張鐵鷹,張麗陽(yáng),劉俊麗,廖朝勇,呂林,廖秀冬,羅緒剛
我國(guó)畜禽飼料資源中微量元素砷含量分布的調(diào)查研究
張鐵鷹,張麗陽(yáng),劉俊麗,廖朝勇,呂林,廖秀冬,羅緒剛
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
【】研究我國(guó)不同地區(qū)間各種飼料原料中砷含量分布情況及不同飼料原料中砷含量超標(biāo)情況,確定砷污染高風(fēng)險(xiǎn)原料為嚴(yán)控飼料砷含量,防止飼料砷超標(biāo)提供科學(xué)依據(jù),更為飼料企業(yè)科學(xué)制定重金屬砷的品控方案提供數(shù)據(jù)支持。利用離子色譜-電感耦合等離子體-質(zhì)譜聯(lián)用儀(IC-ICP-MS)對(duì)采自全國(guó)31個(gè)省、直轄市和自治區(qū)的40種共4 054個(gè)主要畜禽飼料原料中砷含量進(jìn)行測(cè)定。這40種飼料原料的平均砷含量范圍為5.21—13 292.0 μg·kg-1之間,而各類飼料原料砷含量分布規(guī)律是:礦物質(zhì)飼料(5 018.6 μg·kg-1)>動(dòng)物性蛋白飼料(1 704.8 μg·kg-1)>秸稈類飼料(1 239.0 μg·kg-1)>牧草類飼料(500.3 μg·kg-1)>谷類籽實(shí)加工副產(chǎn)品(329.24 μg·kg-1)>植物性蛋白飼料(72.99 μg·kg-1)>谷類籽實(shí)(38.07 μg·kg-1)。同時(shí)發(fā)現(xiàn),谷物籽實(shí)及其副產(chǎn)物與秸稈類飼料的砷分布規(guī)律:玉米秸>副產(chǎn)物(玉米蛋白粉、噴漿玉米皮、玉米DDGS)>玉米籽實(shí);小麥秸>副產(chǎn)物(小麥麩、小麥DDGS、次粉)>小麥籽實(shí);稻秸>副產(chǎn)物(米糠、脫脂米糠)>稻谷>碎米,是因?yàn)楣任镏仓暝谏L(zhǎng)過程中對(duì)砷的富集能力排序:根>葉>莖>谷殼>米粒。通過比較不同?。▍^(qū))玉米、小麥和豆粕的砷含量發(fā)現(xiàn),不同?。▍^(qū))同一種飼料原料的砷含量均存在極顯著差異(<0.01)。根據(jù)國(guó)家飼料衛(wèi)生標(biāo)準(zhǔn),在對(duì)40種飼料原料砷含量超標(biāo)率的統(tǒng)計(jì)中發(fā)現(xiàn),谷物籽實(shí)類飼料、植物蛋白類飼料及牧草類飼料的砷含量均未超標(biāo);而谷物籽實(shí)加工副產(chǎn)品中的脫脂米糠砷超標(biāo)率為2.8%,其他未超標(biāo);動(dòng)物蛋白中魚粉砷超標(biāo)率5.3%,其他未超標(biāo);秸稈類飼料中稻秸砷超標(biāo)率27.4%,其他未超標(biāo);礦物質(zhì)飼料中石粉與磷酸氫鈣砷含量超標(biāo)率分別為30.8%和60%,其他未超標(biāo)。不同飼料的砷含量超標(biāo)率:磷酸氫鈣>石粉>稻秸>魚粉>脫脂米糠。以上結(jié)果表明:不同種類和不同地區(qū)飼料原料中砷含量差異較大,谷物相關(guān)的飼料原料中,秸稈類飼料砷含量最高,谷物加工副產(chǎn)物次之,籽實(shí)類最低。反芻動(dòng)物飼料在選擇秸稈類原料時(shí),應(yīng)重點(diǎn)檢測(cè)砷的含量。同時(shí),磷酸氫鈣、石粉、稻秸、魚粉和脫脂米糠均存在砷含量超標(biāo)現(xiàn)象,可視為砷污染高危飼料。因此,在實(shí)際生產(chǎn)中,應(yīng)充分考慮不同地區(qū)不同原料中的砷含量,加大高危飼料的檢測(cè)頻率,嚴(yán)控飼料砷含量在國(guó)標(biāo)GB 13078-2017允許的范圍內(nèi),保障飼料品質(zhì)安全。
飼料原料;砷含量;豬;雞
【研究意義】飼料是我國(guó)畜牧業(yè)發(fā)展的關(guān)鍵環(huán)節(jié),飼料品質(zhì)的好壞直接影響?zhàn)B殖效益,阻礙畜牧業(yè)健康發(fā)展。隨著建設(shè)生態(tài)畜牧業(yè)的進(jìn)程加快,飼料品質(zhì)安全被日益關(guān)注,全國(guó)飼料工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì)于2017年對(duì)飼料衛(wèi)生標(biāo)準(zhǔn)進(jìn)行了重新修訂(現(xiàn)行版本為GB 13078-2017)[1],其中對(duì)總砷的限量進(jìn)行了修改,增加了在“干草及其加工產(chǎn)品”“棕櫚仁餅粕”“藻類及其加工產(chǎn)品”“甲殼類動(dòng)物及其副產(chǎn)品、魚蝦粉、水生軟體動(dòng)物及其副產(chǎn)品”和“其他水生動(dòng)物源性飼料原料”中的限量;增加了“其他礦物質(zhì)飼料原料”和“其他飼料原料”中的限量;將“豬、家禽添加劑預(yù)混合飼料”擴(kuò)展為“添加劑預(yù)混合飼料”;將“豬、家禽濃縮飼料”和“牛、羊精料補(bǔ)充料”分別擴(kuò)展為“濃縮飼料”和“精料補(bǔ)充料”,并將“豬、家禽配合飼料”擴(kuò)展為“其他配合飼料”。研究不同地區(qū)畜禽飼料資源及其砷含量和分布規(guī)律,對(duì)飼料原料的選擇,飼料砷污染的防控,飼料品質(zhì)的保障及推動(dòng)畜牧業(yè)的健康發(fā)展均具有重大的現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】砷廣泛存在于土壤、巖石及水中,是一種有毒的非金屬元素[2]。礦物質(zhì)飼料添加劑及魚粉等都會(huì)是飼料中砷的主要來(lái)源。大量研究表明,無(wú)極砷毒性強(qiáng),有機(jī)砷毒性相對(duì)較低,且砷在特定范圍內(nèi)可以抑制腫瘤細(xì)胞及病原微生物生長(zhǎng)[3-5],我國(guó)曾一度批準(zhǔn)苯胂酸類有機(jī)胂制劑作為飼料添加劑使用,使用有機(jī)砷為飼料添加劑的豬場(chǎng)周圍土壤或者長(zhǎng)期施用豬糞作為肥料的農(nóng)田,大部分土壤砷含量超標(biāo),并在農(nóng)作物、地下水及動(dòng)物產(chǎn)品中發(fā)生砷富集[6-9]。砷超量能夠?qū)θ魏蝿?dòng)物產(chǎn)生毒性,通過影響基因的正常功能、細(xì)胞的能量代謝,誘發(fā)染色體變異并致癌[10-12]。飼料中砷超標(biāo)不但影響動(dòng)物的生產(chǎn)性能還能夠引發(fā)重大食品安全問題,造成環(huán)境污染[13-18]。【本研究切入點(diǎn)】我國(guó)一直未對(duì)畜禽飼料資源中砷含量分布進(jìn)行系統(tǒng)、專門的調(diào)研,隨著我國(guó)飼料衛(wèi)生標(biāo)準(zhǔn)的從嚴(yán)修訂,降低由飼料品質(zhì)安全引發(fā)的食品安全、環(huán)境污染等一系列重大社會(huì)問題,亟需對(duì)我國(guó)當(dāng)前畜禽飼料資源中微量元素砷含量的分布情況進(jìn)行普查分析,嚴(yán)控原料接受標(biāo)準(zhǔn)及飼料產(chǎn)品中砷的含量?!緮M解決的關(guān)鍵問題】因此,本研究對(duì)全國(guó)不同區(qū)域主要畜禽飼料原料中微量元素砷含量進(jìn)行測(cè)定,研究不同地區(qū)各種飼料原料中砷含量的分布,為防止畜禽飼料中砷超標(biāo),保障飼料安全,提供科學(xué)依據(jù)。
1.1.1 采樣 針對(duì)我國(guó)不同區(qū)域主要畜禽飼料資源的分布情況,結(jié)合各?。ㄊ?、區(qū))的2013年各原料總產(chǎn)量及其在各縣(市)或企業(yè)總產(chǎn)量占全省合計(jì)總產(chǎn)量的比例,以確定各?。ㄊ?、區(qū))及其各縣(市)或代表性企業(yè)的樣品數(shù);同時(shí)還根據(jù)谷物籽實(shí)、牧草或秸稈飼料在各縣(市)的鎮(zhèn)(鄉(xiāng))分布情況,確定各縣(市)的代表性鎮(zhèn)(鄉(xiāng))及其樣品數(shù)。于2016年1月至2018年6月期間,在我國(guó)除港澳臺(tái)外的31個(gè)省、直轄市和自治區(qū),包括東北和西北(黑龍江、吉林、遼寧、陜西、甘肅、寧夏、新疆、青海,共8個(gè)?。▍^(qū)))、華北(北京、天津、河北、山西、內(nèi)蒙,共5個(gè)?。ㄊ小^(qū)))、華東和華中(上海、山東、江蘇、安徽、江西、浙江、福建、湖北、湖南、河南,共10個(gè)?。ㄊ校┘拔髂虾腿A南(重慶、四川、貴州、云南、西藏、廣東、廣西、海南,共8個(gè)?。ㄊ小^(qū))),采集了40種共4 054個(gè)飼料樣品,樣品均采自當(dāng)?shù)剞r(nóng)戶、農(nóng)場(chǎng)或飼料原料加工企業(yè),且飼料原料加工企業(yè)的原料也是產(chǎn)自當(dāng)?shù)亍2蓸訒r(shí)應(yīng)用GPS定位并拍照,并按照編碼方案標(biāo)示條形碼后,帶回實(shí)驗(yàn)室備分析。
1.1.2 樣品種類 主要調(diào)查我國(guó)不同地區(qū)的七大類型飼料原料,包括谷物籽實(shí)(玉米、小麥、稻谷、大麥)及其加工副產(chǎn)品(碎米、次粉、小麥麩、米糠、脫脂米糠、玉米DDGS、小麥DDGS、玉米胚芽粕、噴漿玉米皮、玉米蛋白粉、木薯干)、植物性蛋白飼料(膨化大豆、豆粕、菜籽粕、棉籽粕、花生粕、亞麻粕、葵花粕)、動(dòng)物性蛋白飼料(魚粉、肉粉、水解羽毛粉、腸膜蛋白粉、血漿蛋白粉、血球蛋白粉)、秸稈類飼料(玉米秸、甘薯藤、稻秸、小麥秸)、牧草類飼料(羊草、黑麥草、苜蓿、青貯玉米)和礦物質(zhì)飼料(石粉、磷酸氫鈣、骨粉、貝殼粉),以便較全面地了解飼料中的砷水平。
1.2.1 樣品處理 2016年1月至2018年10月期間,所采樣品均集中于中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所統(tǒng)一處理,以保證分析結(jié)果的一致性和可靠性。樣品經(jīng)過挑選、清潔、風(fēng)干、混合均勻后以四分法縮減分取試樣,于不銹鋼小型高速粉碎機(jī)(IL-04BL)粉碎后,分裝自封袋,注明樣品名稱、編號(hào)、條形碼等后冷庫(kù)保存。
1.2.2 分析方法 準(zhǔn)確稱取0.5 g(精確到0.0001 g)飼料樣品于消化管中,加入5 mL濃硝酸和2 mL雙氧水浸泡2 h后,在高通量密閉微波消解儀(CME,美國(guó))上消化后,使用離子色譜-電感耦合等離子體-質(zhì)譜聯(lián)用儀(IC-ICP-MS)測(cè)定其砷含量[19-20],同時(shí)應(yīng)用國(guó)家標(biāo)準(zhǔn)物質(zhì)豬肝粉(GBW10051)或黃豆粉(GBW10013)作為對(duì)照,檢查分析的可靠性。
1.2.3 數(shù)據(jù)處理 所有數(shù)據(jù)均采用SAS 9.4中的一般線性模型(GLM)程序進(jìn)行單因素方差分析,差異顯著者,以最小顯著差異(LSD)法比較各組間的差異顯著性。數(shù)據(jù)以平均值加減標(biāo)準(zhǔn)差表示,以<0.05和0.01分別作為各項(xiàng)數(shù)據(jù)顯著差異和極顯著差異檢驗(yàn)水平。
砷的藥理及毒理作用已經(jīng)明確,對(duì)任何動(dòng)物均有毒性。飼料中砷超標(biāo),將嚴(yán)重威脅畜牧生產(chǎn)。因此,砷被確認(rèn)為飼料中重點(diǎn)防控的重金屬安全風(fēng)險(xiǎn)因子之一。我國(guó)在飼料衛(wèi)生標(biāo)準(zhǔn)中也對(duì)畜禽飼料及原料中的砷含量進(jìn)行了嚴(yán)格的限量規(guī)定(表1)。
表1 飼料原料中砷的限量標(biāo)準(zhǔn)(風(fēng)干基礎(chǔ))
為獲得對(duì)全國(guó)具有一定代表性的結(jié)果,共采集了我國(guó)除港澳臺(tái)外的31個(gè)省、直轄市和自治區(qū)的4 054個(gè)飼料原料樣品,測(cè)定砷含量。結(jié)果分類列于表2—表7中。
在同一類別中的不同飼料原料中砷含量均存在極顯著差異(<0.01)。谷物類籽實(shí)中的平均砷含量為38.07 μg·kg-1, 其中稻谷的砷含量最高(221.04 μg·kg-1),玉米中最低(6.72 μg·kg-1),且砷含量均未超標(biāo);谷物籽實(shí)加工副產(chǎn)品中的平均砷含量為329.24 μg·kg-1, 其中米糠的砷含量最高(1 016.2 μg·kg-1),玉米胚芽粕最低(7.13 μg·kg-1),僅脫脂米糠中砷含量超標(biāo)率為2.8%;植物性蛋白飼料中的平均砷含量為72.99 μg·kg-1,其中葵花粕中的砷含量最高(315.56 μg·kg-1), 膨化大豆中最低(5.21 μg·kg-1),但葵花粕樣本只來(lái)源于3個(gè)省,且樣本之間的變異較大,因此其砷含量可能不具備代表性,且砷含量均未超標(biāo);動(dòng)物性蛋白飼料中的平均砷含量為1 704.8 μg·kg-1,其中魚粉的砷含量最高(5 137.1 μg·kg-1), 血球蛋白粉中最低(38.05 μg·kg-1),僅魚粉砷含量超標(biāo)率為5.3%;秸稈類飼料中的平均砷含量為1 239.0 μg·kg-1,其中稻秸中的砷含量最高(3 025.2 μg·kg-1), 玉米秸中最低(154.7 μg·kg-1),僅稻秸砷含量超標(biāo)率為27.4%;牧草類飼料中的平均砷含量為500.3 μg·kg-1,其中羊草中砷含量最高(663.12 μg·kg-1),青貯玉米含量最低(345.84 μg·kg-1),且砷含量均未超標(biāo);礦物質(zhì)飼料中的平均砷含量為5 018.6 μg·kg-1,其中磷酸氫鈣中的砷含量最高(13 292.5 μg·kg-1),骨粉中最低(53.52 μg·kg-1),磷酸氫鈣砷含量超標(biāo)率達(dá)60%,石粉砷含量超標(biāo)率次之,為30.8%。
由以上結(jié)果可以看出,這40種飼料原料的平均砷含量范圍為5.21—13 292.0 μg·kg-1之間,而各類飼料原料砷含量分布規(guī)律是:礦物質(zhì)飼料(5 018.6 μg·kg-1)>動(dòng)物性蛋白飼料(1 704.8 μg·kg-1)>秸稈類飼料(1 239.0 μg·kg-1)>牧草類飼料(500.3 μg·kg-1)>谷類籽實(shí)加工副產(chǎn)品(329.24 μg·kg-1)>植物性蛋白飼料(72.99 μg·kg-1)>谷類籽實(shí)(38.07 μg·kg-1);其中最高的2種飼料原料分別為磷酸氫鈣和魚粉,這與砷廣泛存在于巖石和水體中有關(guān)。40種飼料原料中,磷酸氫鈣、石粉、稻秸、魚粉及脫脂米糠中均存在砷含量超標(biāo)現(xiàn)象,可視為高危飼料原料,程度為:磷酸氫鈣(60%)>石粉(30.8%)>稻秸(27.4%)>魚粉(5.3%)>脫脂米糠(2.8%),應(yīng)提高高危飼料原料的檢測(cè)頻率,保障飼料品質(zhì)安全。
表2 谷類籽實(shí)及其加工副產(chǎn)品中砷含量分布(風(fēng)干基礎(chǔ))
同列數(shù)據(jù)不同大寫字母表示谷物籽實(shí)類飼料差異顯著(<0.01)。結(jié)果表示為平均值±標(biāo)準(zhǔn)差。超標(biāo)率=每種類飼料樣品超標(biāo)數(shù)/該種類飼料樣品總數(shù)×100%。下同
Means lacking a common capital letter within the same columns are significant difference among the zinc contents in the feedstuffs of cereals (<0.01). Results are expressed as mean ± standard deviation. Over-limit ratio = the number of exceeding limit standard samples in each kind/total number of samples in each kind ×100%. The same as below
表3 植物性蛋白飼料中砷含量分布(風(fēng)干基礎(chǔ))
表4 動(dòng)物性蛋白飼料中砷含量分布(風(fēng)干基礎(chǔ))
表5 秸稈類飼料中砷含量分布(風(fēng)干基礎(chǔ))
表6 牧草類飼料中砷含量分布(風(fēng)干基礎(chǔ))
表7 礦物質(zhì)飼料中砷含量分布(風(fēng)干基礎(chǔ))
為了明確在各地區(qū)自然條件下對(duì)飼料原料中砷含量的影響,選擇了常用而且采樣面較廣的玉米、小麥和豆粕,根據(jù)玉米、小麥和豆粕的主產(chǎn)地及主要畜禽主要養(yǎng)殖區(qū)域分布情況,進(jìn)行以?。▍^(qū))為單位的平均砷含量的比較(表8)。由表8可見,18個(gè)主要?。▍^(qū))的玉米平均砷含量具有顯著差異(<0.01),其中以湖北省玉米平均砷含量最低,為1.41 μg·kg-1,而山西省玉米平均砷含量最高,為13.67 μg·kg-1,相差12.26 μg·kg-1;11個(gè)主要?。▍^(qū))的小麥平均砷含量差異不顯著;14個(gè)主要省(區(qū))的豆粕平均砷含量具有顯著差異(<0.01),其中江蘇省的豆粕平均砷含量最低,為4.48 μg·kg-1,福建省最高,為213.79 μg·kg-1,相差209.31 μg·kg-1。
本研究中所調(diào)查的7大類飼料原料中,以礦物質(zhì)飼料中砷含量最高,其中以磷酸氫鈣中砷含量最高,超標(biāo)率達(dá)60%,谷物籽實(shí)類飼料中砷含量最低。磷酸氫鈣采集自14個(gè)省,平均砷含量為13 292.5 μg·kg-1(13.3 mg·kg-1),已經(jīng)超出了飼料衛(wèi)生標(biāo)準(zhǔn)規(guī)定礦物質(zhì)飼料原料的最高限量10 mg·kg-1,表明磷酸氫鈣極易受到砷的污染,應(yīng)提高對(duì)礦物質(zhì)原料尤其是磷酸氫鈣中砷含量的檢測(cè)頻率。李俊等2014年對(duì)我國(guó)7?。▍^(qū))的天然礦物飼料中重金屬調(diào)查報(bào)告也得出一致結(jié)果,砷在磷酸氫鈣含量較高,最高含量甚至為飼料衛(wèi)生標(biāo)準(zhǔn)控制線的2.2倍,超標(biāo)率50%[21]。在動(dòng)物蛋白飼料原料中,魚粉的砷含量最高5 137.1μg·kg-1,在所檢測(cè)的動(dòng)物蛋白飼料原料中,只有魚粉的砷含量存在超標(biāo)現(xiàn)象5.3%,屬于砷污染是高風(fēng)險(xiǎn)原料,也是飼料中砷的主要來(lái)源[22-25]。筆者還發(fā)現(xiàn)谷物籽實(shí)的加工副產(chǎn)品中,米糠(稻谷加工副產(chǎn)物)的砷含量最高1 016.2 μg·kg-1,是稻谷的4.6倍,脫脂米糠的砷含量?jī)H次于米糠,且存在超標(biāo)現(xiàn)象,超標(biāo)率為2.8%,米糠是稻谷加工過程中分離出的種皮、糊粉層和胚的混合物,脫脂米糠是米糠脫脂膨化后的產(chǎn)品,米糠和脫脂米糠均含有大量的纖維,砷的含量高于碎米,低于稻秸,水稻各部位對(duì)砷的富集能力排序:根>葉>莖>谷殼>米粒[26-28]。玉米蛋白粉與噴漿玉米皮的砷含量分別是玉米的6.4和8.2倍,小麥麩中的砷含量是全麥粒的2.9倍,說(shuō)明谷物表皮的含量高于籽實(shí)。此外,本研究發(fā)現(xiàn)砷在秸稈類飼料含量相對(duì)較高,在稻秸中含量最高3 025.2 μg·kg-1,是稻谷的13.7倍,且稻秸的砷含量超標(biāo)率為27.4%,稻秸是莖葉的總和,均為砷富集的主要部位[29-30],屬于砷污染高風(fēng)險(xiǎn)原料。玉米秸的砷含量是玉米的23倍,小麥秸砷含量是小麥的13.2倍,砷在谷物秸稈中的含量高于表皮和籽實(shí),是由于砷在植物不同器官的分布不同所致。袁雪花等[31]在對(duì)高砷地下水灌溉區(qū)的動(dòng)物飼料及產(chǎn)品中砷含量的研究發(fā)現(xiàn),玉米秸稈的超標(biāo)率達(dá)100%。玉米籽粒的砷含量符合飼料衛(wèi)生標(biāo)準(zhǔn),砷主要在植物的秸稈中富集,與本研究結(jié)論一致,動(dòng)物產(chǎn)品如動(dòng)物肝臟,腎臟,牛奶均出現(xiàn)砷超標(biāo)現(xiàn)象,反芻動(dòng)物的日糧配置需要考慮秸稈類飼料的砷含量[31]。
表8 我國(guó)部分省(區(qū))玉米、小麥及豆粕中砷含量分布(風(fēng)干基礎(chǔ))
同列數(shù)據(jù)不同大寫字母表示為極差異顯著(<0.01)。結(jié)果表示:平均值±標(biāo)準(zhǔn)差。括號(hào)內(nèi)的數(shù)字為樣品采集數(shù)和測(cè)定個(gè)數(shù)
Means lacking a common capital letter within the same column are significant difference (<0.01). Results are expressed as mean ± standard deviation. Number of samples in parentheses
同一種原料不同地區(qū)的砷含量明顯不同,其中除小麥外,玉米及豆粕中砷含量在各?。ㄊ校┲芯町愶@著,可能是由于不同作物在不同地區(qū)的土壤、氣候條件、作物品種等有關(guān)。玉米的砷含量在山東、貴州、山西及黑龍江省中較高,在湖北、江蘇和吉林省相對(duì)較低;豆粕砷含量在四川、河北、湖北及福建省較高,在遼寧、江蘇、黑龍江和廣東較低;因此,從玉米、小麥及豆粕砷含量在各?。ㄊ校┑姆植记闆r看,并無(wú)明顯規(guī)律,也并無(wú)相關(guān)研究供參考。
對(duì)采自全國(guó)31個(gè)省、直轄市和自治區(qū)的40種共4 054個(gè)主要畜禽飼料原料中砷含量分布的調(diào)查研究發(fā)現(xiàn),我國(guó)畜禽不同飼料原料中砷含量分布不同,各?。▍^(qū))玉米和豆粕中砷含量也存在差異。其中,磷酸氫鈣、石粉、稻秸、魚粉及脫脂米糠中存在砷含量超標(biāo)現(xiàn)象,因此,在實(shí)際生產(chǎn)中,應(yīng)充分考慮不同地區(qū)飼料原料中的砷含量,尤其要做好高危飼料原料的砷含量檢測(cè),嚴(yán)控飼料產(chǎn)品中砷含量,確保飼料品質(zhì)安全。
[1] 全國(guó)飼料工業(yè)標(biāo)準(zhǔn)化技術(shù)委員會(huì). 2017, 飼料衛(wèi)生標(biāo)準(zhǔn)GB 13078-2017.
National Feed Industry Standardization Technical Committee. 2017, Feed Hygiene Standard GB 13078-2017. (in Chinese)
[2] PACHAURI V, MEHTA A, MISHRA D, MISHRA D, FLORA S. Arsenic induced neuronal apoptosis in guinea pigs is Ca2+dependent and abrogated by chelation therapy: Role of voltage gated calcium channels., 2013, 35: 137-145.
[3] ZHONG F, ZHANG S N, SHAO C K, YANG J, WU X Y. Arsenic trioxide inhibits cholangiocarcinoma cell growth and induces apoptosis., 2010, 16(3): 413-420.
[4] WU J N, JI Z Y, LIU H L, LIU Y H, HAN D Y, SHI C, SHI C B, WANG C L, YANG G, CHEN X F, SHEN C, LI H D, BI Y K, ZHANG D Z, ZHAO S G. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway., 2013, 220(1): 61-69.
[5] KOMOROWICZ I, BARALKIEWICZ D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review., 2011, 84(2): 247-261.
[6] ZHANG X Y, ZHOU M Y, LI L L, JIANG Y J, ZOU X T. Effects of arsenic supplementation in feed on laying performance, arsenic retention of eggs and organs, biochemical indices and endocrine hormones., 2016, 58(1): 63-68.
[7] 劉雅慈, 李亞松, 張兆吉, 田夏, 曹勝偉. 魯北平原養(yǎng)雞場(chǎng)周邊包氣帶與地下水砷化合物分布規(guī)律. 南水北調(diào)與水利科技, 2017, 15(3): 86-93.
LIU Y C, LI Y S, ZHANG Z J, TIAN X, CAO S W. Distribution of arsenic compounds in vadose zone and groundwater around the chicken farm in Lubei Plain., 2017, 15(3): 86-93. (in Chinese)
[8] 王付民, 陳杖榴, 孫永學(xué), 高延玲, 余靜賢. 有機(jī)胂飼料添加劑對(duì)豬場(chǎng)周圍及農(nóng)田環(huán)境污染的調(diào)查研究. 生態(tài)學(xué)報(bào), 2006(26): 154-162.
WANG F M, CHEN Z L, SUN Y X, GAO Y L, YU J X. Investigation on the pollution of organoarsenical additives to animal feed in the surroundings and farmland near hog farms., 2006(26): 154-162. (in Chinese)
[9] 王克儉, 廖新俤. 豬場(chǎng)周圍環(huán)境中砷的分布及遷移規(guī)律研究. 家畜生態(tài)學(xué)報(bào), 2005, 26(2): 29-32.
WANG K j, LIAO X d. Study on the distribution and migrating disciplinavian of arsenic around the pig farm., 2005, 26(2): 29-32. (in Chinese)
[10] ADRIEN A.. 7thed. London: Chapman and Hall, 1985: 550-561.
[11] MOE B, PENG H Y, LU X F, CHEN B W, CHEN L W L, GABOS S, LI X F, LE X C. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing., 2016, 49(11): 113-124.
[12] NACHMAN K E, RABER G, FRANCESCONI K A, NAVAS-ACIEN A, LOVE D C. Arsenic species in poultry feather meal., 2012, 417: 183-188.
[13] AGGARWAL M, NARAHARISETTI S B, SARKAR S N, RAO G S, DEGEN G H, MALIK J K. Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study., 2009, 5(1): 139-148.
[14] 袁濤, 管恩平, 何桂華, 賈俊濤, 張藝兵. 砷制劑作為畜禽促生長(zhǎng)劑的作用及其危害分析. 中國(guó)家禽, 2010, 32(22): 51-53.
YUAN T, GUAN E P, HE G H, JIA J T, ZHANG Y B. Effect and hazard analysis of arsenic preparation as growth promoter for livestock and poultry., 2010, 32(22): 51-53. (in Chinese)
[15] STANLEY, T R, SPAHN, J W, SMITH G J, ROSSCOE R. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival., 1994(26): 444-451.
[16] HERMAYER K L, STAKE P E, SHIPPE R L. Evaluation of dietary zinc, cadmium, tin, lead, bismuth and arsenic toxicity in hens., 1977(56): 1721.
[17] VODELA J K, LENZ S D, RENDEN J A, MCELHENNEY W H, KEMPPAINEN B W. Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 2. Effects on reproductive performance, egg quality, and embryo toxicity in broiler breeders., 1997, 76(11): 1493-1500.
[18] 周巖民, 杜文興, 韓兆玉, 王冉, 陸治年, 王恬. 洛克沙生對(duì)肉鴨生產(chǎn)性能和砷殘留及組織病變的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 24(4): 46-50.
ZHOU Y M, DU W X, HAN Z Y, WANG R, LU Z N, WANG T. Effect of organic arsenic on performance, tissue arsenic residue and tissue pathogenic change of meat-strain ducks., 2001, 24(4): 46-50. (in Chinese)
[19] 周利英, 戴璐, 倪小波, 駱海清, 常云芝, 李桂景, 魏云計(jì). 微波消解ICP-AES法同時(shí)測(cè)定飼料中8種重金屬元素. 飼料工業(yè), 2018, 39(1): 46-48.
ZHOU L Y, DAI L, NI X B, LUO H Q, CHANG Y Z, LI G J, WEI Y J. Determination of eight heavy metal elements in feeds by microwave digestion ICP-AES., 2018, 39(1): 46-48. (in Chinese)
[20] 賀燕, 籍燕燕, 田蘊(yùn), 蔣向君. 微波消解-原子熒光光度法測(cè)定飼料中總砷. 山東畜牧獸醫(yī), 2012, 33: 22-23.
HE Y, JI Y Y, TIAN Y, JIANG X J. Determination of total arsenic in feed by microwave digestion-atomic fluorescence spectrometry.2012, 33: 22-23. (in Chinese)
[21] 李俊, 李宏, 董穎超, 李勝, 楊漢卿, 楊坤, 李潔. 天然礦物質(zhì)飼料中重金屬安全隱患調(diào)查報(bào)告. 畜牧獸醫(yī)雜志, 2014, 33(4): 81-89.
LI J, LI H, DONG Y C, LI S, YANG H Q, YANG K, LI J. investigation report on potential safety hazards of heavy metals in natural mineral feed., 2014, 33 (4): 81-89. (in Chinese)
[22] 林建斌, 李金秋, 宋國(guó)華. 水產(chǎn)飼料安全與水產(chǎn)品質(zhì)量. 水利漁業(yè), 2008, 28(2): 112-114.
LIN J B, LI J Q, SONG G H. Aquatic feed safety and aquatic product quality.2008, 28(2): 112-114. (in Chinese)
[23] 林建斌. 水產(chǎn)飼料安全的特點(diǎn)與影響因素. 科學(xué)養(yǎng)魚, 2008(9): 65-66.
LIN J B. Characteristics and influencing factors of aquatic feed safety., 2008(9): 65-66. (in Chinese)
[24] 黎修全. 淺析動(dòng)物源性飼料產(chǎn)品安全及衛(wèi)生質(zhì)量評(píng)價(jià)指標(biāo). 飼料工業(yè), 2008, 29(19): 57-62.
LI X Q. Analysis on the evaluation index of safety and hygiene quality of animal-derived feed products., 2008, 29(19): 57-62. (in Chinese)
[25] 楊榮, 朱雙紅, 王華朗, 韓垂旺, 宋增廷, 王立志, 張旭娟. 大米加工主要副產(chǎn)品資源在畜禽飼料中的應(yīng)用. 廣東飼料, 2018, 27(9): 39-42.
YANG R, ZHU S H, WANG H L, HAN C W, SONG Z T, WANG L Z, ZHANG X J. Application of main by-product resources of rice processing in livestock and poultry feed., 2018, 27(9): 39-42. (in Chinese)
[26] 陳同斌. 土壤溶液中的砷及其與水稻生長(zhǎng)效應(yīng)的關(guān)系. 生態(tài)學(xué)報(bào), 1996, 16(2): 147-153.
CHEN T B. Arsenic in soil solution and its effect on the growth of rice (L.)., 1996, 16(2): 147-153. (in Chinese)
[27] 吳佳, 紀(jì)雄輝, 魏維, 謝運(yùn)河. 水分狀況對(duì)水稻鎘砷吸收轉(zhuǎn)運(yùn)的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2018, 37(7): 1427-1434.
WU J, JI X H, WEI W, XIE Y H. Effect of water levels on cadmium and arsenic absorption and transportation in rice., 2018, 37(7): 1427-1434. (in Chinese)
[28] YANG Y P, ZHANG H M, YUAN H Y, DUAN G L, JIN D C, ZHAO F J, ZHU Y G. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation., 2018, 236: 598-608.
[29] LIU W J, ZHU Y G, SMITH F A, SMITH S E. Do phosphorus nutrition and iron plaque alter arsenate(As)uptake by rice seedlings in hydroponic culture?, 2010, 162(2): 481-488.
[30] 鄒麗娜, 戴玉霞, 邱偉迪, 張舒, 趙佳偉, 唐先進(jìn), 施積炎, 徐建明. 硫素對(duì)土壤砷生物有效性與水稻吸收的影響研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2018, 37(7): 1435-1447.
ZOU L N, DAI Y X, QIU W D, ZHANG S, ZHAO J W, TANG X J, SHI J Y, XU J M. Effect of sulfur on the bioavailability of arsenic in soil and its accumulation in rice plant (L.)., 2018, 37(7): 1435-1447. (in Chinese)
[31] 袁雪花, 蘇玉紅. 高砷地下水灌溉區(qū)動(dòng)物飼料及產(chǎn)品中砷污染水平研究. 畜牧與獸醫(yī), 2017, 49(4): 46-50.
YUAN X H, SU Y H. Arsenic contaminated levels in forage and animal products in irrgation district with high arsenic groundwater.e, 2017, 49(4): 46-50. (in Chinese)
A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China
ZHANG TieYing, ZHANG LiYang, LIU JunLi, LIAO ChaoYong, Lü Lin, LIAO XiuDong, LUO XuGang
(Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193)
【】 The aim of this survey was to study the arsenic (As) contents in various feed ingredients from different provinces in China, providing a scientific basis for controlling As contents in the feed ingredients, and even for guiding feed companies to establish a scientific process on As detection. 【】A total of 40 types of 4 054 feed samples were collected from 31 provinces, municipalities and regions, and then the As contents of them were measured by Ion chromatography-inductively coupled plasma mass spectrometer (IC-ICP-MS).【】The results showed that the average As contents of these 40 kinds of feed ingredients ranged from 5.21 to 13 292.0 μg·kg-1, and the distribution of As contents in different species of feed ingredients was as follows: mineral ingredients (5 018.6 μg·kg-1)>animal ingredients (1 704.8 μg·kg-1)>straw ingredients (1 239.0 μg·kg-1)>pasture ingredients (500.3 μg·kg-1)>cereal by-products (329.24 μg·kg-1)>plant protein ingredients (72.99 μg·kg-1)>cereals (38.07 μg·kg-1). Meanwhile, the distribution of As contents of cereals, cereal by-products and straw ingredients was as follows: corn straw>corn by-products (corn gluten meal, spray corn cortex and corn DDGS)>corn; wheat straw>wheat by-products (wheat bran, wheat DDGS and wheat middling)>wheat; rice straw>rice by-products ( rice bran and defatted rice bran)>rice>broken rice, which concerned the capacities of different parts of cereals gathering As from soil and water, root>leaf>stem>chaff>grain . The results in comparison with As contents of corn, wheat or soybean meal from different provinces (regions) are extremely significant (<0.01) respectively, demonstrating As contents among same type of samples from different regions are significant also. Moreover, the ratios of As contents exceeding the limit standard, based on hygienical standard for feeds, have been calculated among the 40 kinds of feed ingredients. As contents in cereals, plant protein ingredients and pasture ingredients were under the limit standard. Nevertheless, As contents of only defatted rice bran in cereal by-products presented the over-limit ratio of 2.8%; As contents of only fish meal in animal ingredients showed the over-limit ratio of 5.3%; The over-limit ratio of rice straw in straw ingredients was 27.4%; Both limestone and dicalcium phosphate in mineral ingredients were with high over-limit ratios 30.8% and 60%, respectively. Over-limit ratios of As contents in different kinds of feed ingredients were as follows: dicalcium phosphate>limestone>rice straw>fish meal>defatted rice bran.【】The above results showed that the As contents in feed ingredients varied greatly in different kinds and regions. The As contents of those cereals relatives ingredients presented a common rule, that is, As contents of straw ingredients were highest, successively, cereals by-products and cereals. Especially, As contents of dicalcium phosphate, limestone, rice straw, fish meal and defatted rice bran were above the limit standard sometimes, which could be considered as high risk feed ingredients. Therefore, the As content in basal diets from different types and regions should be considered in the preparation of diets. It is necessary to improve As detection frequency to make sure of the As contents in animal diets under the safe limits according to the GB 13078-2017 strictly.
feedstuff; arsenic contents; pig; chicken
10.3864/j.issn.0578-1752.2020.21.018
2019-05-22;
2020-08-28
國(guó)家科技部科技基礎(chǔ)性工作專項(xiàng)(2014FY111000)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)經(jīng)費(fèi)(ASTIP-IAS09)
張鐵鷹,E-mail:zhty999@163.com
(責(zé)任編輯 林鑒非)