鐘汝能,鄭勤紅,姚 斌,向 泰
小粒徑顆粒狀農(nóng)產(chǎn)品介電特性的GEM公式參數(shù)確定
鐘汝能1,鄭勤紅2※,姚 斌2,向 泰1
(1. 云南師范大學(xué)能源與環(huán)境科學(xué)學(xué)院,昆明 650500;2. 云南省光電信息技術(shù)重點實驗室,昆明 650500)
介電特性是研究農(nóng)產(chǎn)品微波輔助應(yīng)用的重要參數(shù)。為了拓展有效介質(zhì)公式(General Effective Medium,GEM)在農(nóng)業(yè)工程領(lǐng)域的應(yīng)用,探究農(nóng)產(chǎn)品介電特性計算新方法,該研究針對顆粒狀農(nóng)產(chǎn)品,采用離散元法、有限元法和平均能量法建立了堆積型農(nóng)業(yè)顆粒物料等效介電特性分析的數(shù)值模型,在模擬仿真數(shù)據(jù)和試驗測量數(shù)據(jù)對比分析的基礎(chǔ)上,提出適用于微波波段下顆粒狀農(nóng)產(chǎn)品介電特性計算的GEM公式較佳無量綱參數(shù)(=5、=0.5;稱為Modified General Effective Medium of Agriculture,MGEMA),并采用多種農(nóng)產(chǎn)品顆粒的試驗數(shù)據(jù)驗證了MGEMA的可行性、有效性和準(zhǔn)確性。結(jié)果表明,真實谷粒和模擬谷粒的堆積角誤差為0.45%,在農(nóng)產(chǎn)品顆粒的相對介電常數(shù)(2.0~10.0)、相對介電損耗因子(0.1~0.9)、微波頻率(2.0~12.2 GHz)、濕基含水率(2.0%~19.7%)和體積分?jǐn)?shù)(18.2%~88.0%)計算條件下,MGEMA公式針對介電常數(shù)和介電損耗因子計算結(jié)果的最大偏差分別為0.40%和1.20%。研究可為三維情形下顆粒落料堆積型混合物的等效介電特性模擬分析提供一種參考方法,為室溫下(24 ℃)小粒徑農(nóng)產(chǎn)品顆粒的介電特性研究提供一個理論公式。
農(nóng)產(chǎn)品;介電特性;有效介質(zhì)公式;模擬模型;參數(shù)確定
介電特性是指物質(zhì)分子中的束縛電荷對外加電場的響應(yīng)特性(=′?″)[1],其中,相對介電常數(shù)(′)表征電磁波能量的儲存,相對介電損耗因子(″)表征電磁波能量的轉(zhuǎn)化。開展農(nóng)產(chǎn)品介電特性的基礎(chǔ)研究具有較好的應(yīng)用價值[2-4]。
前人的研究成果有效地推進了農(nóng)產(chǎn)品微波(射頻)加工、貯藏、輸運、育種和非破壞性評價的發(fā)展,但與工業(yè)領(lǐng)域復(fù)合材料介電特性的應(yīng)用研究相比,當(dāng)前針對農(nóng)業(yè)物料電磁效應(yīng)的應(yīng)用研究與市場的需求規(guī)模仍存在差距,具有普適性的介電特性預(yù)測模型或理論公式相對較少,相關(guān)的基礎(chǔ)研究有待進一步深入開展[27]。截止目前,覆蓋農(nóng)產(chǎn)品顆粒的生成、堆放和介電特性計算全過程的模擬模型鮮見報道,GEM公式應(yīng)用于農(nóng)業(yè)物料等效介電特性分析的相關(guān)研究成果較少。本文以顆粒狀農(nóng)產(chǎn)品為對象,采用離散元法、有限元法和平均能量法建立了堆積型農(nóng)業(yè)物料等效介電特性模擬模型,提出了適用于顆粒狀農(nóng)產(chǎn)品介電特性分析的GEM公式較佳無量綱參數(shù)(Modified General Effective Medium of Agriculture,MGEMA),通過數(shù)值計算、實例分析和試驗測量對比分析驗證了MGEMA 公式的正確性、準(zhǔn)確性和有效性。
廣義的農(nóng)產(chǎn)品是指來源于農(nóng)業(yè)的初級產(chǎn)品,按照生產(chǎn)方式不同,可分為農(nóng)產(chǎn)品、畜禽產(chǎn)品和水產(chǎn)品,其中農(nóng)產(chǎn)品的種類包含谷類、豆類、薯類、蔬菜類和水果類[28]。在自然界中,這些農(nóng)產(chǎn)品的原料或者種子普遍以顆粒的形式存在,且不同種類農(nóng)產(chǎn)品的顆粒結(jié)構(gòu)形狀和顆粒大小不相同,如小麥、玉米、稻谷、大豆、花生果、菜籽等。
