. It can be seen from Fig.6(b) that the sensor has a good frequency response under 100 Hz frequency, which is in good agreement with the frequency of the vibration exciter.

    At a room temperature of 20 ℃, we performed three repeatability tests to verify the stability of the sensor. The test results are shown in Fig.7. It can be seen that the amplitude voltage of the sensor output gradually increases with the acceleration value. After calculation and fitting, the three curves basically coincide, and the repeatability error and nonlinear error of the vibration sensitivity of the sensor are about 2.8% and less than 1.55%, respectively.

    Fig.7 Vibration repeatability diagram at room temperature

    In the high-temperature vibration experiment, the temperature of ThermConcept was increased from 20 ℃ to 400 ℃ with an increment of 100 ℃. When the temperature is stable for a period of time, the vibration signal was measured at a frequency of 100 Hz, and the acceleration value was from 0 g to 8 g. The output signal of the vibration sensor changed during the with acceleration. The linearity curve of the amplitude voltage and acceleration is shown in Fig.8 where the center wavelength of FBG drifted with the change in temperature. The central wavelength was measured after red shift as the new central wavelength, and the offset point of FBG was searched again by the automatic feedback control system to demodulate the vibration signal, so as to reduce the influence of temperature on the central wavelength of the fiber grating. From Fig.8, we can see that the minimum nonlinearity of the vibration signal is 3.33% under high-temperatures.

    Fig.8 Relationship between acceleration and amplitude voltage at different temperatures

    In the high-temperature vibration sensing test, the vibration signal and temperature were measured by the change in the bias point of the grating at the same time. However, the offset point can be affected by the temperature, therefore the temperature feedback control system was used to correct the offset point. For FBG, the increase in temperature will change the period of the grating, so that the spectrum of the fiber grating appears to have a red shift with the change of temperature; that is to say, it moves in the long wavelength direction. When testing vibration signals at high-temperatures, the temperature will affect the sensitivity of the sensor. The sensitivity versus temperature curve of the vibration signals measured at different temperatures is shown in Fig.9. It can be seen that the sensitivity of the sensor decreases as the temperature increases, and the linear relationship has anR2value of 0.989 83.

    It can be seen from Fig.4(b) that the central wavelength of the fiber grating increases as the temperature increases, and its correlation coefficient (R2) is 0.993 46. According to the measured temperature and the relationship with sensitivity shown in Fig.9, the offset point and sensitivity of the sensor were corrected to achieve temperature decoupling. The measured acceleration value and standard acceleration value at 20 ℃, 100 ℃, 200 ℃, 300 ℃ and 400 ℃ with decoupling are shown in Fig.10. The maximal error of the acceleration after temperature decoupling is less than 3.33% within the acceleration range of 0 g-8 g. After temperature decoupling of the sensor, the measured acceleration of the sensor is basically the same as the standard acceleration, and the experiment proves that the sensor is practical and reliable.

    Fig.9 Sensitivity drift diagram with temperature

    Fig.10 Acceleration measurement results after temperature decoupling

    3 Conclusion

    In this paper, an active temperature compensated FBG vibration sensor with a quartz constant section cantilever beam was introduced, and the temperature and vibration signals were studied experimentally by the active temperature compensation method using the PID automatic control laser wavelength. The performance of the sensor was tested and analyzed within the temperature range of 20 ℃-400 ℃ by setting up a high-temperature vibration test system. The experimental results show that the acceleration sensitivity of the vibration sensor is about 132.33 mV/g, and the nonlinearity is about 3.33%. The laser wavelength was controlled by PID feedback to stabilize the offset point of the grating for temperature compensation. The sensitivity of the laser wavelength and temperature is about 0.013 07 nm/℃, and the correlation coefficient (R2) is about 0.999 14. In conclusion, the active temperature compensated FBG vibration sensor has a stable sensing performance, easy demodulation, simple structure and a higher sensitivity. Moreover, the sensor is suitable for online monitoring of vibration signals at high-temperatures and has good practical application value.

