• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pattern recognition of optimal traffic path based on HMM

    2020-11-25 08:27:10ZHAOShuxuWUHongweiLIUChangrong

    ZHAO Shu-xu, WU Hong-wei, LIU Chang-rong

    (School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: In order to alleviate urban traffic congestion and provide fast vehicle paths, a hidden Markov model (HMM) based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms. At first, the HHM is obtained by training. Then according to dynamic planning principle, the traffic states of intersections are obtained by the Viterbi algorithm. Finally, the optimal path is selected based on the obtained traffic states of intersections. The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.

    Key words: hidden Markov model (HMM) ; Viterbi algorithm; traffic congestion; optimal path

    0 Introduction

    With the increase of car ownership, traffic congestion and environmental pollution become serious in cities[1]. Therefore, it is necessary for an intelligent traffic system to make full use of the existing road resources and traffic data, which can help to adjust the departure interval of buses and release useful traffic information.

    At present, there are two types of methods for selection of optimal traffic path. One is to establish a decision-making model with multi-object function, which has the shortest path between the start point and the end point as well as the shortest driving time. In Ref.[2], the optimal solution of multi-object optimization model was obtained by genetic algorithm. However, it is difficult to avoid real-time traffic congestion. In Ref.[3], according to the distance between an ideal point and multiple self-calibration points, the shortest weight paths of all object points were calculated by Dijkstra algorithm, but the ideal point in actual roads is difficult to define. The other is to transform a multi-path problem into a multi-object solution problem by swarm intelligence optimization. However,, increasing model size gives rise to decrease of algorithm stability, thus the algorithm has poor adaptability to actual road conditions. In Ref.[4], a multi-path selection algorithm based on overlapping penalty was proposed. The obtained path is more suitable for actual conditions and the driving time is shortened, but it is difficult to ensure the vehicle path unobstructed under complex road conditions. The algorithm proposed in Ref.[5] has fast convergence and high search quality in solving the optimal path. However, for complex road conditions, dynamic paths are difficult to determine. Therefore, an improved fuzzy c-means clustering algorithm was proposed to identify road traffic conditions[6]. However, the result of clustering is not in accordance with the actural traffic conditions, accordingly, the optimal path is not in accordance with the actural traffic conditions. Therefore, although the driving time is shortened, road congestion rate is high.

    In our work, a method of multi-feature data recognition of regional reads for optimal path selection based on hidden Markov model (HMM) is proposed, in which HMMs are trained by means of historical data to match the optimal path. The obtained optimal path has a slight defect in distance, but it is superior to other model algorithms in performance.

    1 Data processing

    In our work, the data collected are from Zibo City, Shandong Province. Because large volume of original data and redundant attributes cannot meet the requirements of data modeling, data cleaning is necessary.

    After reading the original data, analyzing the GPS data of vehicles and extracting the relevant features, we have found that vehicle ownership is missed seriously, which should be taken as feature data to input the algorithm before constructing the model. In order to improve the trend of the HHM fitting the actual traffic conditions, the average value of vehicle ownership should be increased or decreased to fill the standard deviation, thus the result is closer to the actual value and the distribution is more concentrated[7], as shown in Fig.1.

    Fig.1 Distribution diagram of vehicle ownership after being filled

    Abnormal value is to detect whether the original data contain unreasonable data because such data will reduce generalization ability of the model[8]. In the process of collecting the original data of Linzi District, due to manual statistics and instrumental measurement, some feature data are deviated from the observation data obviously. By analyzing the original data collected, the abnormal distance data of the intersections are founded, as shown in Fig.2.

    Fig.2 Intersections abnormaly detected in Linzi District

    It can be seen from Fig.2 that the distance data of the intersections are concentrated in general, but there are abnormal data with obvious right deviation in four intersections, which has a certain negative effect on the traffic state trend of the actual intersections, therefore they should be deleted as disturbance variables.

    In the actual modeling process, in order to extract more useful data feature information and improve the deep mining effect of the model, we need to consider the feature factors of vehicles because they affect road congestion of intersections. As shown in Fig.3, the number of cars is relatively larger (72.6%) compared to other vehicles (public bus, 13.2%; other vehicles, 14.2%).

