• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model identification of continuous stirred tank reactor based on QKLMS algorithm

    2020-11-25 09:46:18LIJunLIXiangyue

    LI Jun, LI Xiang-yue

    (1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Gansu Provincial Engineering Technology Center for Informatization of Logistics & Transport Equipment, Lanzhou 730070, China;3. Gansu Provincial Industry Technology Center of Logistics & Transport Equipment, Lanzhou 730070, China)

    Abstract: The continuous stirred tank reactor (CSTR) is one of the typical chemical processes. Aiming at its strong nonlinear characteristics, a quantized kernel least mean square(QKLMS) algorithm is proposed. The QKLMS algorithm is based on a simple online vector quantization technology instead of sparsification, which can compress the input or feature space and suppress the growth of the radial basis function (RBF) structure in the kernel learning algorithm. To verify the effectiveness of the algorithm, it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between coolant flow rate and product concentration. In additiion, the proposed algorithm is further compared with least squares support vector machine (LS-SVM), echo state network (ESN), extreme learning machine with kernels (KELM), etc. The experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under the same conditions.

    Key words: kernel learning algorithm; quantized kernel least mean square (QKLMS); continuous stirred tank reactor (CSTR); system identification

    0 Introduction

    The continuous stirred tank reactor (CSTR) is a highly nonlinear chemical reactor and is widely used in the chemical process industry including chemical reagents, fuels, synthetic materials, etc[1-3]. It is difficult to obtain an accurate mathematical model of the CSTR due to its features of nonlinearity and time-varying. In addition, if the system model is not accurate enough, the analysis, prediction and control of the system will be affected[4]. Hence, it is necessary to construct a nonlinear dynamic identification model based on the input-output data of the system, and further design a controller based on the identification model to realize the adjustment and control of the CSTR process[5-7].

    In recent years, neural networks, as an effective artificial intelligence method, play an important role in the identification and control of chemical processes. In Refs.[8] and [9], Chen et al applied back propagation (BP)and generalized radial basis function (RBF) neural networks to CSTR system modeling, which effectively improved the identification accuracy. A dynamic recurrent neural network, echo state network (ESN), was used in CSTR process, and the identification effect was significantly improved[10]. In order to overcome the shortcomings of the feedforward neural network which is easy to fall into the local minimum, a nonlinear autoregressive exogenous input(NARX) identification method based on extrem learning machine with kernel (KELM) was proposed and applied to the modeling of CSTR, which obtained high identification accuracy[11]. However, when the training data increases, the computational complexity of the neural network also increases, which brings inconvenience to subsequent learning.

    In order to further reduce the computational complexity and improve the online learning ability, relevant research in the field of online kernel learning algorithms has attracted wide attention of scholars[12-14]. In Ref.[15], Li et al proposed a kernel least mean square (KLMS) algorithm with low computational complexity and good robustness, which has been effectively used to the single-step and multi-step prediction of online traffic flow. Chen et al put forward a quantized kernel least mean square (QKLMS) algorithm[16], which is different from sparsification and uses the redundant data to update the coefficient of the closest centre. In Ref.[16], the algorithm was successfully applied to the prediction of chaotic time-series.

    Therefore, for the identification of CSTR with strong nonlinearity features, we propose a novel identification method using QKLMS based on kernel learning algorithm to further improve the identification accuracy. In addition, to verify the effectiveness of the proposed algorithm, the identification experimental results are compared with the existing methods under the same conditions.

    1 QKLMS

    QKLMS is an online sequence estimation algorithm. Firstly, giving the training data {xi,yi}∈Rm×R1(i=1,2,…,N), we can defineX∈RN×mas the input matrix andY∈RN×1as the output matrix. When theith data set is obtained, the online update of the learning algorithm is performed on the basis of the estimation of the previous (i-1)th data (denoted asfi-1) to obtain the estimated value of the current nonlinear mapping relationshipf, recorded asfi. The nonlinear mapping between the input and output data is expressed as

    (1)

    where the nonlinear mapping relationship is built by the linear combination of the kernel function constructed by the corresponding support vectorxi.

    Based on the QKLMS algorithm, firstly,xineeds to be mapped to the high-dimensional feature space, i.e.φ∶x→φ(x)∈F?RM, and the kernel function is defined as

    k(xi,xj)=φ(xi)Tφ(xj).