    久久久久网色| 丝瓜视频免费看黄片| 一本一本综合久久| 亚洲av电影在线观看一区二区三区| 日本午夜av视频| 亚洲欧美一区二区三区黑人 | 老司机影院成人| 国产精品欧美亚洲77777| 国内揄拍国产精品人妻在线| 久久99一区二区三区| 不卡视频在线观看欧美| 亚洲精品乱码久久久v下载方式| 水蜜桃什么品种好| 最近中文字幕高清免费大全6| 啦啦啦在线观看免费高清www| 美女主播在线视频| 天堂中文最新版在线下载| 熟女av电影| 国产一区有黄有色的免费视频| 国产无遮挡羞羞视频在线观看| 老司机亚洲免费影院| 亚洲色图综合在线观看| 一级片'在线观看视频| 少妇被粗大猛烈的视频| 久久免费观看电影| 国产精品一区二区在线观看99| 午夜免费男女啪啪视频观看| 伊人久久国产一区二区| 少妇人妻精品综合一区二区| 一区二区三区免费毛片| 噜噜噜噜噜久久久久久91| 亚洲av.av天堂| 欧美三级亚洲精品| 亚洲久久久国产精品| 亚洲三级黄色毛片| 老熟女久久久| 热re99久久精品国产66热6| 国产精品嫩草影院av在线观看| 中文字幕av电影在线播放| 激情五月婷婷亚洲| 我的女老师完整版在线观看| 午夜av观看不卡| 日韩一本色道免费dvd| 国产男女超爽视频在线观看| 国产伦在线观看视频一区| 欧美一级a爱片免费观看看| 久久久久久久国产电影| 久久精品国产亚洲网站| 欧美 亚洲 国产 日韩一| 中文字幕av电影在线播放| 中国国产av一级| 国产成人精品婷婷| 精品久久久久久电影网| 国产精品偷伦视频观看了| av网站免费在线观看视频| 亚洲成人av在线免费| 黄色配什么色好看| 国产精品国产av在线观看| 一级爰片在线观看| 97在线人人人人妻| 91精品国产九色| 韩国av在线不卡| 国产片特级美女逼逼视频| 99九九在线精品视频 | 亚洲精品一二三| 国产淫语在线视频| videos熟女内射| 亚洲美女搞黄在线观看| 男人狂女人下面高潮的视频| 日韩 亚洲 欧美在线| 日韩亚洲欧美综合| 能在线免费看毛片的网站| 日本爱情动作片www.在线观看| 久久久久人妻精品一区果冻| 九色成人免费人妻av| 国产精品国产三级国产av玫瑰| 日韩精品有码人妻一区| 一区在线观看完整版| 国产精品成人在线| 五月天丁香电影| 亚洲内射少妇av| 久久久久久伊人网av| 男人舔奶头视频| 亚洲av日韩在线播放| 伊人久久精品亚洲午夜| 亚洲av成人精品一区久久| 超碰97精品在线观看| 亚洲av在线观看美女高潮| 日本欧美国产在线视频| 搡老乐熟女国产| 亚洲欧洲国产日韩| 男的添女的下面高潮视频| 久久久久久久久久成人| 夜夜爽夜夜爽视频| 亚洲av在线观看美女高潮| 免费看日本二区| 国产日韩欧美视频二区| a级毛色黄片| 日韩 亚洲 欧美在线| 精品人妻熟女av久视频| 亚洲精品日本国产第一区| av不卡在线播放| 亚洲va在线va天堂va国产| 国产免费视频播放在线视频| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 精品一区在线观看国产| 国产精品免费大片| 有码 亚洲区| 国产男女内射视频| 亚洲av福利一区| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩综合在线一区二区 | 亚洲精品国产色婷婷电影| 国产精品欧美亚洲77777| 夫妻午夜视频| 亚洲欧美精品专区久久| 免费观看av网站的网址| 在线天堂最新版资源| 高清午夜精品一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲av二区三区四区| 性高湖久久久久久久久免费观看| 岛国毛片在线播放| 99国产精品免费福利视频| 女性生殖器流出的白浆| 亚洲av日韩在线播放| 汤姆久久久久久久影院中文字幕| 汤姆久久久久久久影院中文字幕| 日韩人妻高清精品专区| 永久网站在线| www.av在线官网国产| 99久久精品一区二区三区| av线在线观看网站| 啦啦啦啦在线视频资源| 高清欧美精品videossex| 青青草视频在线视频观看| 亚洲国产欧美在线一区| 日韩精品有码人妻一区| 婷婷色麻豆天堂久久| 欧美xxⅹ黑人| 三级经典国产精品| 免费看不卡的av| 人妻系列 视频| 国内精品宾馆在线| 亚洲精品国产色婷婷电影| 亚洲av电影在线观看一区二区三区| 国产精品女同一区二区软件| 国产黄片视频在线免费观看| av在线播放精品| 91精品国产国语对白视频| 精品国产国语对白av| 美女cb高潮喷水在线观看| 国产片特级美女逼逼视频| 人妻少妇偷人精品九色| 97精品久久久久久久久久精品| 99热这里只有是精品在线观看| 美女视频免费永久观看网站| 国产欧美日韩一区二区三区在线 | 纯流量卡能插随身wifi吗| 久久久久久久久久久丰满| 极品少妇高潮喷水抽搐| 欧美精品高潮呻吟av久久| 精品一区二区三卡| av视频免费观看在线观看| 国产精品99久久久久久久久| 久久鲁丝午夜福利片| 