本文選取小粒徑顆粒狀農(nóng)產(chǎn)品物料為試驗對象,其中,小米產(chǎn)自新疆伊梨,稻谷、玉米碴粒、紫米、黑芝麻、野芥菜籽和油菜籽產(chǎn)自云南德宏。上述顆粒物料購于云南省呈貢縣農(nóng)貿(mào)市場,初始含水率分別為10.0%、14.6%、12.05%、14.17%、8.99%、10.64%、16.4%,除稻谷及玉米渣粒(經(jīng)粉碎過篩處理)外,其余物料均為去除外殼后的自然狀態(tài)農(nóng)產(chǎn)品顆粒。
在有限元方法中,每個網(wǎng)格單元所擁有的靜電能為
式中為網(wǎng)格單元編號:為電勢,V;、、為坐標(biāo)軸方向;ε和v分別表示第個單元的介電特性和體積,m3?;旌象w儲存的靜電能(W,J)為
由電磁理論可知,電容器中所存儲的靜電能W(J)可等效地表示為
式中1?2為兩個極板之間的電勢差,V;為兩極板之間的距離,m;為極板面積,m2;0為真空中的介電常數(shù)(8.85×10-12F/m),ε為混合物的等效介電特性。令W=W,求解式(2)~(3)即可獲得混合物的等效介電特性(ε)。
為準(zhǔn)確模擬計算各向同性混合物的介電特性,可生成同一條件下的多個模擬模型,取其所有模型計算結(jié)果的平均值作為數(shù)值結(jié)果,即:
對于農(nóng)業(yè)顆粒物料而言,由于農(nóng)產(chǎn)品顆粒在填料裝載器中以落料堆積的狀態(tài)存在,因此,采用不同的技術(shù)方法聯(lián)合實現(xiàn)農(nóng)產(chǎn)品顆粒的堆積狀態(tài)仿真和模擬模型的數(shù)值計算,具體步驟為:一是采用基于離散元法的EDEM軟件完成不同結(jié)構(gòu)形狀(如橢球狀、圓柱狀等)農(nóng)產(chǎn)品顆粒的建模和顆粒在裝載器中的堆積過程仿真,得到每一個顆粒在裝載器中的位置坐標(biāo)和方向向量矩陣數(shù)據(jù)。依據(jù)方向余弦矩陣?yán)碚?,編制MATLAB程序?qū)⒎较蛳蛄烤仃嚁?shù)據(jù)換算為笛卡爾坐標(biāo)系中、、軸對應(yīng)的方向向量。二是應(yīng)用COMSOL多物理場耦合有限元軟件的“App開發(fā)器”功能,使用“錄制”方法生成不同結(jié)構(gòu)形狀顆粒的建模代碼,并依次讀取每一個顆粒的位置坐標(biāo)和方向向量,重現(xiàn)顆粒堆積狀態(tài)。三是使用COMSOL網(wǎng)格剖分功能中的“物理場控制網(wǎng)格”對模型進行自由四面體網(wǎng)格剖分,網(wǎng)格剖分級別和單元質(zhì)量優(yōu)化級別分別設(shè)置為“細(xì)化”、“中等”,對基體物質(zhì)、基質(zhì)顆粒物質(zhì)進行物理屬性賦值。四是按前述步驟依次生成不同體積分?jǐn)?shù)的物料模型,按1.2節(jié)原理對電容器模型進行數(shù)值求解,得到所分析農(nóng)業(yè)顆粒物料的等效介電特性數(shù)據(jù)。
采用離散元顆粒分析軟件EDEM 2018(EDEM Solutions inc.英國愛丁堡)完成顆粒構(gòu)建及堆積仿真,采用多物理場耦合有限元軟件COMSOL Multiphysics 5.3(COMSOL INC. 瑞典斯德哥爾摩)、數(shù)據(jù)處理軟件Matlab R2012a(Math Works,美國馬薩諸塞州)和Origin 8.5(Atos Origin,荷蘭阿姆斯特丹)完成堆積重現(xiàn)、模型構(gòu)建、數(shù)值計算和數(shù)據(jù)處理分析。使用矢量網(wǎng)絡(luò)分析儀(ZNB20, Rohde & Schwarz Ltd,德國慕尼黑),85051B 7 mm/APC-7同軸空氣線(Agilent Technology,馬來西亞檳城)和鹵素水分測定儀(DHS-16,常州衡正電子儀器有限公司,精度為5 mg,測量范圍:0~100%,溫度范圍:室溫~160 ℃)進行農(nóng)業(yè)物料的等效介電特性測量。使用游標(biāo)卡尺(MITUTOYO 500-173,日本香川,精度為0.02 mm)測量顆粒的規(guī)格參數(shù)。
采用真實稻谷籽粒堆和模擬稻谷籽粒堆的堆積角偏差來評價堆積模型的準(zhǔn)確性。1)經(jīng)除雜、去芒和篩分挑選后得到相對均勻的1 500粒長粒稻谷籽粒,將其以自然落料的形式堆積在不繡鋼金屬板上,得到真實稻谷堆的堆積形態(tài)[12]。從不同方位分多次測量了稻谷堆底的直徑和高度,并使用MATLAB函數(shù)(tan′=2/,為稻谷堆底直徑,m;為稻谷堆積高度,m)計算得到稻谷堆的平均堆積角(′)為20.20°。2)采用1.3節(jié)方法模擬生成橢球形稻谷籽粒在不銹鋼金屬板上自然堆積,設(shè)定顆粒的尺寸、數(shù)量與試驗樣品的平均值相一致,得到模擬稻谷堆的堆積形態(tài)。鑒于稻谷堆為左右對稱結(jié)構(gòu),采用Origin軟件的圖像識別技術(shù)得到單側(cè)稻谷堆的邊緣輪廓曲線如圖1實線所示,提取輪廓曲線數(shù)據(jù)并得到擬合直線如圖1虛線所示,其中,擬合直線決定系數(shù)(2)為0.991,直線斜率()為0.366 2。由堆積角確定公式(=arctan||/π)計算得到模擬稻谷的堆積角()為20.11°。3)對比分析表明:從堆體的邊緣擴散、結(jié)構(gòu)形態(tài)上看,真實谷粒堆和模擬谷粒堆的正面堆積形態(tài)、側(cè)面堆面形態(tài)基本吻合,二者的堆積角誤差為0.45%,說明基于離散元法的谷物籽粒堆積模擬模型是準(zhǔn)確性的。
