杜金姬,秦闖亮
一類具有l(wèi)ogistic增長的隨機(jī)SIRS傳染病模型的平穩(wěn)分布和滅絕性
杜金姬,秦闖亮
(信陽學(xué)院 數(shù)學(xué)與信息學(xué)院,河南 信陽 464000)
研究了一類具有l(wèi)ogistic增長的隨機(jī)SIRS傳染病模型.通過Lyapunov函數(shù)法,證明了模型全局正解的存在唯一性.給出了模型正解存在平穩(wěn)分布以及疾病滅絕的充分條件.
SIRS模型;平穩(wěn)分布;滅絕性;logistic增長
從Kermack和Mckendric[1]先驅(qū)工作后,數(shù)學(xué)模型被廣泛應(yīng)用于描述疾病的傳播和控制.各種隨機(jī)形式的流行病模型被建立和研究[2-8].在傳染病模型中,人口的增長采用logistic增長更符合實(shí)際.本文考慮一類具有l(wèi)ogistic增長的隨機(jī)SIRS傳染病模型
為了分析系統(tǒng)(1)的長期行為,證明系統(tǒng)(1)存在唯一的全局正解.
下面的證明類似文獻(xiàn)[3].證畢.
平穩(wěn)分布的存在性可以看作系統(tǒng)的隨機(jī)弱穩(wěn)定性,即疾病將長期存在.
考慮積分方程
引理2中相關(guān)符號(hào)含義見文獻(xiàn)[9],這里不再贅述.
由式(5)~(7)可知
證明在一些假設(shè)條件下,疾病將滅絕.
本文研究了一類具有l(wèi)ogistic增長的隨機(jī)SIRS傳染病模型,通過構(gòu)造適當(dāng)?shù)腖yapunov函數(shù)證明了模型存在唯一的全局正解,給出了模型正解存在平穩(wěn)分布和滅絕的充分條件.
[1] Kermack W O,McKendrick A G.Contributions to the mathematical theory of epidemics-I[J].Proc R Soc Lond Ser A Math Phys Sci,1927,115(772):701-721
[2] Zhang X,Liu X.Backward bifurcationn of an epidemic model with saturated treatment function[J].Math Anal Appl,2008,348: 433-437
[3] Wang L,Zhou D,Liu Z,et al.Media alert in an SIS epidemic model with logistic growth[J].Biol Dyn,2017,11(1):120-137
[4] 傅金波,陳蘭蓀.具有垂直傳染和接觸傳染的傳染病模型的穩(wěn)定性研究[J].?dāng)?shù)學(xué)雜志,2016,36(6):1283-1290
[5] 張林,李存林,郭文娟.基于媒體報(bào)道下的一類SIRS傳染病模型研究[J].?dāng)?shù)學(xué)雜志,2018,38(5):887-895
[6] 石月蓮,李燦.一類具有l(wèi)ogistic增長和飽和發(fā)生率的SIRI傳染病模型的全局動(dòng)力學(xué)性態(tài)[J].?dāng)?shù)學(xué)的實(shí)踐與認(rèn)識(shí),2019,49(7): 299-307
[7] 穆宇光,徐瑞.一類具有飽和發(fā)生率和復(fù)發(fā)的隨機(jī)SIRI模型的穩(wěn)定性[J].應(yīng)用數(shù)學(xué),2019,32(3):570-580
[8] 趙英英,胡華.帶有標(biāo)準(zhǔn)發(fā)生率和信息干預(yù)的隨機(jī)SIRS傳染病模型的滅絕性和平穩(wěn)分布[J].應(yīng)用數(shù)學(xué),2018,31(3):704-713
[9] Knasminskii R.Stochastic Stability of Differential Equations[M].Berlin:Springer Science and Business Media,1980
[10] MAO X R.Stochastic Differential Equationss and Applications[M].Chichester UK:Horwood Publishing,2007
Stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth
DU Jinji,QIN Chuangliang
(School of Mathematics and Information,Xinyang College,Xinyang 464000,China)
A class of stochastic SIRS epidemic model with logistic growth was researched.The existence of a unique of the globel positive solution of the model was proved by using the Lyapunov function method.The sufficient conditions for the existence of a stationary distribution of the positive solutions to the model and the extinction of the disease were obtained.
SIRS model;stationary distribution;extinction;logistic growth
O175.1
A
10.3969/j.issn.1007-9831.2020.10.004
1007-9831(2020)10-0013-05
2020-05-01
河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(20B110017);信陽市規(guī)劃項(xiàng)目(2019TS010);信陽學(xué)院資助項(xiàng)目(2018LYB02,2018LYB09)
杜金姬(1981-),女,河南許昌人,講師,碩士,從事生物數(shù)學(xué)研究.E-mail:djj168qcl@163.com