成人亚洲欧美一区二区av| 男女免费视频国产| 2022亚洲国产成人精品| 婷婷色综合大香蕉| 最近最新中文字幕免费大全7| 九色成人免费人妻av| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 性色avwww在线观看| 欧美日韩av久久| 建设人人有责人人尽责人人享有的| 美女视频免费永久观看网站| 久久精品国产鲁丝片午夜精品| 少妇精品久久久久久久| 国产在线男女| 精品人妻熟女毛片av久久网站| 夫妻性生交免费视频一级片| 制服丝袜香蕉在线| 日产精品乱码卡一卡2卡三| 日本午夜av视频| 久久久久久伊人网av| 一级a做视频免费观看| 视频中文字幕在线观看| 99九九在线精品视频 | 肉色欧美久久久久久久蜜桃| 日韩一本色道免费dvd| 欧美日韩精品成人综合77777| 国产成人免费观看mmmm| 日本猛色少妇xxxxx猛交久久| 人人澡人人妻人| 一区二区三区免费毛片| 曰老女人黄片| 99热这里只有精品一区| 99热这里只有是精品50| 亚洲欧美成人精品一区二区| 亚洲性久久影院| 人体艺术视频欧美日本| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 草草在线视频免费看| 一级a做视频免费观看| 久久99热这里只频精品6学生| 日韩免费高清中文字幕av| 亚洲人与动物交配视频| 狠狠精品人妻久久久久久综合| 免费黄频网站在线观看国产| 国产午夜精品一二区理论片| 黄色一级大片看看| 亚洲国产精品一区二区三区在线| 日产精品乱码卡一卡2卡三| 日本wwww免费看| 国国产精品蜜臀av免费| 日日爽夜夜爽网站| 中文字幕精品免费在线观看视频 | 国产亚洲5aaaaa淫片| 亚洲欧美成人综合另类久久久| 一级a做视频免费观看| 亚洲,一卡二卡三卡| 女性被躁到高潮视频| 如何舔出高潮| 男女无遮挡免费网站观看| 亚洲性久久影院| 你懂的网址亚洲精品在线观看| 免费人妻精品一区二区三区视频| 国产成人免费观看mmmm| 青春草亚洲视频在线观看| 国语对白做爰xxxⅹ性视频网站| 在线免费观看不下载黄p国产| 久久精品国产亚洲av天美| 人妻 亚洲 视频| 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 99久久精品热视频| 久久ye,这里只有精品| videossex国产| 青春草国产在线视频| 在线观看人妻少妇| 99re6热这里在线精品视频| 亚洲欧美一区二区三区黑人 | 日韩制服骚丝袜av| 久久久久人妻精品一区果冻| 一本久久精品| 超碰97精品在线观看| 久久国产精品男人的天堂亚洲 | 国精品久久久久久国模美| 麻豆成人午夜福利视频| 欧美日韩亚洲高清精品| 午夜免费观看性视频| 久久国产精品大桥未久av | 狂野欧美白嫩少妇大欣赏| av黄色大香蕉| 内射极品少妇av片p| 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 99九九线精品视频在线观看视频| 国内精品宾馆在线| 中文字幕免费在线视频6| 18+在线观看网站| 永久网站在线| 草草在线视频免费看| 亚洲情色 制服丝袜| 麻豆成人午夜福利视频| 久久精品国产亚洲av天美| 国产毛片在线视频| 伊人亚洲综合成人网| 国产伦精品一区二区三区视频9| 久久ye,这里只有精品| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线 | 18+在线观看网站| 日本黄大片高清| 亚洲av成人精品一二三区| 免费大片18禁| 人妻少妇偷人精品九色| 观看免费一级毛片| av有码第一页| 黄片无遮挡物在线观看| 久久久精品94久久精品| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 欧美激情国产日韩精品一区| 亚洲激情五月婷婷啪啪| 中文精品一卡2卡3卡4更新| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 欧美xxxx性猛交bbbb| 男人添女人高潮全过程视频| 高清午夜精品一区二区三区| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 欧美3d第一页| 18+在线观看网站| 日韩人妻高清精品专区| 中文精品一卡2卡3卡4更新| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 精品酒店卫生间| 一区在线观看完整版| 亚洲情色 制服丝袜| 99热6这里只有精品| 日韩欧美一区视频在线观看 | 一级毛片我不卡| 国产深夜福利视频在线观看| 99视频精品全部免费 在线| 亚洲精品自拍成人| 亚洲精品色激情综合| 亚洲成人手机| 婷婷色av中文字幕| 国产伦精品一区二区三区四那| 色网站视频免费| 国产熟女午夜一区二区三区 | 日韩中字成人| 