    (2)

    Then the kernel matrixK=ΦTΦthat satisfies the Mercer condition can be obtained, whereΦ=[φ(x1)φ(x2) …φ(xN)].

    In the experiment, the kernel learning algorithm will use three kernel functions as follows.

    1) Polynomial kernel

    k(xi,xj)=((xi·xj)+1)p,

    (3)

    wherepis the order of the kernel function.

    2) Sigmoid kernel

    k(xi,xj)=tanh(v(xi·xj)+c),

    (4)

    wherevis the input weight andcis the offset of the kernel function.

    3) Gaussian kernel

    (5)

    whereσ(σ>0) is the kernel width.

    The KLMS algorithm extends the linear LMS algorithm into the feature spaceF. The inputφ(xi) of the high-dimensional nonlinear feature space is denoted asφi. For the sequence data {φi,yi}, the LMS algorithm is applied, then

    (6)

    whereeiis the prediction error when theith data have been acquired,ηis the learning rate, andωiis the estimation value of weight vector in the feature space.

    (7)

    Eq.(7) shows that the KLMS algorithm is essentially equivalent to a growing RBF network, i.e., as each new data are acquired, a new core unit centred on inputxiis assigned, andηeiis its coefficient.

    The QKLMS algorithm is obtained by quantifying the feature vectorφi, which is embodied in the weight update equation in Eq.(6). At this point, the KLMS algorithm on Eq.(7) is

    (8)

    whereQ[·] is the quantization operator in the original spaceU, and additionally, letxq(i)=Q[xi].

    (9)

    where ‖·‖F(xiàn)is the norm in the feature spaceF. Eq.(9) indicates that the distance in the feature spaceFmonotonically increases as the distance ofUin the original space changes.

    Therefore, the quantization threshold can be defined by Eq.(9), then

    (10)

    whereεU=‖xi-xj‖ is the quantization threshold in the original spaceUand ‖xq(i)-xj‖≤εU. In addition, whenεU=0, it is the KLMS algorithm.

    In summary, the specific steps to implement the QKLMS algorithm are as follows:

    Step 1: Give the data sets {xi∈U,yi},i=1,2,…

    Step 2: Training phase. Letη>0,σ>0 andεU>0, wheni=1, let the initial value of the codebook vector matrix (the set of data centre)D1=[x1], and the coefficient vectorα1=[ηy1].

    Step 3: Leti=i+1,L=size(Di-1), the model output is calculated by

    (11)

    Step 4: Calculation error is

    (12)

    and the minimum distance between the input vector and all codebook vectors is calculated by

    (13)

    Step 5: Ifd(xi,Di-1)≤εU, the codebook vector matrix remains unchanged, i.e.,Di=Di-1. Quantizingxito the nearest centre, by updating the coefficient vector of the nearest centre, that is

    (14)

    Otherwise, settingxito the new codebook vector and updating the coefficient vector, that is

    (15)

    Step 6: Iteratively calculate Step 3- Step 5 until all training data are learned in turn.

    Step 7: Testing phase. Based on the trained model, given the testing data, the final model output is calculated by Eq.(11).

    2 Experiment of CSTR process

    2.1 CSTR process

    CSTR is a typical nonlinear reaction process, and its basic structure is shown in Fig.1. In this paper, the CSTR chemical process with exothermic reaction feature is an irreversible reaction (A→B) process, and the producing heat will slow the reaction down. By introducing a coolant flow rateqc, the temperature can be varied and hence the product concentrationCBcan also be controlled.

    Fig.1 Basic structure of CSTR

    The dynamic nonlinear differential equations of the CSTR are expressed as

    (16)

    (17)

    whereqis the process flow rate;CAis the inlet feed concentration;TfandTcfare the inlet feed and coolant temperatures, respectively;Tis the temperature of the product. In addition, the remaining chemical reaction parameters are detail listed in Ref.[17].

    2.2 Data collection and model building

    During the CSTR process, when the reaction reaches equilibrium, the product concentration isCB=8.36×10-2mol/L, simultaneously, the temperature of the product and the coolant flow rate areT=440.2 K andqc=103.4 L/min, respectively. On the basis that the coolant flow rateqcis a steady state value, the randomly distributed white noise in the interval [-0.002,0.002] is added to enhance the stability of the model training.

    The coolant flow of the CSTR input is shown in Fig.2. Among the obtained 4 000 input-output data, the first half is used as the training set, and the remaining part is used as the test set. In addition, all data sets need to be normalized on the interval [0,1].