    Fig.3 Road occupacy rates of passenger cars, public bus and other vehicles, respectively

    It can be seen from Fig.3 that this region has the characteristic attribute of the car due to its high road occupacy rate at the intersection. These data indirectly reflect the strong correlation between the characteristic attribute of the regional vehicles and the traffic state distribution at the regional intersections.

    2 Construction of HHM

    The traffic flow at the regional intersection shows a wave peak phenomenon in the morning and evening. The collected regional characteristic data and object attribute data of Zibo City can reflect the potential travel pattern of the intersection traffic system in the region by using the regional characteristic data of intersections to fit the macroscopic traffic state HMM of intersections and road networks. Here, the pattern recognition process of the optimal path in the region based on HMM is given. The framework is shown in Fig.4.

    Fig.4 Pattern recognition process of optimal path based on HMM

    In our work, HMM is used for path identification at the intersection of Huangong Road and Dashun Road in Linzi District of Zibo City. As we know, traffic state at the intersection is variable. Accordingly, in the learning process, the more the traffic state sequences are divided, the closer to the real traffic state the fitting effect of the traffic state based on time period, but this will increase experimental cost. Therefore, according to the road traffic regulations of the People’s Republic of China, the traffic states of the regional intersection are divided into three levels,w1,w2andw3, indicating congestion state, smooth state and slight congestion state, respectively, as illustrated in Fig.5.

    Fig.5 Regional traffic state transfer

    According to the actual complexity of the intersections, the number of traffic states (N) at the intersection is set to be three as the hidden state. At the same time, the number of data features used in our work is four, and accordingly the number of visible state data features (M) is set to be four. For the visible state length (T), considering the actual data collected in Linzi District of Zibo City,Tis selected as 12 in the process of data cleaning (selected time period is 9:00-15:00).

    It is assumed that the traffic state of the intersection starts from the initial state, and the corresponding traffic situation is randomly transferred according to the selected HMM triangular topology, which keeps in the final traffic situation. When the number of traffic states isN, the probability distribution of the initial state can be selected asπ=[1,0…0]T. For the transfer probability matrixAwithN×Nstates, the initial state distribution is

    (1)

    For the observation probability matrixBwithN×Mstates, four observation states are selected to determine the initial distribution of the observation probability matrix. In other words, regional traffic volume, regional GPS location, resident original-destination and other feature data are used for observation probability. According to the probability calculation of the actual original data features, the initial observation probability matrixB[9-11]in the corresponding state mode is set to be

    (2)

    After setting the initial values of the above HMM model parameters, the initial values of HMM are determined. In our work, the key is to use the feature data collected in the region to fit the traffic states of the intersection at a certain time in the region so as to improve model accuracy. By use of feature data processed in real time, the traffic states of the entire regional intersections are identified. Then each intersection is used as a node matched by the GPS data in order to show the visible state on the map. Finally, the mode of the traffic state corresponding to the road network is recognized, the optimal path is obtained.

    The recognition of the traffic state is based on determination of the model parameters that have been trained. By collecting the feature data of real-time observation state, the corresponding optimal state sequence at each moment is calculated, thus the most optimal connection points form a optimal path. At the same time, the optimal path is the realized by using Viterbi algorithm to dynamically plan the predicted problem based on HMM. According to dynamic programming principle, if the optimal path passes through nodeT*at timeT, all possible paths in the partial paths from this nodeT*to the end point are optimal, too.

    First of all, we define two variablesαandφ, and then the maximum probability of all single paths (i1,i2,…,it) with stateiat timeTis defined as

    i=1,2,…,N.

    (3)

    The recursive formula forσis given as

    αt+1(i)=

    i=1,2,…,N;t=1,2,…,T-1.

    (4)

    Therefore, the (t-1)th node that is most likely routed in all single regional traffic paths is

    i=1,2,…,N.

    (5)

    The implementation of the above process must be realized by Viterbi algorithm. The pseudo code of the Viterbi algorithm is as follows.