為了驗證有限元法重現(xiàn)顆粒堆積狀態(tài)的準(zhǔn)確性,運用離散元法在不繡鋼材質(zhì)的立方體填料器中生成橢球形谷物顆粒堆,并在有限元軟件中編程重現(xiàn)了堆積現(xiàn)象,對比分析表明,上述2個方法所生成的顆粒大小、位置和方向一致,說明基于有限元法的顆粒堆積狀態(tài)重現(xiàn)計算程序是正確的。
圖1 模擬谷料的單側(cè)輪廓線及線性擬合直線
2.3.1 基于模擬模型數(shù)值結(jié)果的GEM公式參數(shù)
A=5、(5)
2.3.2 基于試驗實例數(shù)據(jù)的GEM公式參數(shù)
為便于表達,將式(6)簡稱為MGEMA公式。從圖3也可以看出,與模擬模型(Model:A=5、β=1?f1)數(shù)值結(jié)果相比,MGEMA公式(A=5、β=0.5)的計算結(jié)果更接近~ρ和LLL公式的計算值。說明在針對小麥顆?!癝cout 66”的計算中,式(6)比式(5)具有更好的準(zhǔn)確性。
表1 通過線性外推函數(shù)和多個介電混合方程計算得到的農(nóng)產(chǎn)品顆粒介電特性(24 ℃)
2.5.1 不同含水率農(nóng)產(chǎn)品顆粒的MGEMA公式驗證
表2 通過不同介電混合方程計算得到的不同含水率小米籽粒的介電特性對比情況(24 ℃)
2.5.2 不同種類農(nóng)產(chǎn)品顆粒的MGEMA公式驗證
表3 通過多個介電混合方程計算得到的不同種類農(nóng)產(chǎn)品顆粒的介電特性對比情況(24 ℃)
1)采用離散元法、有限元法和平均能量法建立了堆積型顆粒填充混合物等效介電特性分析的模擬模型,對比分析表明,模擬模型可以實現(xiàn)不同結(jié)構(gòu)形狀籽粒的生成和落料堆放,模擬稻谷籽粒堆和真實稻谷籽粒堆的堆積角誤差為0.45%。與傳統(tǒng)經(jīng)典方程(LLL)計算結(jié)果相比較,模擬模型的數(shù)值結(jié)果呈現(xiàn)出以基質(zhì)物質(zhì)的體積分?jǐn)?shù)50%為分界點的先高后低趨勢,當(dāng)基質(zhì)物質(zhì)的體積分?jǐn)?shù)為50%時,二者相吻合。
2)采用數(shù)值計算和實例試驗對比研究的方法,分析GEM公式的理想?yún)?shù),獲得適合于堆積型顆粒狀農(nóng)產(chǎn)品介電特性分析的GEM公式較佳無量綱參數(shù)為=5、=0.5。對比分析表明,在農(nóng)產(chǎn)品顆粒的介電常數(shù)(2~10)、介電損耗因子(0.1~0.9)、含水率(2.0%~19.7%)、頻率(2.0 ~12.2 GHz)和體積分?jǐn)?shù)(18.2%~88.0%)計算條件下,MGEMA公式針對介電常數(shù)和介電損耗因子的最大誤差分別為0.40%和1.20%,MGEMA公式具有一定的計算準(zhǔn)確性。
3)本研究主要針對收獲后的農(nóng)產(chǎn)品顆粒進行探討,技術(shù)方法可為三維情形下其他落料堆放農(nóng)業(yè)散粒體的介電特性模擬分析提供參考,為常溫下小粒徑農(nóng)產(chǎn)品顆粒的介電特性應(yīng)用研究提供一個可借鑒公式,但是,MGEMA公式在更廣泛條件下(如針對不同農(nóng)業(yè)散粒體物料在收獲、脫粒、加工、儲藏不同實況應(yīng)用環(huán)節(jié)實時的含水率,以及農(nóng)業(yè)散體物料中較大粒徑、不規(guī)則顆粒類等)的適用性研究有待進一步深入開展。
[1]施火結(jié),張紹英,鄭文鑫. 基于射頻加熱數(shù)值模型的介電系數(shù)混合方程研究[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2015,20(2):194-200.
Shi Huojie, Zhang Shaoying, Zheng Wenxin. Study on mixture equations of dielectric properties using numerical model of radio frequency heating[J]. Journal of China Agricultural University, 2015, 20(2): 194-200. (in Chinese with English abstract)
[2]Papa E, Medri V, Amari S, et al. Zeolite-geopolymer composite materials: Production and characterization[J]. Journal of Cleaner Production, 2017, 171(9): 76-84.
[3]張本華,錢長錢,焦晉康,等. 基于介電特性與SPA-SVR算法的水稻含水率檢測方法[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):238-245.
Zhang Benhua, Qian Changqian, Jiao Jinkang, et al. Rice moisture content detection method based on dielectric properties and SPA-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 238-245.(in Chinese with English abstract)
[4]牛智有,劉芳宏,劉鳴,等. 平行極板電容傳感器介電式顆粒飼料水分檢測儀設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):37-44.
Niu Zhiyou, Liu Fanghong, Liu Ming, et al. Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 37-44. (in Chinese with English abstract)
[5]Nelson S O. Density-permittivity relationships for powdered and granular materials[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(5): 2033-2040.
[6]廖意,蔡昆,張元,等. 高濃度纖維增強材料介電特性計算方法[J]. 物理學(xué)報,2016, 65(2): 024102.
Liao Yi, Cai Kun, Zhang Yuan, et al. An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction[J]. Acta Physica Sinica, 2016, 65(2): 024102. (in Chinese with English abstract)
[7]李滾,張亮,杜寧,等. 生物體系介電性質(zhì)的復(fù)合材料理論模型[J]. 材料導(dǎo)報,2017(15):36-41.
Li Gun, Zhang Liang, Du Ning, et al. Composite material theoretical models for dielectric behavior of biological systems[J]. Materials Review, 2017(15): 36-41. (in Chinese with English abstract)
[8]Chen Wenshiush, Hsieh Mingyueh. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J]. Ceramics International, 2017, 43: S343-S350.
[9]McLachlau D S, Blaskiewicz M, Newnham R E. Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73(8): 2187-2203.
[10]Zhao Xuanhe, Wu Yugong, Fan Zhigang, et al. Three-dimensional simulations of the complex dielectric properties of random composites by finite element method[J]. Journal of Applied Physics, 2004, 95(12): 8110-8117.
[11]鐘汝能,鄭勤紅,向泰,等. 顆粒填充二元復(fù)合材料等效介電特性的修正通用有效介質(zhì)計算公式[J]. 材料導(dǎo)報,2018,32(24):4258-4263.
Zhong Runeng, Zheng Qinhong, Xiang Tai, et al. A modified general effective medium formula for calculating the effective dielectric properties of particle-filled binary composite materials[J]. Materials Review, 2018, 32(24): 4258-4263. (in Chinese with English abstract)
[12]賈富國,韓燕龍,劉揚,等. 稻谷顆粒物料堆積角模擬預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(11):254-260.
Jia Fuguo, Han Yanlong, Liu Yang, et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 254-260. (in Chinese with English abstract)
[13]Nelson S O. Correlating dielectric properties of solids and particulate samples through mixture relationships[J]. Transactions of the ASAE, 1992, 35(2): 625-629.
[14]Guo Wenchuan, Zhu Xinhua. Dielectric properties of red pepper powder related to radio frequency and microwave drying[J]. Food & Bioprocess Technology, 2014, 7(12): 3591-3601.
[15]Shrestha B, Baik O D. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study[J]. Biosystems Engineering, 2013, 114(3): 195-204.
[16]Nelson S O. Dielectric Properties of Agricultural Materials and Their Applications[M]. Elsevier: Academic Press, 2015.
[17]周敏姑,歐業(yè)寶,張麗,等. 蘋果介電特性對其射頻加熱均勻性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(20):273-279.
Zhou Mingu, Ou Yebao, Zhang Li, et al. Effect of dielectric properties on radio frequency heating uniformity of apple[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 273-279. (in Chinese with English abstract)
[18]Kent M. Complex permittivity of fish meal: A general discussion of temperature density and moisture dependence[J]. Journal of Microwave Power, 1977, 12(4): 341-345.
[19]Klein K. Microwave determination of moisture in coal: comparison of attenuation and phase measurement[J]. Journal of Microwave Power, 1981, 16(3): 289-304.
[20]Nelson S O, Trabelsi S. Factors influencing the dielectric properties of agricultural and food products[J]. Journal of Microwave Power and Electromagnetic Energy, 2012, 46(2): 93-107.
[21]Nelson S O, Trabelsi S. Use of material dielectric properties in agricultural applications[J]. Journal of Microwave Power and Electromagnetic Energy, 2016, 50(4): 237-268.
[22]秦文,張惠,鄧伯勛,等. 部分農(nóng)產(chǎn)品水分含量與其介電常數(shù)關(guān)系模型的建立[J]. 中國食品學(xué)報,2008(3):62-67.
Qin Wen, Zhang Hui, Deng Boxun, et al. Construction of the model on the correlation between moisture content and dielectric constant of some agricultural products[J]. Journal of Chinese Institute of Food Science and Technology, 2008(3): 62-67. (in Chinese with English abstract)
[23]Trabelsi S, Nelson S O. Microwave dielectric properties of cereal grains[J]. Transactions of the ASABE, 2012, 55(5): 1989-1996.
[24]Nelson S O, Trabelsi S. Principles for microwave moisture and density measurement in grain and seed[J]. Journal of Microwave Power and Electromagnetic Energy, 2004, 39(2): 107-117.
[25]郭文川,王婧,朱新華. 基于介電特性的燕麥含水率預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(24):272-279.
Guo Wenchuan, Wang Jing, Zhu Xinhua. Moisture content prediction of oat seeds based on dielectric property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 272-279. (in Chinese with English abstract)
[26]黃志剛,于立萍,李棟. 顆粒物料傳熱過程的數(shù)值模擬與研究[J]. 包裝工程,2005(2):55-57.
Huang Zhigang, Yu Liping, Li Dong. Numerical simulation and test study on particulate materiel heat transfer[J]. Packag Engineer, 2005(2): 55-57. (in Chinese with English abstract)
[27]Routray W, Orsat V. Recent advances in dielectric properties measurements and importance[J]. Current Opinion in Food Science, 2018, 23: 120-126.
[28]馮力更.農(nóng)產(chǎn)品質(zhì)量管理[M].北京:中央廣播電視大學(xué)出版社,2009.
[29]鐘汝能,鄭勤紅,姚斌,等. 微波頻段下顆粒狀農(nóng)產(chǎn)品的介電特性測量與分析[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2019,21(12):68-75.
Zhong Runeng, Zheng Qinhong, Yao Bin, et al. Measurement and analysis of dielectric property of granular agricultural products in the microwave frequency band[J]. Journal of Agricultural Science and Technology, 2019, 21(12): 68-75. (in Chinese with English abstract)
[30]尹文言. 顆粒分布狀態(tài)對混合媒質(zhì)效介電常數(shù)的影響[J]. 電波科學(xué)學(xué)報,1991(4):39-46.
Yin Wenyan. Effects of granular distribution on the effective dielectric constant of mixture media[J]. Chinese Journal of Radio Science, 1991(4): 39-46. (in Chinese with English abstract)
[31]Nelson S O, You T S. Relationships between microwave permittivities of solid and pulverised plastics[J]. Journal of Physics D Applied Physics, 1990, 23(3): 346.
[32]曲寶龍,王麗芳. 兩相復(fù)合材料等效介電常數(shù)數(shù)值計算[J]. 功能材料,2016,47(1):1172-1176.
Qu Baolong, Wang Lifang. Numerical simulation for effective permittivity of two-phase composites[J]. Journal of Functional Materials, 2016, 47(1): 1172-1176. (in Chinese with English abstract)
Determination of parameters of GEM formula for dielectric properties of small size granular agricultural products
Zhong Runeng1, Zheng Qinhong2※, Yao Bin2, Xiang Tai1
(1.,,650500,; 2.,650500,)
The dielectric properties are the response characteristics of bound charge in molecules of matter to external electric field, and the fundamental researches on the dielectric properties of agricultural products can provide a basis for microwave processing, nondestructive sensing, etc. In order to extend the application of general effective medium (GEM) in agricultural engineering and explore the novel calculation method for dielectric properties of agricultural products, granular agricultural products were taken as the study objects in this paper. The simulation model and numerical method for analyzing the effective dielectric properties of the accumulative granular agricultural products were established by using discrete element method,finite element method and average energy method. In addition, a great deal of simulation and experimental measurement was carried out. Based on the comparative analysis of numerical calculation data and experimental measurements data,the best dimensionless parameter of GEM formula for calculating dielectric properties of granular agricultural products at microwave band was proposed as=5 and=0.5 ( called Modified General Effective Medium of Agriculture, MGEMA). The feasibility, validity and accuracy of the numerical model and MGEMA formula were verified through experimentally measured data of some kinds of granular agricultural products, including grain, wheat, millet, maize pulp,and rapeseed, etc. The results showed that the repose angle error between the real and simulated of grain particle materials was 0.45%. Under the conditions of dielectric constant (2.0-10.0), dielectric loss factor (0.1-0.9), microwave frequency (2.0-12.2 GHz), moisture content (2.0%-19.7%, wet basis) and volume fraction (18.2 %-88.0 %) of agricultural product particles,the maximum error of dielectric constant and dielectric loss factor that calculated by MGEMA formula were 0.40% and 1.20%,respectively. The accuracy was better than some traditional theoretical formulas. The method can be used for simulation analysis of effective dielectric properties of other kinds accumulation granular agricultural products in three dimension, and the MGEMA provides a theoretical formula with high accuracy for the dielectric properties study of granular agricultural products at room temperature (24 ℃).
agricultural products; dielectric property; MGEMA (Modified General Effective Medium of Agriculture, MGEMA); simulation model; parameter determination
鐘汝能,鄭勤紅,姚斌,等. 小粒徑顆粒狀農(nóng)產(chǎn)品介電特性的GEM公式參數(shù)確定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(17):281-290.doi:10.11975/j.issn.1002-6819.2020.17.033 http://www.tcsae.org
Zhong Runeng, Zheng Qinhong, Yao Bin, et al. Determination of parameters of GEM formula for dielectric properties of small size granular agricultural products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 281-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.033 http://www.tcsae.org
2020-05-11
2020-08-12
國家自然科學(xué)基金項目(61961044;31560305)
鐘汝能,博士,副教授,主要從事農(nóng)業(yè)生物環(huán)境與新型能源工程研究。Email:zhong_rn@126.com。
鄭勤紅,博士,教授,博士生導(dǎo)師,從事有效介質(zhì)和散射理論、計算電磁學(xué)研究。Email:zheng_qh62@aliyun.com
10.11975/j.issn.1002-6819.2020.17.033
S5; O441.6
A
1002-6819(2020)-17-0281-10