    Fig.2 Coolant flow qc of CSTR input

    Assuming that the CSTR system model is unknown, only the above input and output data being known, the identification model of the CSTR is selected as

    CB(i-1),CB(i-2),CB(i-3)].

    (18)

    3 Experimental results and analysis

    In the experiment, the mean square error(MSE)is selected as the performance indicator of the identification model, that is

    (19)

    In the experiment, QKLMS selects three common kernel functions according to Eqs.(3)-(5), and the corresponding parameters are set as follows: the order of Polynomial kernel function isp=2; the input weight and offset of Sigmoid kernel function arev=0.8 andc=1, respectively; and the kernel width of Gaussian kernel function isσ=1.

    When the quantization thresholdεUvaries between (0,1), the identification performance on the test set can be obtained, and the experiment results are shown in Table 1.

    Table 1 Comparison of identification performance of QKLMS based on three different kernel functions

    It can be seen from Table 1 that the MSE changes with the change of quantization thresholdεU. The comparison shows that when the Gaussian kernel function is selected, the identification accuracy is the best and can reach 8.782 3×10-11. It can also be further observed that the training time is concentrated in 2.50 s-3.36 s.

    Considering further experiment based on Gaussian kernel function, that is, when the learning rateηvaries between (0,1), the identification performance on the test set can be observed, and the results are shown in Table 2. It is observed from Table 2 that the MSE of QKLMS changes with the change ofη, and the training time is concentrated in 2.89 s-3.81 s. When the learning rate is 0.45, the identification accuracy is the highest and the MSE of the testing set is 3.850 9×10-11.

    Table 2 Comparison of identification performance when learning rate changes

    Whenη=0.45, the identification performance of the test set can be observed from Table 3 by changing the sizes ofεUandσ. It can be seen that the MSE changes with the changes ofεUandσ, and the training time is relatively concentrated in 2.72 s-3.61 s. WhenεU=0.60, andσ=6, the identification accuracy of QKLMS is the highest and the MSE of the test set is 1.232 8×10-14. Moreover, the identification accuracy of QKLMS is nearly one order of magnitude higher than that of KLMS (εU=0) under the same conditions.

    Table 3 Comparison of identification performance of QKLMS

    WhenεU=0.60,σ=6 andη=0.45, Fig.3 shows the error curve of each sample point on the test set. Fig.4 shows the comparison curve of the actual value and identification value of output concentration. The magnitude of the identification error is approximately 10-7. Combining with Figs.3-4, it can be seen that QKLMS can achieve excellent results in the modeling of CSTR.

    Fig.3 Error curve of each sample point on test set

    Fig.4 Comparison curve of the actual value and identification value of output concentration

    To further verify the validity of the QKLMS algorithm, Table 4 shows the MSE of the QKLMS and the existing identification algorithm on the test set under the same conditions. The comparison shows that the identification accuracy of QKLMS is improved by one order of magnitude.

    Table 4 Comparison of identification performance based on QKLMS and other algorithms

    4 Conclusion

    In this paper, based on the input and output data of the unknown nonlinear CSTR process, a novel identification method with the QKLMS algorithm is proposed. The online vector quantization method is used to quantize the input in the feature space and control the size of the kernel function structure.

    Compared with existing feed-forward neural network method and ESN network as well as other kernel learning methods, under the same conditions, experimental results show that the identification method based on QKLMS algorithm can achieve good results, and improve the accuracy of identification effectively. Therefore, our research provides a new idea for the complex nonlinear process that is difficult to obtain accurate mathematical models.

    亚洲精品在线美女| 中国国产av一级| 国产精品.久久久| 丝袜喷水一区| 热re99久久国产66热| 国产黄色免费在线视频| 国产欧美日韩精品亚洲av| 午夜两性在线视频| 久久综合国产亚洲精品| 超色免费av| 国产成人精品无人区| 国产一区二区三区av在线| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 色婷婷av一区二区三区视频| 国产在线视频一区二区| 纯流量卡能插随身wifi吗| 日日爽夜夜爽网站| 久久久久国产一级毛片高清牌| 亚洲av日韩精品久久久久久密 | 久久久精品区二区三区| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 我要看黄色一级片免费的| 亚洲五月婷婷丁香| 青春草视频在线免费观看| 亚洲欧美中文字幕日韩二区| 2018国产大陆天天弄谢| 麻豆国产av国片精品| 欧美精品亚洲一区二区| 桃花免费在线播放| 一级毛片黄色毛片免费观看视频| 欧美成人精品欧美一级黄| 久久精品久久精品一区二区三区| 亚洲五月婷婷丁香| 日本欧美视频一区| 午夜日韩欧美国产| 黑人欧美特级aaaaaa片| 国产免费一区二区三区四区乱码| 观看av在线不卡| 亚洲精品一二三| 一级毛片女人18水好多 | 亚洲美女黄色视频免费看| 国产一区有黄有色的免费视频| 中文乱码字字幕精品一区二区三区| 激情五月婷婷亚洲| 亚洲av国产av综合av卡| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲高清精品| 校园人妻丝袜中文字幕| 亚洲欧洲国产日韩| 成人亚洲欧美一区二区av| 美女中出高潮动态图| 国产精品免费视频内射| 婷婷丁香在线五月| 一级片免费观看大全| 黄色一级大片看看| 亚洲专区中文字幕在线| 午夜福利视频精品| 国产精品一区二区在线不卡| 欧美亚洲 丝袜 人妻 在线| 80岁老熟妇乱子伦牲交| a 毛片基地| 久久国产精品人妻蜜桃| 亚洲五月婷婷丁香| av视频免费观看在线观看| 水蜜桃什么品种好| 欧美精品av麻豆av| 国产成人影院久久av| 久久久久精品人妻al黑| 亚洲 国产 在线| 国产av国产精品国产| 18在线观看网站| 日韩欧美一区视频在线观看| 欧美日韩精品网址| 久久国产亚洲av麻豆专区| 夫妻午夜视频| 亚洲天堂av无毛| 久久女婷五月综合色啪小说| 天天添夜夜摸| 亚洲欧美一区二区三区黑人| 又大又爽又粗| 一区二区三区精品91| 久久精品亚洲av国产电影网| 久久av网站| 久久国产精品影院| 久久久久久免费高清国产稀缺| 精品一区二区三区av网在线观看 | 国产熟女午夜一区二区三区| 免费高清在线观看日韩| avwww免费| 午夜免费成人在线视频| 久久久久国产精品人妻一区二区| av在线播放精品| xxx大片免费视频| 国产精品一国产av| 一级毛片黄色毛片免费观看视频| 捣出白浆h1v1| 青春草视频在线免费观看| 中文字幕制服av| 国产日韩欧美视频二区| 一本大道久久a久久精品| 欧美国产精品一级二级三级| 久久精品久久久久久噜噜老黄| 黑丝袜美女国产一区| 久久狼人影院| 韩国精品一区二区三区| 一级a爱视频在线免费观看| 咕卡用的链子| 国产成人av激情在线播放| 欧美国产精品一级二级三级| 亚洲国产av影院在线观看| 麻豆国产av国片精品| 天天操日日干夜夜撸| 夫妻性生交免费视频一级片| 亚洲国产看品久久| 丝袜在线中文字幕| 久久午夜综合久久蜜桃| 色综合欧美亚洲国产小说| 免费观看a级毛片全部| 欧美xxⅹ黑人| 精品久久久久久久毛片微露脸 | 精品高清国产在线一区| 国产人伦9x9x在线观看| 国产成人欧美在线观看 | 黄片小视频在线播放| 国产又爽黄色视频| 十八禁高潮呻吟视频| 午夜精品国产一区二区电影| 精品少妇一区二区三区视频日本电影| av在线播放精品| 久久热在线av| 国产男女内射视频| 少妇人妻久久综合中文| 国产精品成人在线| 国产女主播在线喷水免费视频网站| 成人亚洲欧美一区二区av| 国产亚洲精品久久久久5区| 日韩,欧美,国产一区二区三区| av视频免费观看在线观看| 波多野结衣av一区二区av| 欧美日韩亚洲高清精品| 国产精品99久久99久久久不卡| 中国国产av一级| 两个人免费观看高清视频| 亚洲精品成人av观看孕妇| 国产免费一区二区三区四区乱码| 熟女少妇亚洲综合色aaa.