樊雙虎 李叢勝 任思竹 付亞娟 喬潔 侯曉強(qiáng)
摘 要:鄰苯二甲酸酯(Phthalic Acid Esters,PAEs)的廣泛應(yīng)用引起了嚴(yán)重的環(huán)境污染問(wèn)題,其環(huán)境雌激素效應(yīng)和“三致”毒性直接威脅生態(tài)環(huán)境安全及人體健康。該文總結(jié)了PAEs的污染及毒性以及PAEs高效降解菌、細(xì)菌對(duì)PAEs的降解途徑,探討了PAEs降解菌在環(huán)境修復(fù)中的問(wèn)題并提出了應(yīng)對(duì)措施,為PAEs污染環(huán)境的生物修復(fù)未來(lái)發(fā)展方向提供參考。
關(guān)鍵詞:鄰苯二甲酸酯;微生物降解;代謝途徑;生物修復(fù)
中圖分類號(hào) X131? 文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 1007-7731(2020)18-0024-05
鄰苯二甲酸酯(Phthalic Acid Esters,PAEs)又名酞酸酯,是一類主要由人工合成的有機(jī)化合物,常見(jiàn)的PAEs及代謝產(chǎn)物如表1所示。PAEs被廣泛用作塑化劑及其他化工產(chǎn)品中的添加劑,在土壤、水體、空氣等環(huán)境中廣泛分布,成為普遍的環(huán)境污染物之一。PAEs在環(huán)境中自然降解極其緩慢,屬于典型的持久性有機(jī)污染物(Persistent Organic Pollutants,POPs),且具有環(huán)境雌激素效應(yīng)、“三致效應(yīng)”(致突變、致畸、致癌),被稱為第2個(gè)“PCB”類的污染物。鑒于PAEs的嚴(yán)重污染和生物毒理效應(yīng),目前PAEs污染及修復(fù)途徑受到全球關(guān)注。
1 PAEs的污染及危害
工業(yè)生產(chǎn)中,PAEs被用作工業(yè)溶劑、化工產(chǎn)品的添加劑、塑化劑,如農(nóng)藥、地膜、油漆中的添加劑或塑料制品中的塑化劑[1]。塑化劑是PAEs的主要用途,PAEs也是使用量最大的塑化劑。PAEs與聚烯烴類塑料基質(zhì)以氫鍵或范德華力等非共價(jià)鍵相互作用,在塑料的生產(chǎn)、使用及廢棄處理過(guò)程中,PAEs從塑料中滲漏到環(huán)境中[2],對(duì)空氣、水體、土壤、食品等造成嚴(yán)重污染。環(huán)境中的PAEs污染主要是DBP和DEHP??諝庵械腜AEs主要來(lái)源于塑料、油漆、家具等含有PAEs材料的物質(zhì)揮發(fā),受人類生產(chǎn)、生活活動(dòng)的影響較大。通常情況下,城市中心空氣中的PAEs濃度高于郊區(qū),室內(nèi)高于室外[3,4]??諝庵械腜AEs濃度還受到環(huán)境溫度等因素的影響,在印度賴布爾,春季和冬季大氣中PAEs的濃度高于夏季,可能與夏季降雨和較強(qiáng)的光化學(xué)反應(yīng)有關(guān)[5]。河流及沉積物中的PAEs有多種來(lái)源,包含攜帶空氣中PAEs的雨水、PAEs污染的工業(yè)和生活污水、垃圾滲濾液等,目前全球的很多河流及沉積物中都存在PAEs,且DEHP濃度遠(yuǎn)高于環(huán)境風(fēng)險(xiǎn)限定值(Environmental risk limits,ERLs)(0.19μg/L)。在很多國(guó)家和地區(qū)的飲用水中也檢測(cè)到了PAEs,長(zhǎng)期暴露于飲用水的PAEs將嚴(yán)重影響人體健康。土壤中的PAEs污染主要來(lái)源于水體中PAEs的聚集、大氣中PAEs的沉積、污水灌溉、污染的堆肥、農(nóng)藥和化肥的施用等。農(nóng)田土壤中的PAEs含量高于非耕作土壤,表明農(nóng)業(yè)生產(chǎn)活動(dòng)是導(dǎo)致農(nóng)田PAEs污染的主要途徑,溫室大棚薄膜、農(nóng)田地膜、農(nóng)藥和化肥等含有PAEs的農(nóng)業(yè)生產(chǎn)資料的使用是農(nóng)田PAEs污染的主要來(lái)源[6]。由此可見(jiàn),PAEs在自然環(huán)境中廣泛分布、大量累積,嚴(yán)重威脅生態(tài)環(huán)境安全及動(dòng)植物健康。
人體通過(guò)飲用水、空氣、食品等途徑直接暴露于PAEs,人體每天通過(guò)食物攝取的DEHP約有25?g[7]。PAEs還能通過(guò)水體、土壤被植物吸收,進(jìn)入食物鏈,最終遷移到人體內(nèi)。此外,個(gè)人護(hù)理用品、化妝品和玩具也是人體攝取PAEs的重要途徑。PAEs 是一類環(huán)境雌激素,能與細(xì)胞核受體、激素或異源物質(zhì)的受體等相互作用,進(jìn)而干擾生物體的生長(zhǎng)、代謝、發(fā)育等生理過(guò)程,還具有致突變、致畸和致癌的毒理效應(yīng)。美國(guó)將DMP、DEP、DBP、DEHP、DOP、BBP列為優(yōu)先控制的有毒污染物,我國(guó)將DMP、DBP和DEHP確定為優(yōu)先控制污染物。目前關(guān)于DEHP毒理效應(yīng)的研究較多,尤其是生殖毒性、遺傳毒性、肝臟毒性及致癌的研究。DEHP能造成大鼠類固醇生成減少、胚胎睪丸中的生殖細(xì)胞缺失、性別分化異常、精子畸形率增加和精液體積減少[8]。大量研究表明,DEHP能導(dǎo)致大鼠和小鼠的肝臟癌變,但對(duì)于人的肝癌和DEHP暴露的關(guān)系還缺乏流行病學(xué)的證據(jù)[9]。DEHP還是男童生殖發(fā)育障礙及內(nèi)分泌異常的重要原因[10]。DEHP可干擾昆蟲(chóng)的熱休克基因表達(dá),高濃度DEHP作為蛻皮激素受體(Ecdysone Receptor,EcR)表達(dá)的拮抗劑,影響昆蟲(chóng)變態(tài)發(fā)育[11]。DEHP也影響植物的生長(zhǎng)、發(fā)育等過(guò)程,如造成洋蔥根尖細(xì)胞后期染色體分離失敗、有絲分裂指數(shù)下降[12],影響蠶豆微核發(fā)生率和DNA多態(tài)性,引起蠶豆幼苗急性氧化損傷和遺傳毒性效應(yīng)[13]。DEHP的代謝產(chǎn)物MEHP比DEHP的毒性更強(qiáng),能影響炎癥系統(tǒng)[14]、誘導(dǎo)精子中活性氧(reactive oxygen species,ROS)水平升高和DNA損傷,并導(dǎo)致細(xì)胞凋亡[15]。相關(guān)研究表明,DEHP或其代謝產(chǎn)物的毒性都是通過(guò)過(guò)氧化物酶體增殖物激活受體(PPAR)信號(hào)通路來(lái)介導(dǎo)的,改變基因表達(dá),最終表現(xiàn)為生理毒性[16]。DEHP和MEHP能結(jié)合PPAR的3個(gè)亞型(PPARα、PPARβ和PPARγ)并調(diào)節(jié)其活性[17]。
2 PAEs的降解微生物
PAEs側(cè)鏈基團(tuán)決定了PAEs的種類,隨著側(cè)鏈基團(tuán)的增大,PAEs的辛醇—水分配系數(shù)的對(duì)數(shù)值(lgKow)也增大,表明側(cè)鏈越長(zhǎng),PAEs的疏水性越強(qiáng),越難被降解。除了PAEs的分子結(jié)構(gòu),PAEs的降解速率還與溫度、光照、pH等環(huán)境因素有關(guān)。自然條件下PAEs能進(jìn)行非生物降解,如光化學(xué)降解和水解。然而,非生物降解速率極慢,DBP和DEHP的非生物降解的半衰期分別可達(dá)50~360d和390~1600d[18]。非生物降解通常不能將PAEs徹底礦化,可能生成毒性更高的中間產(chǎn)物,如MEHP或其他自由基。PAEs的生物降解由一系列酶促反應(yīng)來(lái)完成,降解速率快,能徹底礦化PAEs,不產(chǎn)生二次污染,是一種環(huán)境友好型的降解途徑。目前已報(bào)道一些細(xì)菌、真菌、藻類都可以降解PAEs,其中以細(xì)菌為主。Aspergillus parasiticus、Fusarium subglutinans和Penicillium funiculosum等真菌可以將血漿袋子的DEHP完全降解[19],DEHP誘導(dǎo)Fusarium culmorum產(chǎn)生8種酯酶異構(gòu)體,這些酯酶可能參與DEHP降解的不同階段,將DEHP徹底礦化[20]。Aspergillus niger能將DMP降解為MMP、PA和PCA,并最終將DMP礦化[21]。微藻Chlorella pyrenoidosa降解DMP的效率受到無(wú)機(jī)碳的影響,無(wú)機(jī)碳初始濃度提高會(huì)顯著促進(jìn)DMP的降解[22],另一種微藻Closterium lunula降解DMP的情況與此相似[23]。
目前已從農(nóng)田土壤、工業(yè)污水、活性污泥等環(huán)境樣品中分離到許多能降解PAEs的細(xì)菌,這些細(xì)菌主要來(lái)自于Sphingomonas[24]、Gordonia[25,26]、Rhodococcus[27]、Arthrobacter[28]、Bacillus[29]等菌屬(表2)。細(xì)菌對(duì)PAEs的降解程度反映了其降解性能及環(huán)境修復(fù)應(yīng)用潛力,大多數(shù)細(xì)菌能完全礦化PAEs,但有些細(xì)菌只能將PAEs降解為鄰苯二甲酸單酯或PA。Acinetobacter sp. strain M673能依次水解DBP、DEP、DHP、DEHP、DOP等多種PAEs的2個(gè)酯鍵,生成相應(yīng)的單酯、PA,但是不能在含PAEs或PA的無(wú)機(jī)鹽培養(yǎng)基上生長(zhǎng),即不能以PAEs或PA作為唯一碳源和能源,可能是由于菌株M673缺少降解PA的功能基因[30]。Camelimonas sp.M11與菌株M673相似,能水解DBP、DEP、DPeP等PAEs,生成相應(yīng)的單酯,但不能在含PAEs單酯及PA的無(wú)機(jī)鹽培養(yǎng)基上生長(zhǎng),表明單酯是PAEs降解的終產(chǎn)物[31]。Rhodococcus jostii RHA1能水解DMP、DEP、DPrP、DBP、DHP和DEHP,依次生成對(duì)應(yīng)的單酯、PA,能在含MMP、MBP、MHP、MEHP及PA的無(wú)機(jī)鹽培養(yǎng)基上生長(zhǎng),但是在含大多數(shù)PAEs的無(wú)機(jī)鹽培養(yǎng)基上不能生長(zhǎng)。這表明PAEs可能會(huì)抑制PA的代謝過(guò)程,導(dǎo)致在PAEs存在時(shí)PA不能繼續(xù)降解,無(wú)法為菌株RHA1提供能量[32]。這些細(xì)菌能將PAEs轉(zhuǎn)化為毒性較小的PA,在環(huán)境修復(fù)中發(fā)揮重要作用,也可與其他菌株協(xié)同作用將PAEs徹底降解。Gordonia sp.JDC-2可以將DOP降解為PA,PA作為終產(chǎn)物進(jìn)行累積[33]。Arthrobacter sp.JDC-32不能降解DOP,但是可以將PA代謝。將這2種菌株共培養(yǎng),菌株間通過(guò)協(xié)同作用可將DOP徹底降解。
細(xì)菌降解環(huán)境污染物的底物譜范圍、降解速率、環(huán)境適應(yīng)性等也反映了其環(huán)境修復(fù)的潛力。PAEs污染的環(huán)境通常較復(fù)雜,如存在多種PAEs、過(guò)酸或過(guò)堿,使得微生物修復(fù)PAEs污染更加困難。在實(shí)驗(yàn)室條件下,目前報(bào)道的PAEs降解菌大都能降解多種PAEs,在較寬的溫度或pH范圍內(nèi)可以高效降解PAEs。本實(shí)驗(yàn)室分離純化的Mycobacterium sp.YC-RL4能在20~50℃、pH6.0~10.0條件下高效降解多種PAEs(DEHP、DBP、DEP、DMP、DCHP)[39]。Rhodococcus ruber YC-YT1在pH4.0~10.0、10~50℃和1~120g/L NaCl條件下都能快速降解PAEs,其降解底物包括DMP、DEP、DPrP、DBP、DPeP、DHP、DHpP、DEHP、DOP、DNP、DDP、DCHP和BBP[40]。分離自活性污泥的Rhodococcus pyridinivorans XB能以DMP、DEP、DBP、DEHP、PA和原兒茶酸(protocatechuic acid,PCA)等作為唯一碳源,在48h內(nèi)降解98%的DEHP(200mg/L),在5d內(nèi)降解98%的DMP、DEP、DBP(800mg/L)[37]。從垃圾填埋場(chǎng)土壤分離的PAEs降解菌Agromyces sp. MT-O能利用DMP、DEP、DBP、DOP和DEHP,在7d內(nèi)將1000mg/L的DEHP降解80%[41]。目前雖然在實(shí)驗(yàn)室條件下研究了這些PAEs降解菌的優(yōu)越的降解能力和環(huán)境適應(yīng)能力,但自然環(huán)境的復(fù)雜性對(duì)菌株的環(huán)境修復(fù)應(yīng)用提出了較大的挑戰(zhàn)。
3 PAEs的降解途徑
在有氧或厭氧條件下,細(xì)菌可通過(guò)一系列酶催化PAEs降解。細(xì)菌對(duì)PAEs的有氧降解速率高于厭氧降解速率,目前分離篩選的PAEs降解菌主要是有氧降解菌。PAEs的有氧降解受到微生物種類及溫度、pH等環(huán)境因素的影響,其他共代謝的碳源也可促進(jìn)PAEs降解,而高濃度PAEs或中間代謝產(chǎn)物可抑制PAEs降解[42-43]。PAEs的有氧或厭氧降解過(guò)程大致可分為2個(gè)階段:PAEs水解以及PA開(kāi)環(huán)、礦化。PAEs的疏水性強(qiáng),側(cè)鏈越長(zhǎng),疏水性越強(qiáng),水解反應(yīng)越困難,酯鍵水解是其降解過(guò)程中最重要的步驟,也是降解的限速步驟。PAEs的2個(gè)酯鍵通常由2個(gè)不同的水解酶依次作用進(jìn)行水解[44],但也有報(bào)道1個(gè)酯酶具有水解PAEs2個(gè)酯鍵的功能[45]。在水解酶的作用下,PAEs的2個(gè)酯鍵依次斷裂,生成單酯、PA。這是PAEs的有氧或厭氧降解的共同起始步驟,大多數(shù)細(xì)菌以此方式起始PAEs降解過(guò)程。目前也發(fā)現(xiàn)了PAEs的其他降解途徑,如有的細(xì)菌將DEP、DMP直接水解為PA,此過(guò)程中沒(méi)有單酯生成[46];還有一些PAEs如DOP,帶有較長(zhǎng)側(cè)鏈,在起始降解過(guò)程中,Gordonia sp.JDC-2先進(jìn)行β-氧化,將PAEs的側(cè)鏈逐次移除1個(gè)-CH2-基團(tuán),生成的DEP通過(guò)轉(zhuǎn)酯、脫酯反應(yīng)降解為PA[33];在降解DEP過(guò)程中,Sphingobium yanoikuyae SHJ進(jìn)行轉(zhuǎn)酯或脫甲基反應(yīng),將DEP轉(zhuǎn)化為鄰苯二甲酸乙基甲基酯(ethyl methyl phthalate,EMP),EMP水解為MEP,MEP經(jīng)轉(zhuǎn)酯或脫甲基反應(yīng)生成MMP[47],MMP再水解為PA。
PA是芳香族化合物共同的中心代謝產(chǎn)物,細(xì)菌在有氧或厭氧條件下都可降解PA,但代謝途徑有所差異。在有氧條件下,在pht基因簇的作用下,PA經(jīng)過(guò)加氧、脫氫、脫羧,轉(zhuǎn)化為PCA。PCA也是芳香族化合物共同的中心代謝產(chǎn)物,經(jīng)過(guò)鄰位裂解途徑(ortho-cleavage pathway)或間位裂解途徑(meta-cleavage pathway),代謝產(chǎn)物進(jìn)入三羧酸循環(huán),PCA被礦化。pht基因簇一般以操縱子結(jié)構(gòu)存在,革蘭氏陽(yáng)性菌和陰性菌的pht基因簇的基因種類、數(shù)目等有所差異。革蘭氏陽(yáng)性菌的pht基因簇由phtB、phtAa、phtAb、phtAc、phtAd、phtC、phtR組成,分別編碼3,4-二氫-3,4-二羥基鄰苯二甲酸脫氫酶、鄰苯二甲酸3,4-雙加氧酶大亞基、鄰苯二甲酸3,4-雙加氧酶小亞基、鐵氧還蛋白、鐵氧還蛋白還原酶、3,4-二羥基鄰苯二甲酸脫羧酶、調(diào)控蛋白。phtAaAbAcAd編碼的雙加氧酶復(fù)合體起始PA的代謝過(guò)程,催化PA加氧,生成3,4-二氫-3,4-二羥基鄰苯二甲酸。phtB編碼的脫氫酶催化3,4-二氫-3,4-二羥基鄰苯二甲酸,生成3,4-二羥基鄰苯二甲酸,后者在phtC的作用下,脫羧生成PCA。首次報(bào)道的pht基因簇來(lái)自Arthrobacter keyseri 12B,其遺傳機(jī)制的研究較為透徹[48]。菌株12B的pht操縱子位于質(zhì)粒上,以phtBAaAbAcAdCR排列,Gordonia sp.YC-JH1[44]和Gordonia sp.HS-NH1[49]中的pht操縱子也以此方式排列,而Terrabacter sp.DBF63中的pht基因簇以phtAaAbBAcAdCR排列[50]。Mycobacterium vanbaalenii PYR-1的pht基因簇缺少編碼3,4-二羥基鄰苯二甲酸脫羧酶的基因phtC[51],不能催化3,4-二羥基鄰苯二甲酸生成PCA,整個(gè)基因簇以phtRAaAbBAcAd形式存在。革蘭氏陰性菌的PA代謝過(guò)程與革蘭氏陽(yáng)性菌相似,但是PA加氧酶為鄰苯二甲酸4,5-雙加氧酶。pht基因簇由pht1、pht2、pht3、pht4、pht5組成,分別編碼轉(zhuǎn)運(yùn)蛋白、鄰苯二甲酸4,5-雙加氧酶還原酶、鄰苯二甲酸4,5-雙加氧酶、4,5-二氫-4,5-二羥鄰基苯二甲酸脫氫酶、4,5-二羥基鄰苯二甲酸脫羧酶,在這些酶的作用下,PA轉(zhuǎn)化為PCA。Burkholderia cepacia DBO1中的pht基因簇由pht2、pht15和pht34轉(zhuǎn)錄單位組成[52],Pseudomonas putida NMH102-2中的pht基因簇形成操縱子pht12345[53]。PAEs的厭氧降解研究較少,在厭氧條件下,PAEs酯鍵依次水解生成PA,PA脫羧轉(zhuǎn)化為苯甲酸(benzoic acid,BA),BA加氫、加氧后開(kāi)環(huán),生成CO2、H2和乙酸,乙酸最后轉(zhuǎn)化為終產(chǎn)物甲烷[54]。
4 討論與展望
PAEs是應(yīng)用廣泛、使用量大的化工原料,也是污染嚴(yán)重、毒性較強(qiáng)、降解困難的環(huán)境污染物。目前有大量的PAEs降解菌從環(huán)境樣品中分離獲得,也克隆了PAEs降解基因,為PAEs污染環(huán)境的生物修復(fù)提供了寶貴的菌株資源和基因資源。然而,PAEs降解菌或降解基因在環(huán)境修復(fù)中的應(yīng)用還很少,究其原因有以下幾個(gè)方面:(1)PAEs污染環(huán)境的環(huán)境因素較復(fù)雜,如多種有機(jī)污染物、重金屬、酸性或堿性較強(qiáng),這些都會(huì)影響PAEs降解菌的生存和降解功能的發(fā)揮;(2)實(shí)際環(huán)境中的PAEs濃度較低,通常在mg/L的水平以下,比實(shí)驗(yàn)室條件下研究的菌株降解PAEs的濃度低很多,因此環(huán)境中低濃度的PAEs可能無(wú)法激活菌株中PAEs降解基因的表達(dá);(3)PAEs水解酶及其他降解酶的催化機(jī)制研究較少,缺少分子改造的理論基礎(chǔ),從而也限制了環(huán)境修復(fù)的應(yīng)用。在今后的研究中,應(yīng)從PAEs降解菌株及降解酶的環(huán)境適應(yīng)性的角度去深入研究,并結(jié)合工程學(xué)的方法,將降解菌和降解酶應(yīng)用到PAEs污染環(huán)境的修復(fù)中。
參考文獻(xiàn)
[1]Koniecki D,Wang R,Moody R P,et al. Phthalates in cosmetic and personal care products:concentrations and possible dermal exposure[J].Environmental Research,2011,111(3):329-336.
[2]Clausen P A,Liu Z,Kofoed-Sorensen V,et al.Influence of temperature on the emission of di-(2-ethylhexyl) phthalate(DEHP) from PVC flooring in the emission cell FLEC[J]. Environmental Science & Technology,2012,46(2):909-915.
[3]Guo Y,Kannan K.Comparative assessment of human exposure to phthalate esters from house dust in China and the United States[J].Environmental Science & Technology,2011,45(8):3788-3794.
[4]Zhang L,Wang F,Ji Y,et al.Phthalate esters(PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin,China[J]. Atmospheric Environment,2014,85:139-146.
[5]Deshmukh D K,Tsai Y I,Deb M K,et al. Characterization of Dicarboxylates and Inorganic Ions in Urban PM10 Aerosols in the Eastern Central India[J].Aerosol and Air Quality Research,2012,12(4):592-607.
[6]Hu X Y,Wen B,Shan X Q. Survey of phthalate pollution in arable soils in China[J].Journal of Environmental Monitoring,2003,5(4):649-653.
[7]Nakamiya K,Hashimoto S,Ito H,et al.Microbial treatment of bis(2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria[J].Journal of Bioscience and Bioengineering,2005,99(2):115-119.
[8]Zhang Y H,Zheng L X,Chen B H. Phthalate exposure and human semen quality in Shanghai:a cross-sectional study[J]. Biomedical and Environmental Sciences,2006,19(3):205-209.
[9]Rusyn I,Corton J C.Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate[J]. Mutation Research,2012,750(2):141-158.
[10]Main K M,Mortensen G K,Kaleva M M,et al.Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age[J].Environmental Health Perspectives,2006,114(2):270-276.
[11]Planello R,Herrero O,Martinez-Guitarte J L,et al. Comparative effects of butyl benzyl phthalate(BBP) and di(2-ethylhexyl) phthalate(DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system,the stress response and ribosomes[J].Aquatic Toxicology,2011,105(1-2):62-70.
[12]Herrero O,Pérez Martín J M,F(xiàn)ernández Freire P,et al. Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2012,743(1-2):20-24.
[13]Qing C,Nana G,Yuduo Z,et al.Effects of Di(2-Ethylhexyl) Phthalate on Root Tips of Vicia faba Seedlings:International Conference on Bioinformatics and Biomedical Engineering[C]//ICBBE,2009.
[14]Jepsen K F,Abildtrup A,Larsen S T. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549[J].Toxicology in Vitro,2004,18(3):265-269.
[15]Choucroun P,Gillet D,Dorange G,et al.Comet assay and early apoptosis[J].Mutation Research,2001,478(1-2):89-96.
[16]Desvergne B,F(xiàn)eige J N,Casals-Casas C.PPAR-mediated activity of phthalates:A link to the obesity epidemic?[J]. Molecular and Cellular Endocrinology,2009,304(1-2):43-48.
[17]Singh S,Li S S. Phthalates:toxicogenomics and inferred human diseases[J].Genomics,2011,97(3):148-157.
[18]Lertsirisopon R,Soda S,Sei K,et al. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation[J].Journal of Environmental Sciences,2009,21(3):285-290.
[19]Pradeep S,Benjamin S. Mycelial fungi completely remediate di(2-ethylhexyl)phthalate,the hazardous plasticizer in PVC blood storage bag[J].Journal of Hazardous Materials,2012,235-236:69-77.
[20]Gonzalez-Marquez A,Loera-Corral O,Santacruz-Juarez E,et al. Biodegradation patterns of the endocrine disrupting pollutant di(2-ethyl hexyl) phthalate by Fusarium culmorum[J].Ecotoxicology and Environmental Safety,2019,170:293-299.
[21]Pradeepkumar S,Karegoudar T B. Metabolism of dimethylphthalate by Aspergillus niger[J].Journal of Microbiology and Biotechnology,2000,10:518-521.
[22]Yan H,Pan G,Liang P L. Effect and mechanism of inorganic carbon on the biodegradation of dimethyl phthalate by Chlorella pyrenoidosa[J].Journal of Environmental Science and Health,Part A,2002,37(4):553-562.
[23]Yan H,Pan G. Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon[J]. Chemosphere,2004,55(9):1281-1285.
[24]Mahajan R,Verma S,Kushwaha M,et al.Biodegradation of dinbutyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway[J].International Journal of Biological Macromolecules,2019,122:806-816.
[25]Fan S,Wang J,Yan Y,et al. Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase[J].International Journal of Molecular Sciences,2018,19(9):2803.
[26]Wang Y,Zhan W,Ren Q,et al.Biodegradation of di-(2-ethylhexyl) phthalate by a newly isolated Gordonia sp. and its application in the remediation of contaminated soils[J].Science of the Total Environment,2019,689:645-651.
[27]WANG J,ZHANG M Y,CHEN T,et al.Isolation and Identification of a Di-(2-Ethylhexyl) Phthalate-Degrading Bacterium and Its Role in the Bioremediation of a Contaminated Soil[J]. Pedosphere,2015,25(2):202-211.
[28]Wen Z,Gao D,Wu W. Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil[J].Applied Microbiology and Biotechnology,2014,98(10):4683-4690.
[29]Feng N,Yu J,Mo C,et al.Biodegradation of di-n-butyl phthalate(DBP) by a novel endophytic Bacillus megaterium strain YJB3[J].Science of The Total Environment,2018,616-617:117-127.
[30]Wu J,Liao X,Yu F,et al.Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter sp. strain M673 and functional analysis of its expression product in Escherichia coli[J].Applied Microbiology and Biotechnology,2013,97(6):2483-2491.
[31]Chen X,Zhang X,Yang Y,et al.Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J].Biodegradation,2015,26(2):171-182.
[32]Hara H,Stewart G R,Mohn W W. Involvement of a Novel ABC Transporter and Monoalkyl Phthalate Ester Hydrolase in Phthalate Ester Catabolism by Rhodococcus jostii RHA1[J].Applied and Environmental Microbiology,2010,76(5):1516-1523.
[33]Wu X,Liang R,Dai Q,et al.Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge[J].Journal of Hazardous Materials,2010,176(1-3):262-268.
[34]Zeng P,Moy B Y,Song Y,et al. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules[J].Applied Microbiology and Biotechnology,2008,80(5):899-905.
[35]Jin D,Bai Z,Chang D,et al. Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11:Genetic identification and degradation kinetics[J].Journal of Hazardous Materials,2012,221-222:80-85.
[36]Nishioka T,Iwata M,Imaoka T,et al. A Mono-2-Ethylhexyl Phthalate Hydrolase from a Gordonia sp. That Is Able To Dissimilate Di-2-Ethylhexyl Phthalate[J].Applied and Environmental Microbiology,2006,72(4):2394-2399.
[37]Zhao H,Hu R,Chen X,et al. Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil[J].Science of The Total Environment,2018,640-641:1121-1131.
[38]Navacharoen A,Vangnai A S. Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence[J].International Biodeterioration & Biodegradation,2011,65(6):818-826.
[39]Ren L,Jia Y,Ruth N,et al. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples[J].Environmental Science and Pollution Research,2016,23(16):16609-16619.
[40]Yang T,Ren L,Jia Y,et al.Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil[J].International Journal of Environmental Research and Public Health,2018,15(5):964.
[41]Zhao H M,Du H,Lin J,et al. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil[J].Science of the Total Environment,2016,562:170-178.
[42]Liao C S,Chen L C,Chen B S,et al.Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri[J].Chemosphere,2010,78(3):342-346.
[43]Yuan S Y,Huang I C,Chang B V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment[J].Journal of Hazardous Materials,2010,184(1-3):826-831.
[44]Fan S,Wang J,Li K,et al. Complete genome sequence of Gordonia sp. YC-JH1,a bacterium efficiently degrading a wide range of phthalic acid esters[J].Journal of Biotechnology,2018,279:55-60.
[45]Ding J,Wang C,Xie Z,et al. Properties of a Newly Identified Esterase from Bacillus sp. K91 and Its Novel Function in Diisobutyl Phthalate Degradation[J].Plos one,2015,10(3):e119216.
[46]Jackson M A,Labeda D P,Becker L A. Isolation for bacteria and fungi for the hydrolysis of phthalate and terephthalate esters[J].Journal of Industrial Microbiology,1996,16(5):301-304.
[47]Wang Y,Liu H,Peng Y E,et al. New pathways for the biodegradation of diethyl phthalate by Sphingobium yanoikuyae SHJ[J].Process Biochemistry,2018,71:152-158.
[48]Eaton R W. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B[J].Journal of Bacteriology,2001,183(12):3689-3703.
[49]Li D,Yan J,Wang L,et al.Characterization of the phthalate acid catabolic gene cluster in phthalate acid esters transforming bacterium-Gordonia sp. strain HS-NH1[J].International Biodeterioration & Biodegradation,2016,106:34-40.
[50]Habe H,Miyakoshi M,Chung J,et al. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63[J].Applied Microbiology and Biotechnology,2003,61(1):44-54.
[51]Stingley R L. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1[J]. Microbiology,2004,150(11):3749-3761.
[52]Chang H,Zylstra G J. Novel Organization of the Genes for Phthalate Degradation from Burkholderia cepacia DBO1[J]. Journal of Bacteriology,1998,180(24):6529-6537.
[53]Nomura Y,Nakagawa M,Ogawa N,et al. Genes in PHT Plasmid Encoding the Initial Degradation Pathway of Phthalate in Pseudomonas putida[J].Journal of Fermentation and Bioengineering,1992,74(6):333-344.
[54]Kleerebezem R,Hulshoff P L,Lettinga G. Anaerobic degradation of phthalate isomers by methanogenic consortia[J].Applied and Environmental Microbiology,1999,65(3):1152-1160.
(責(zé)編:徐世紅)