    Begin

    initialize Path←{ },t←0

    Fort←t+1

    i←1

    Addwjto Path

    Untilt=T

    Return Path

    End

    Thus, an HMM for dealing with vehicle space-time data is constructed, which can solve the optimal path well and make useful travel plan for traffic management department and traffic travelers.

    3 Experiment and analysis

    3.1 Data analysis based on proposed model

    In order to test the effect of the proposed HMM on pattern recognition of optimal traffic path, we take five main streets in Linzi District as samples, adopt the characteristic data during the period from 9:00 to 15:00 in one week in the region, select the intersection of Huangong Road and Dashun Road as the test point of the model, and match the appropriate traffic travel route in accordance with the real living data.

    Since the HMM model is a probability generation model, according to the relevant road traffic congestion index level, we divide the above-mentioned intersection states in the region into three levels. Considering the strong randomness of traffic flow, there are three traffic states hidden in transportation system. In the training process of HMM, four-dimension feature data are input in the batch mode, and the parameters of the HMM are shown in Fig.6.

    Fig.6 Parameters of HMM traffic states

    The road traffic state at the intersection in Linzi District, Zibo City, Shandong Province, during six hours is shown in Fig.7. It can be seen that the traffic state is in a non-clear state when it is at around 13:00 in working hours.

    Fig.7 Fitted waveform of traffic state

    3.2 Comparison with other methods

    To better illustrate the advantages of the HMM in identifying regional traffic paths, we compare the feature data, average recognition rate and driving time obtained by our method with those obtained by wolf group algorithm and fuzzy c-means clustering algorithm, and the results are shown in Table 1.

    Table 1 Performance comparison of three algorithms

    It can be seen that the HMM is superior to the other two methods. Therefore, it can be well applied to the optimal path identification in the region.

    The recognition rates of HMM algorithm and c-means clustering algorithm are compared, as shown in Fig.8. It can be seen that the recognition rate of HMM algorithm based on multi-feature data is significantly higher than that of c-means clustering algorithm.

    Fig.8 Comparison of recognition rates between HMM algorithm and c-means clustering algorithm

    3.3 Experimental visualization

    In order to more intuitively illustrate the effect map of the optimal path, the relevant feature data points on the road map in the region are visualized, and the actual road network distribution data are obtained through the Google map interface, as shown in Fig.9.

    c

    Fig.9 Map route data of Linzi District

    In Fig.9, each gray visualized point represents the data infromation of a road node, which is an intersection, the location of traffic light or other situations. In order to show the regional road traffic nodes, we simplify the data type of the road, only retaining the node data of intersection. The visualization of the data trained is shown in Fig.10.

    Fig.10 Regional road node data distribution

    According to the Viterbi algorithm and the consistency of the traffic state with path of each intersection in time and space, we choose the optimal path composed of two points as the start point, as shown in Fig.11.

    Fig.11 Optimal path distribution of regional road nodes

    HMM can identify the road conditions in the next time based on time series in the pattern recognition of the optimal traffic path. According to the previous feature data, it can provide better travel arrangements for traffic travelers. The specific road distance, running time and driving speed of the vehicle can well reflect smoothness of the road[21-22]. Furthermore, the traffic conditions in the city are well divided in time and space.

    4 Conclusion

    Based on the regional characteristic data in the city, this paper presents a method for solving the regional optimal traffic path based on HMM. By selecting the data set collected in the urban area, the hidden state sequence and observation sequence of the HMM are divided. And then, the model parameters are trained by the maximum likelihood estimation method. Finally, the Viterbi algorithm is used to select the optimal path based on the trained HMM. The experimental results show that the path obtained by the method has great advantages in the case of complex road traffic. It provides a reference for alleviating traffic congestion in cities.

    国产成人a区在线观看| 一个人观看的视频www高清免费观看| 97超视频在线观看视频| 长腿黑丝高跟| 丝袜美腿在线中文| 国产日本99.免费观看| 欧美高清性xxxxhd video| 国产精品亚洲av一区麻豆| 波多野结衣巨乳人妻| 又紧又爽又黄一区二区| 搡老岳熟女国产| 国产欧美日韩精品亚洲av| 日本a在线网址| 国产精华一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品野战在线观看| 午夜久久久久精精品| 久久婷婷人人爽人人干人人爱| 此物有八面人人有两片| 成人精品一区二区免费| 色尼玛亚洲综合影院| 国产亚洲精品久久久com| 亚洲成人久久爱视频| 精品久久久久久成人av| 99久久精品一区二区三区| 在线十欧美十亚洲十日本专区| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 欧美日韩中文字幕国产精品一区二区三区| 男人的好看免费观看在线视频| 欧美黄色淫秽网站| 免费av观看视频| 中文亚洲av片在线观看爽| 精品久久久久久,| 日本精品一区二区三区蜜桃| 别揉我奶头~嗯~啊~动态视频| 久久伊人香网站| 亚洲国产日韩欧美精品在线观看| 少妇熟女aⅴ在线视频| 亚洲成人精品中文字幕电影| 亚洲av电影在线进入| 日本一二三区视频观看| 直男gayav资源| 18+在线观看网站| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 男女做爰动态图高潮gif福利片| 乱人视频在线观看| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 九九热线精品视视频播放| 亚洲欧美日韩高清在线视频| 欧美精品啪啪一区二区三区| 美女大奶头视频| 久久精品综合一区二区三区| 成人av在线播放网站| 成人性生交大片免费视频hd| 直男gayav资源| 一本综合久久免费| 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 久久久久国内视频| 亚洲人成伊人成综合网2020| 国产美女午夜福利| 桃红色精品国产亚洲av| 男人的好看免费观看在线视频| 日韩有码中文字幕| 夜夜夜夜夜久久久久| 亚洲av电影不卡..在线观看| 欧美最黄视频在线播放免费| 亚洲最大成人中文| 欧美日韩国产亚洲二区| 精品不卡国产一区二区三区| 午夜福利在线观看免费完整高清在 | 免费观看的影片在线观看| 国产成人欧美在线观看| 内射极品少妇av片p| 美女大奶头视频| 露出奶头的视频| 一本一本综合久久| 啦啦啦观看免费观看视频高清| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 黄色一级大片看看| 久久久精品欧美日韩精品| 精品久久久久久久久av| 在线免费观看的www视频| 香蕉av资源在线| 69人妻影院| x7x7x7水蜜桃| 免费观看精品视频网站| 精品一区二区三区人妻视频| 欧美在线黄色| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 赤兔流量卡办理| 999久久久精品免费观看国产| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 中文字幕av成人在线电影| 波多野结衣高清作品| 在线观看午夜福利视频| 国产高清三级在线| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 欧美+日韩+精品| 日韩欧美国产一区二区入口| 嫩草影院精品99| 可以在线观看的亚洲视频| 十八禁国产超污无遮挡网站| 亚洲人成网站在线播放欧美日韩| 综合色av麻豆| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区四那| 永久网站在线| 国产黄a三级三级三级人| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 亚洲精品在线美女| 十八禁网站免费在线| 国产美女午夜福利| netflix在线观看网站| 一区二区三区高清视频在线| 听说在线观看完整版免费高清| 熟女人妻精品中文字幕| 啦啦啦韩国在线观看视频| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 久久久久精品国产欧美久久久| 免费无遮挡裸体视频| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频 | 99热精品在线国产| 日本免费一区二区三区高清不卡| 波多野结衣高清作品| 免费观看的影片在线观看| 十八禁国产超污无遮挡网站| 精品人妻偷拍中文字幕| 国产成人福利小说| bbb黄色大片| 窝窝影院91人妻| 亚洲成人久久性| 欧美黑人欧美精品刺激| 一级作爱视频免费观看| 亚洲av中文字字幕乱码综合| 色哟哟哟哟哟哟| 久久精品影院6| 麻豆成人午夜福利视频| 免费av观看视频| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频| www.熟女人妻精品国产| 亚洲电影在线观看av| 日韩欧美三级三区| 好男人在线观看高清免费视频| 欧美日本视频| 久久人人精品亚洲av| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 亚洲第一区二区三区不卡| 国产成年人精品一区二区| 毛片女人毛片| 国产在线男女| 欧美日本亚洲视频在线播放| www.www免费av| 中文在线观看免费www的网站| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 精品乱码久久久久久99久播| 真人一进一出gif抽搐免费| 日韩欧美在线乱码| 色在线成人网| 亚洲av熟女| 内地一区二区视频在线| 国产视频一区二区在线看| 色哟哟·www| 非洲黑人性xxxx精品又粗又长| 在线观看舔阴道视频| 亚洲美女黄片视频| 99riav亚洲国产免费| 99久久成人亚洲精品观看| 日韩免费av在线播放| 一个人免费在线观看的高清视频| xxxwww97欧美| 人妻丰满熟妇av一区二区三区| 国产伦一二天堂av在线观看| 婷婷色综合大香蕉| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 国产高清视频在线观看网站| 18禁黄网站禁片午夜丰满| 日韩欧美在线乱码| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 18+在线观看网站| 色在线成人网| 一区二区三区免费毛片| 成人欧美大片| 色在线成人网| 亚洲av免费高清在线观看| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 69人妻影院| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 十八禁网站免费在线| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 在线免费观看的www视频| 亚洲人成电影免费在线| 国产午夜精品论理片| 精品久久久久久久久亚洲 | 女人被狂操c到高潮| 亚洲欧美日韩东京热| 精品一区二区免费观看| 18禁黄网站禁片午夜丰满| 午夜日韩欧美国产| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 88av欧美| 国产日本99.免费观看| 757午夜福利合集在线观看| 丰满的人妻完整版| 国产欧美日韩一区二区精品| 婷婷亚洲欧美| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 久久香蕉精品热| 欧美一区二区国产精品久久精品| 成人亚洲精品av一区二区| 一级黄色大片毛片| 观看美女的网站| 欧洲精品卡2卡3卡4卡5卡区| 动漫黄色视频在线观看| 我要看日韩黄色一级片| 国产真实乱freesex| 亚洲av五月六月丁香网| 精品午夜福利在线看| 午夜激情福利司机影院| 757午夜福利合集在线观看| 日韩欧美三级三区| 亚洲欧美激情综合另类| 九九在线视频观看精品| 99国产综合亚洲精品| 99久久成人亚洲精品观看| 91字幕亚洲| 日日干狠狠操夜夜爽| 又黄又爽又刺激的免费视频.| 国产乱人视频| 午夜福利视频1000在线观看| 成人永久免费在线观看视频| www.999成人在线观看| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 观看美女的网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲国产精品999在线| 夜夜爽天天搞| 国产av麻豆久久久久久久| 97人妻精品一区二区三区麻豆| 欧美性感艳星| 十八禁人妻一区二区| 长腿黑丝高跟| 亚洲无线在线观看| а√天堂www在线а√下载| 一边摸一边抽搐一进一小说| 99久久成人亚洲精品观看| 久久久久久久久久成人| 欧美又色又爽又黄视频| 我的女老师完整版在线观看| 欧美日韩乱码在线| 国产中年淑女户外野战色| 99久久精品一区二区三区| 内射极品少妇av片p| 亚洲国产精品合色在线| 91久久精品电影网| 久久国产乱子免费精品| 国产成人福利小说| 久久亚洲真实| 夜夜夜夜夜久久久久| 亚洲,欧美,日韩| 欧美日韩瑟瑟在线播放| 国产精品久久久久久久电影| 欧美日韩中文字幕国产精品一区二区三区| 一级黄片播放器| 麻豆一二三区av精品| 91字幕亚洲| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 