| 国产精品国产三级专区第一集| 欧美激情高清一区二区三区| 免费在线观看完整版高清| 久久精品久久久久久久性| 国产成人免费无遮挡视频| 美女主播在线视频| 精品国产乱码久久久久久男人| 在线 av 中文字幕| 国产男人的电影天堂91| 免费观看a级毛片全部| 欧美日韩亚洲综合一区二区三区_| 日本黄色日本黄色录像| 尾随美女入室| 精品少妇一区二区三区视频日本电影| 午夜免费成人在线视频| 国产爽快片一区二区三区| 欧美日韩精品网址| 久久 成人 亚洲| 成年人黄色毛片网站| 深夜精品福利| 久久久精品免费免费高清| 亚洲av成人不卡在线观看播放网 | 久久精品国产a三级三级三级| av国产久精品久网站免费入址| 国产伦理片在线播放av一区| 成年人午夜在线观看视频| 丝袜美足系列| 国产高清国产精品国产三级| 肉色欧美久久久久久久蜜桃| 1024香蕉在线观看| 波多野结衣av一区二区av| 久热爱精品视频在线9| 一级a爱视频在线免费观看| 99国产精品99久久久久| 少妇人妻久久综合中文| 一级片免费观看大全| kizo精华| 韩国精品一区二区三区| 亚洲专区国产一区二区| 精品少妇久久久久久888优播| 大片电影免费在线观看免费| 欧美日韩福利视频一区二区| 男女下面插进去视频免费观看| 大陆偷拍与自拍| 午夜福利视频在线观看免费| 建设人人有责人人尽责人人享有的| 我的亚洲天堂| 成人国语在线视频| 国产精品 国内视频| 高清视频免费观看一区二区| 国产精品一二三区在线看| 中文精品一卡2卡3卡4更新| 19禁男女啪啪无遮挡网站| 999久久久国产精品视频| 丝袜在线中文字幕| 女人爽到高潮嗷嗷叫在线视频| 高清av免费在线| av网站免费在线观看视频| 亚洲精品美女久久久久99蜜臀 | 黄色视频在线播放观看不卡| 中国国产av一级| 亚洲国产欧美在线一区| xxx大片免费视频| 别揉我奶头~嗯~啊~动态视频 | 一本大道久久a久久精品| 精品国产乱码久久久久久男人| 亚洲国产av影院在线观看| 欧美 亚洲 国产 日韩一| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品乱久久久久久| 精品国产一区二区三区久久久樱花| 国产午夜精品一二区理论片| 午夜免费成人在线视频| 欧美成人午夜精品| 2021少妇久久久久久久久久久| 久久精品久久久久久噜噜老黄| 成人亚洲欧美一区二区av| 午夜免费男女啪啪视频观看| 国产真人三级小视频在线观看| 午夜视频精品福利| 日韩一区二区三区影片| 亚洲国产精品成人久久小说| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区在线不卡| 国产男人的电影天堂91| 亚洲伊人久久精品综合| 成人国语在线视频| 国产极品粉嫩免费观看在线| 老汉色av国产亚洲站长工具| 深夜精品福利| 国产xxxxx性猛交| 国产淫语在线视频| 丝袜在线中文字幕| 欧美日韩av久久| 欧美+亚洲+日韩+国产| 自线自在国产av| 精品免费久久久久久久清纯 | 成人亚洲精品一区在线观看| 少妇粗大呻吟视频| 亚洲专区国产一区二区| 大片免费播放器 马上看| 亚洲综合色网址| 欧美在线一区亚洲| 一本一本久久a久久精品综合妖精| 热re99久久精品国产66热6| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 十八禁网站网址无遮挡| 亚洲第一av免费看| 久久久精品区二区三区| 日韩中文字幕欧美一区二区 | 国产精品一区二区免费欧美 | 亚洲国产欧美日韩在线播放| 一本大道久久a久久精品| 欧美少妇被猛烈插入视频| 日韩人妻精品一区2区三区| 性色av乱码一区二区三区2| 人人妻人人澡人人爽人人夜夜| 亚洲精品美女久久av网站| 男女床上黄色一级片免费看| 国产欧美亚洲国产| 免费高清在线观看日韩| 久久99一区二区三区| 丝袜美腿诱惑在线| 狠狠婷婷综合久久久久久88av| 免费高清在线观看日韩| 国产精品av久久久久免费| 夫妻性生交免费视频一级片| 国产免费又黄又爽又色| 午夜免费成人在线视频| 人人妻,人人澡人人爽秒播 | 国产亚洲一区二区精品| 一级毛片我不卡| av国产久精品久网站免费入址| 午夜日韩欧美国产| 在现免费观看毛片| 纯流量卡能插随身wifi吗| 免费看av在线观看网站| 亚洲精品在线美女| 韩国高清视频一区二区三区| 亚洲午夜精品一区,二区,三区| 2021少妇久久久久久久久久久| 日韩免费高清中文字幕av| 免费一级毛片在线播放高清视频 | 97人妻天天添夜夜摸| 黄片播放在线免费| 一区二区av电影网| 亚洲天堂av无毛| 久久久亚洲精品成人影院| 一区二区av电影网| 极品人妻少妇av视频| 国产精品欧美亚洲77777| 国产男女内射视频| 久久国产亚洲av麻豆专区| 亚洲精品第二区| 三上悠亚av全集在线观看| 久久精品熟女亚洲av麻豆精品| h视频一区二区三区| 午夜视频精品福利| 日韩视频在线欧美| 两个人免费观看高清视频| 1024香蕉在线观看| 亚洲,欧美,日韩| 天天添夜夜摸| 最新的欧美精品一区二区| 一级,二级,三级黄色视频| 最近最新中文字幕大全免费视频 | 日韩精品免费视频一区二区三区| 亚洲男人天堂网一区| 日韩电影二区| 欧美黑人欧美精品刺激| 国产91精品成人一区二区三区 | 男女免费视频国产| 美女大奶头黄色视频| 国产成人精品久久久久久| 母亲3免费完整高清在线观看| 一区二区三区精品91| 制服诱惑二区| 成人影院久久| 两性夫妻黄色片| 蜜桃在线观看..| 国产精品一国产av| 成人影院久久| 国产欧美日韩一区二区三区在线| 丝袜喷水一区| 夫妻性生交免费视频一级片| 桃花免费在线播放| 天天躁日日躁夜夜躁夜夜| 少妇 在线观看| 午夜免费观看性视频| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| av片东京热男人的天堂| 热re99久久国产66热| 天天躁狠狠躁夜夜躁狠狠躁| 免费女性裸体啪啪无遮挡网站| 婷婷色综合大香蕉| 老司机在亚洲福利影院| cao死你这个sao货| 精品一区在线观看国产| 宅男免费午夜| 国产成人91sexporn| www.自偷自拍.com| 满18在线观看网站| 99国产精品一区二区三区| kizo精华| 欧美精品av麻豆av| 亚洲国产毛片av蜜桃av| 91麻豆av在线| 亚洲专区中文字幕在线| 一区二区三区精品91| 91精品国产国语对白视频| 国产欧美亚洲国产| 午夜久久久在线观看| 精品视频人人做人人爽| 性少妇av在线| 午夜福利视频在线观看免费| 精品少妇黑人巨大在线播放| 国产高清videossex| 欧美亚洲日本最大视频资源| 亚洲人成电影免费在线| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 国产成人av激情在线播放| 欧美老熟妇乱子伦牲交| 国产麻豆69| 黄色 视频免费看| 黄频高清免费视频| 国产在视频线精品| 熟女av电影| 极品人妻少妇av视频| 亚洲图色成人| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 国产在线免费精品| 久久 成人 亚洲| 免费在线观看完整版高清| 国产精品一区二区免费欧美 | 丝袜在线中文字幕| 最近中文字幕2019免费版| av天堂久久9| 自线自在国产av| 日本wwww免费看| 少妇 在线观看| 国产成人影院久久av| 亚洲色图综合在线观看| 两个人免费观看高清视频| 伊人亚洲综合成人网| 久久综合国产亚洲精品| 亚洲 国产 在线| 青草久久国产| www日本在线高清视频| 国产男女超爽视频在线观看| 欧美大码av| 亚洲男人天堂网一区| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 成人亚洲欧美一区二区av| 一本综合久久免费| 午夜福利,免费看| 国产精品一区二区免费欧美 | 日本五十路高清| 99国产精品一区二区蜜桃av | 久久99精品国语久久久| 欧美人与性动交α欧美软件| 亚洲国产看品久久| 考比视频在线观看| 精品国产乱码久久久久久男人| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| av在线播放精品| 涩涩av久久男人的天堂| 狠狠婷婷综合久久久久久88av| 欧美久久黑人一区二区| av在线app专区| 久久九九热精品免费| 高清不卡的av网站| 美女中出高潮动态图| 久久这里只有精品19| 免费日韩欧美在线观看| 人人妻人人澡人人爽人人夜夜| 91麻豆av在线| 国产深夜福利视频在线观看| 美女大奶头黄色视频| 9191精品国产免费久久| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 精品国产超薄肉色丝袜足j| videosex国产| 久久久久久久精品精品| 日本欧美视频一区| 精品国产乱码久久久久久小说| 老司机影院成人| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| 老司机在亚洲福利影院| 久久性视频一级片| 色播在线永久视频| 亚洲九九香蕉| 啦啦啦视频在线资源免费观看| 久久精品aⅴ一区二区三区四区| 搡老乐熟女国产| 国产日韩欧美在线精品| 高清av免费在线| 亚洲国产精品国产精品| 精品欧美一区二区三区在线| 乱人伦中国视频| 少妇人妻久久综合中文| 91字幕亚洲| 性少妇av在线| 久久久久久免费高清国产稀缺| 国产精品一国产av| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 后天国语完整版免费观看| 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠久久av| 国产精品久久久久成人av| 亚洲精品美女久久久久99蜜臀 | a级片在线免费高清观看视频| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 一本—道久久a久久精品蜜桃钙片| 欧美在线黄色| e午夜精品久久久久久久| 精品视频人人做人人爽| 日韩一卡2卡3卡4卡2021年| 婷婷成人精品国产| 女警被强在线播放| 午夜视频精品福利| 一本—道久久a久久精品蜜桃钙片| 亚洲国产成人一精品久久久| 国产成人91sexporn| av线在线观看网站| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 一级毛片电影观看| 国产一级毛片在线| 日韩大片免费观看网站| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 欧美黄色片欧美黄色片| 91老司机精品| 亚洲九九香蕉| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频| 大片免费播放器 马上看| 黄色视频不卡| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 性色av一级| 亚洲精品自拍成人| 国产成人欧美| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 色综合欧美亚洲国产小说| 国产亚洲精品第一综合不卡| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 日日夜夜操网爽| 欧美黑人欧美精品刺激| 国产在视频线精品| 99国产精品免费福利视频| 久久热在线av| 制服人妻中文乱码| 久久99热这里只频精品6学生| 国产精品一区二区精品视频观看| 久久久欧美国产精品| 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 丝袜人妻中文字幕| 国精品久久久久久国模美| 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 亚洲中文av在线| 黄色毛片三级朝国网站| 亚洲视频免费观看视频| 一级毛片电影观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 一级黄色大片毛片| 人人妻人人澡人人爽人人夜夜| 久久 成人 亚洲| 天天影视国产精品| 国产熟女午夜一区二区三区| 一级黄片播放器| 国产在线视频一区二区| 高潮久久久久久久久久久不卡| av有码第一页| 精品国产国语对白av| a级毛片在线看网站| 国产欧美日韩一区二区三区在线| 99热网站在线观看| 亚洲,欧美精品.| 欧美黄色淫秽网站| 亚洲,欧美,日韩| 无限看片的www在线观看| av网站免费在线观看视频| 午夜精品国产一区二区电影| 日韩一卡2卡3卡4卡2021年| 亚洲第一av免费看| 亚洲精品国产一区二区精华液| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 欧美人与性动交α欧美软件| 美女大奶头黄色视频| 18禁观看日本| 又大又黄又爽视频免费| 亚洲精品久久成人aⅴ小说| 日日爽夜夜爽网站| 国产精品一区二区在线观看99| 又紧又爽又黄一区二区| 国产精品一国产av| 青春草视频在线免费观看| 我的亚洲天堂| 色网站视频免费| 丰满饥渴人妻一区二区三| 超色免费av| 国产亚洲精品第一综合不卡| 精品久久蜜臀av无| 亚洲av美国av| 五月天丁香电影| 丝袜人妻中文字幕| av在线老鸭窝| 国产人伦9x9x在线观看| 欧美激情极品国产一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久av网站| 欧美日韩av久久| 亚洲av成人精品一二三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 精品福利观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费av在线播放| 久久久久久久精品精品| 亚洲,欧美,日韩| 亚洲国产精品成人久久小说| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| 99热全是精品| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| av一本久久久久| 黄频高清免费视频| 一级黄片播放器| 日韩中文字幕视频在线看片| 国产野战对白在线观看| 国产精品 欧美亚洲| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 亚洲成av片中文字幕在线观看| 亚洲国产欧美网| 国产精品一国产av| 纯流量卡能插随身wifi吗| 国产人伦9x9x在线观看|