精品久久久久久久久av| 91精品国产国语对白视频| 最近2019中文字幕mv第一页| 又爽又黄a免费视频| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 一本一本综合久久| a级片在线免费高清观看视频| 中文天堂在线官网| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 日日摸夜夜添夜夜爱| 亚洲精品456在线播放app| av专区在线播放| 寂寞人妻少妇视频99o| 亚洲综合色惰| 91精品国产国语对白视频| 亚洲成人一二三区av| 80岁老熟妇乱子伦牲交| 肉色欧美久久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 久久青草综合色| 国产精品国产三级国产专区5o| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 日日撸夜夜添| 18禁在线无遮挡免费观看视频| 嘟嘟电影网在线观看| 中文资源天堂在线| 婷婷色麻豆天堂久久| 免费久久久久久久精品成人欧美视频 | 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 一边亲一边摸免费视频| 老司机亚洲免费影院| 久久久久久久亚洲中文字幕| 精品国产一区二区三区久久久樱花| 国内揄拍国产精品人妻在线| 91在线精品国自产拍蜜月| 性色av一级| 97超碰精品成人国产| 只有这里有精品99| 99久国产av精品国产电影| 亚洲av成人精品一区久久| 最近中文字幕2019免费版| 国产成人91sexporn| 好男人视频免费观看在线| 高清毛片免费看| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 国产黄片视频在线免费观看| 国产精品伦人一区二区| 国产探花极品一区二区| 亚洲天堂av无毛| av国产精品久久久久影院| 国产精品蜜桃在线观看| 亚洲在久久综合| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 免费看日本二区| 看免费成人av毛片| 日韩伦理黄色片| 久久韩国三级中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 天美传媒精品一区二区| 免费看日本二区| 欧美激情极品国产一区二区三区 | 超碰97精品在线观看| 久久精品国产亚洲av涩爱| 欧美日韩精品成人综合77777| 亚洲色图综合在线观看| 亚洲人成网站在线播| 久久国产精品大桥未久av | 久热久热在线精品观看| 99国产精品免费福利视频| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 91精品国产九色| 日韩熟女老妇一区二区性免费视频| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 日本免费在线观看一区| 国产亚洲欧美精品永久| 丝袜脚勾引网站| 国产精品不卡视频一区二区| 欧美日韩在线观看h| 久久6这里有精品| av线在线观看网站| 亚洲电影在线观看av| 亚洲av福利一区| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 一区在线观看完整版| 亚洲成人手机| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 亚洲精品国产色婷婷电影| 亚洲成人一二三区av| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 国产精品99久久99久久久不卡 | 亚洲欧洲精品一区二区精品久久久 | 91久久精品国产一区二区成人| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 有码 亚洲区| 妹子高潮喷水视频| 久久女婷五月综合色啪小说| 国产一区亚洲一区在线观看| 少妇人妻精品综合一区二区| 国产探花极品一区二区| 少妇人妻久久综合中文| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 精品久久久久久久久亚洲| 最后的刺客免费高清国语| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 日韩人妻高清精品专区| 午夜免费鲁丝| 新久久久久国产一级毛片| 22中文网久久字幕| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 国产综合精华液| 日日啪夜夜爽| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看| 91成人精品电影| 国内少妇人妻偷人精品xxx网站| 