国产精品永久免费网站| 在线观看舔阴道视频| 日本黄大片高清| 搡老岳熟女国产| 一二三四社区在线视频社区8| av视频在线观看入口| x7x7x7水蜜桃| 精品国内亚洲2022精品成人| 波野结衣二区三区在线| 黄色女人牲交| 亚洲aⅴ乱码一区二区在线播放| 九色成人免费人妻av| 老司机午夜十八禁免费视频| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 91av网一区二区| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 国产视频内射| 色在线成人网| 亚洲精品456在线播放app | 成人三级黄色视频| 一级av片app| 亚洲精品在线观看二区| 久久久久性生活片| av在线观看视频网站免费| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 长腿黑丝高跟| 国产探花在线观看一区二区| 免费电影在线观看免费观看| 亚洲精品456在线播放app | 少妇人妻一区二区三区视频| 国产精品久久视频播放| 国产av麻豆久久久久久久| www.色视频.com| 国产69精品久久久久777片| 国产探花极品一区二区| 美女高潮喷水抽搐中文字幕| 一本精品99久久精品77| 国产一区二区在线观看日韩| 在线看三级毛片| 亚洲经典国产精华液单 | 人人妻人人看人人澡| 丰满的人妻完整版| av女优亚洲男人天堂| av福利片在线观看| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| av天堂中文字幕网| 岛国在线免费视频观看| 国产在视频线在精品| 日韩欧美一区二区三区在线观看| 日本黄色片子视频| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 搡老熟女国产l中国老女人| 欧美精品国产亚洲| 又爽又黄a免费视频| 亚洲第一区二区三区不卡| 久久性视频一级片| 波野结衣二区三区在线| 亚洲av熟女| 国产精品野战在线观看| 欧美性猛交黑人性爽| 99热这里只有是精品50| 他把我摸到了高潮在线观看| 免费看日本二区| 亚洲成人中文字幕在线播放| 色视频www国产| 人妻夜夜爽99麻豆av| 亚洲黑人精品在线| 免费人成在线观看视频色| 宅男免费午夜| 亚洲久久久久久中文字幕| 亚洲乱码一区二区免费版| 亚洲成av人片免费观看| 日本成人三级电影网站| 久久午夜福利片| 黄色配什么色好看| 他把我摸到了高潮在线观看| 免费黄网站久久成人精品 | 亚洲欧美清纯卡通| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 尤物成人国产欧美一区二区三区| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 日韩大尺度精品在线看网址| 18禁黄网站禁片免费观看直播| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 成人av在线播放网站| h日本视频在线播放| 国模一区二区三区四区视频| 国产毛片a区久久久久| 色哟哟·www| 国产精品野战在线观看| 变态另类丝袜制服| 国产精品永久免费网站| 国产不卡一卡二| 欧美黄色淫秽网站| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 日韩 亚洲 欧美在线| 国产视频一区二区在线看| 亚洲成av人片免费观看| 欧美日韩黄片免| 在线观看午夜福利视频| h日本视频在线播放| www.www免费av| 精品福利观看| 久久久久久久精品吃奶| 三级男女做爰猛烈吃奶摸视频| 69av精品久久久久久| 国产精品亚洲美女久久久| a级毛片免费高清观看在线播放| 男女那种视频在线观看| 床上黄色一级片| 久久久精品大字幕| 精品午夜福利在线看| 久久精品国产亚洲av天美| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 一区福利在线观看| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 日韩欧美国产在线观看| 久久这里只有精品中国| 极品教师在线视频| 宅男免费午夜| av在线老鸭窝| 亚洲精品色激情综合| 欧美另类亚洲清纯唯美| 久久国产乱子免费精品| 极品教师在线视频| www日本黄色视频网| 人妻久久中文字幕网| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 午夜免费成人在线视频| 久久久久国内视频| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 亚洲五月婷婷丁香| 精品福利观看| 夜夜爽天天搞| 在线观看66精品国产| 久久亚洲真实| 欧美不卡视频在线免费观看| 免费观看的影片在线观看| 熟女电影av网| 午夜福利视频1000在线观看| 国产一级毛片七仙女欲春2| 在线免费观看不下载黄p国产 | 长腿黑丝高跟| 99视频精品全部免费 在线| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 桃色一区二区三区在线观看| 亚洲第一区二区三区不卡| 国产黄色小视频在线观看| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 观看美女的网站| 可以在线观看毛片的网站| 久久99热这里只有精品18| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 久9热在线精品视频| 九九在线视频观看精品| а√天堂www在线а√下载| 免费人成在线观看视频色| 国产私拍福利视频在线观看| 亚洲欧美日韩高清在线视频| 日韩中字成人| 国产淫片久久久久久久久 | 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| ponron亚洲| 亚洲欧美激情综合另类| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 国产精品女同一区二区软件 | 亚洲成人精品中文字幕电影| 极品教师在线视频| 久久中文看片网| 日日摸夜夜添夜夜添小说| 欧美一区二区亚洲| 三级男女做爰猛烈吃奶摸视频| 一本一本综合久久| 久久国产乱子伦精品免费另类| 国产久久久一区二区三区| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| 最近最新免费中文字幕在线| 日韩欧美 国产精品| 毛片女人毛片| 亚洲真实伦在线观看| 国产精品久久电影中文字幕| 88av欧美| 亚洲一区二区三区不卡视频| 中国美女看黄片| 老熟妇仑乱视频hdxx| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 国产精品久久电影中文字幕| 国产三级黄色录像| 黄色配什么色好看| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 天堂影院成人在线观看| 九九热线精品视视频播放| 日韩精品中文字幕看吧| 午夜精品久久久久久毛片777| 搡老岳熟女国产| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 国产精品美女特级片免费视频播放器| 少妇人妻一区二区三区视频| 九色国产91popny在线| 国产一区二区三区在线臀色熟女| 国产毛片a区久久久久| 夜夜爽天天搞| 久久热精品热| 亚洲久久久久久中文字幕| 有码 亚洲区| 黄色配什么色好看| 麻豆国产av国片精品| 亚洲精品日韩av片在线观看| 亚洲av成人精品一区久久| 观看美女的网站| 国产一级毛片七仙女欲春2| 国产成人aa在线观看| 午夜免费成人在线视频| 黄色丝袜av网址大全| 最近视频中文字幕2019在线8| 波野结衣二区三区在线| 51国产日韩欧美| 精品人妻视频免费看| 日本一本二区三区精品| АⅤ资源中文在线天堂| 在线观看舔阴道视频| 日韩欧美精品免费久久 | 亚洲男人的天堂狠狠| 十八禁网站免费在线| 久久精品国产亚洲av涩爱 | 一级a爱片免费观看的视频| 久久久精品大字幕| 搡老妇女老女人老熟妇| 国产一级毛片七仙女欲春2| 成人鲁丝片一二三区免费| 黄片小视频在线播放| 色5月婷婷丁香| 在线观看午夜福利视频| 亚洲自拍偷在线| 国产在线精品亚洲第一网站| 观看美女的网站| 国产免费一级a男人的天堂| 亚洲第一欧美日韩一区二区三区| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 国产成人aa在线观看| 国产精品久久久久久精品电影| 在线国产一区二区在线| 亚洲欧美清纯卡通| 精品人妻视频免费看| 午夜精品一区二区三区免费看| 精品免费久久久久久久清纯| 两个人的视频大全免费| 精品99又大又爽又粗少妇毛片 | 一级黄片播放器| 亚洲,欧美精品.| 搞女人的毛片| 精品一区二区三区视频在线| 精品国产三级普通话版| 午夜免费男女啪啪视频观看 | 亚洲国产精品成人综合色| 国产爱豆传媒在线观看| 亚洲不卡免费看| 国产精品爽爽va在线观看网站| 精品不卡国产一区二区三区| 国产视频内射| 国产高清视频在线观看网站| 精品福利观看| 老司机午夜十八禁免费视频| 日本精品一区二区三区蜜桃| 757午夜福利合集在线观看| 热99re8久久精品国产| 他把我摸到了高潮在线观看| 久久精品国产亚洲av涩爱 | av欧美777| 午夜免费男女啪啪视频观看 | 一边摸一边抽搐一进一小说| 深夜a级毛片| 国产精品电影一区二区三区| 在线观看午夜福利视频| 亚洲成人中文字幕在线播放|