亚洲av电影在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲电影在线观看av| 久久影院123| 伊人久久国产一区二区| 久久免费观看电影| 高清不卡的av网站| 成人综合一区亚洲| 国产黄频视频在线观看| 日韩欧美精品免费久久| 国产在线男女| 国产一区二区三区av在线| 成人特级av手机在线观看| 美女视频免费永久观看网站| 人妻一区二区av| 国产亚洲5aaaaa淫片| 99九九在线精品视频 | 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 日韩强制内射视频| 久久精品国产a三级三级三级| 中文天堂在线官网| 国产成人免费无遮挡视频| 日韩一区二区视频免费看| 26uuu在线亚洲综合色| 丝袜脚勾引网站| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 久久久久久人妻| 一级,二级,三级黄色视频| 99久久综合免费| 欧美高清成人免费视频www| 色婷婷av一区二区三区视频| 99热全是精品| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 亚洲第一av免费看| 少妇被粗大猛烈的视频| 欧美日韩av久久| 大香蕉久久网| 精品一区在线观看国产| 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 午夜激情久久久久久久| 中文字幕免费在线视频6| 久久久亚洲精品成人影院| 亚洲国产最新在线播放| 国产成人一区二区在线| 国产亚洲91精品色在线| 成年av动漫网址| 最新的欧美精品一区二区| 春色校园在线视频观看| 国产在线视频一区二区| 国产精品欧美亚洲77777| av黄色大香蕉| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 国产白丝娇喘喷水9色精品| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 最近的中文字幕免费完整| 精品国产露脸久久av麻豆| 免费观看性生交大片5| 国产午夜精品一二区理论片| 丰满人妻一区二区三区视频av| 中文字幕亚洲精品专区| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 精品一区二区三卡| 99热网站在线观看| 纯流量卡能插随身wifi吗| 只有这里有精品99| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 国产av国产精品国产| 亚洲无线观看免费| 色哟哟·www| 久久久a久久爽久久v久久| 免费播放大片免费观看视频在线观看| 国产中年淑女户外野战色| 大话2 男鬼变身卡| 美女内射精品一级片tv| 免费看光身美女| 亚洲色图综合在线观看| 欧美人与善性xxx| 伦理电影免费视频| 久久狼人影院| 亚洲精品乱久久久久久| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| 色视频www国产| 亚洲精品亚洲一区二区| 在线 av 中文字幕| 欧美日韩一区二区视频在线观看视频在线| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 中国国产av一级| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 嘟嘟电影网在线观看| av播播在线观看一区| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | av不卡在线播放| 一级毛片黄色毛片免费观看视频| 99久久综合免费| 久久久国产精品麻豆| 少妇猛男粗大的猛烈进出视频| 欧美日本中文国产一区发布| 日韩成人av中文字幕在线观看| 久久亚洲国产成人精品v| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 国产精品欧美亚洲77777| 青春草视频在线免费观看| 亚洲av福利一区| 精品一区二区三卡| 啦啦啦在线观看免费高清www| 一级爰片在线观看| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 黑人高潮一二区| 国产成人精品一,二区| 亚洲欧洲日产国产| 在线精品无人区一区二区三| av国产久精品久网站免费入址| 我的老师免费观看完整版| 免费在线观看成人毛片| 亚洲美女视频黄频| 久热这里只有精品99| 亚洲av国产av综合av卡| 少妇裸体淫交视频免费看高清| 99精国产麻豆久久婷婷| a 毛片基地| 亚洲真实伦在线观看| 乱人伦中国视频| 69精品国产乱码久久久| 超碰97精品在线观看| 九九久久精品国产亚洲av麻豆| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜|