• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化石墨烯和五價砷在改性多孔介質中的共遷移特征

    2020-10-22 14:35:08孟慶濤姜延吉孫慧敏殷憲強
    農業(yè)工程學報 2020年17期
    關鍵詞:高嶺石石英砂蒙脫石

    孟慶濤,管 多,姜延吉,孫慧敏,殷憲強,王 農

    氧化石墨烯和五價砷在改性多孔介質中的共遷移特征

    孟慶濤1,2,3,管 多3,姜延吉3,孫慧敏3,殷憲強3※,王 農4

    (1.中國科學院西北生態(tài)環(huán)境資源研究院,蘭州 730000;2. 中國科學院大學,北京 100049;3. 西北農林科技大學資源環(huán)境學院,楊凌 712100;4.農業(yè)農村部環(huán)境保護科研監(jiān)測所,天津 300191)

    砷是農田土壤重金屬污染的主要元素之一,在砷污染農田土壤的修復過程中往往忽視納米顆粒能夠使結合態(tài)的砷重新釋放,導致有效態(tài)砷濃度升高,探究土壤中黏土礦物對氧化石墨烯(Graphene Oxide,GO)和五價砷(As(V))在多孔介質中遷移行為的影響,對進一步完善農田土壤砷修復理論以及提高農作物產量、保護人體健康具有重要意義。該研究利用蒙脫石和高嶺石改性石英砂,通過砂柱遷移試驗系統(tǒng)地研究了GO、As(V)和GO-As(V)在填加0%、10%、30%和50%的蒙脫石和高嶺石改性石英砂柱中的遷移行為。研究結果表明,隨著高嶺石和蒙脫石改性石英砂填加比例的增加,GO和As(V)的遷移能力均呈降低趨勢,且GO和As(V)在不同條件下的遷移曲線均存在顯著差異(0.05);GO在50%高嶺石和蒙脫石改性石英砂柱中的回收率相對于石英砂柱分別下降了14%和17%,As(V) 分別下降了15%和12%;在共遷移試驗中,GO和As(V)在石英砂柱中回收率分別上升至99%和100%。分析表明,As(V)在蒙脫石改性石英砂柱中的遷移能力大于高嶺石改性石英砂,而GO與之相反;當GO和與As(V)共遷移時,二者在介質中的遷移能力均大于其單獨遷移。本研究表明GO、As(V)釋放到土壤后,能夠加速As(V)的遷移,造成土壤砷污染的擴大化。

    重金屬;土壤;水;氧化石墨烯;高嶺石;蒙脫石;五價砷;遷移

    0 引 言

    五價砷(As(V))是環(huán)境中常見的污染物之一[1]。在各種生產實踐活動中As(V)會以不同的方式進入農田土壤中,農田土壤中As(V)濃度的升高引起了人們對農作物質量安全的擔憂[2]。針對農田土壤中As(V)的污染現(xiàn)狀及其可能的環(huán)境風險,眾多學者開展了農田As(V)污染修復的研究[3-4],但是在農田土壤修復過程中,往往忽視了土壤中的納米顆粒對As(V)的釋放、遷移的影響。有相當多的證據(jù)表明,非水相流動膠體可以將As(V)輸送相當長的距離[5-6]。Ishak等[5]的研究證明土壤浸出液中As(V)的濃度與濁度相關。當用去離子水沖洗土柱時,氧化鐵膠體可以促進As(V)的遷移[6]。

    氧化石墨烯(Graphene Oxide,GO)是一種具有特殊二維結構的碳基納米材料。目前,GO廣泛應用于電子、生物、儲能和光學等眾多領域[7]。眾多含氧官能團和高比表面積性質使GO表現(xiàn)出良好的水溶性和對污染物產生極強的吸附能力[8-9],GO進入環(huán)境后可作為污染物的載體而攜帶污染物在地下水環(huán)境中遷移[10-11]。例如,一些砂柱遷移試驗探究了GO和污染物的協(xié)同遷移行為,GO能夠釋放滯留在砂柱中二價鉛(Pb(II))、二價鎘(Cd(II))、二價銅(Cu(II))和六價鈾(U(VI))等重金屬污染物,并促進其遷移[12-14]。另外,Liu等[15]研究表明GO也可促進有機污染物的遷移。

    綜上,GO對As(V)在土壤介質中的遷移也具有重要影響,GO可以改變As(V)與土壤的結合形式,增加As(V)在土壤中的移動性與生物有效性。但As(V)與GO在介質中遷移行為的研究鮮見報道。黏土礦物是土壤中活性較強的固體成分,在影響污染物的遷移轉化方面起著重要的作用[16-19]。Selim等[20]發(fā)現(xiàn)砷在土壤中的運移主要受固體基質表面吸附-解吸過程的控制。Constantinos等[21]和Indranil等[22]研究表明溶液中存在黏土礦物膠體時會抑制GO的遷移,其抑制能力最高是高嶺石,其次是蒙脫石和伊利石。但這些研究是探究溶液中存在黏土礦物膠體時對GO和As(V)遷移的影響,而針對介質表面固定黏土礦物對GO和As(V)共遷移影響的研究還未開展,關于不同黏土礦物間對GO和As(V)運移的差異研究目前也處于空白。因此,本研究以GO、As(V)在蒙脫石、高嶺石改性石英砂柱中的遷移為研究對象,深入分析GO、As(V)在黏土礦物改性介質中的共遷移行為,揭示GO、As(V)與土壤黏土礦物之間的相互作用,加深GO對As(V)在土壤介質中遷移影響的認知和理解,以期進一步完善納米顆粒對土壤中As(V)遷移的理論,為土壤As(V)污染修復和毒性控制提供依據(jù),并促進對農田作物和人體健康的有效保護。

    1 材料與方法

    1.1 材料制備

    氧化石墨烯(GO)購自先豐納米公司(中國南京)。將20 mg的 GO加入1 L蒸餾水中,使用超聲波清洗器(KQ-500DE,昆山超聲波儀器公司,中國)超聲分散120 min,制得20 mg/L GO儲備液,調節(jié)儲備液pH值為6。將83.2 mg Na3AsO4加入1 L蒸餾水中配置20 mg/L As(V)儲備液。將83.2 mg Na3AsO4加入1 L的GO儲備液中,制得20 mg/LGO-As(V)儲備液(遷移試驗前超聲分散均勻)。使用蒸餾水配制pH值為6、CNaCl濃度為1 mmol/L的背景溶液。使用Zetasizer nano ZS90(Malvern Instruments Inc.,UK)測定GO的Zeta電位和水合粒徑。GO的水合粒徑為(165.49±20.5) nm,Zeta電位為 (?21.3±0.6) mV;GO-As(V)的Zeta電位為(?26.7±0.4) mV。

    1.2 柱遷移介質的制備和表征

    將石英砂(周至縣秦豐石英砂廠)篩分至0.4~0.8 mm,用蒸餾水搓洗、浸泡24 h,之后依次分別用酸堿搓洗、浸泡24 h,以除去石英砂表面的金屬離子和膠體物質[23],再使用蒸餾水淘洗石英砂,105 ℃下烘干。

    蒙脫石、高嶺石改性石英砂的制備[24]:在1 L的蒸餾水中加入10 g的黏土礦物,攪拌,加入50 mL H2O2去除黏土礦物中的有機物,通過重力沉降獲得直徑小于2m的黏土礦物懸浮液。在懸浮液中加入500 mg/L聚乙烯醇溶液100 mL。將黏土-聚合物復合溶液與石英砂混合靜置24 h,之后在80 ℃下烘干24 h,用去離子水洗滌以除去未附著在石英砂表面的黏土礦物和聚乙烯醇,之后100 ℃下烘干24 h備用。

    運用掃描電子顯微鏡X射線能譜儀(Scanning Electron Microscope and Energy Dispersive Spectrometer,SEM-EDS,S-4800,日本)對改性石英砂的表面特征進行表征。表征結果如圖1所示,石英砂表面涂覆的高嶺石呈單體顆粒間分離,大小不同,多邊形塊狀結構。石英砂表面涂覆的蒙脫石顆粒層層堆疊,呈無定形片狀,具有孔狀結構。材料中的鋁元素(Al)和硅元素(Si)含量高表明高嶺石和蒙脫石顆粒附著在了石英砂表面(圖2)。

    注:C為碳;O為氧;Na為鈉;Mg為鎂;Al為鋁;Si為硅;P為磷;K為鉀;Ca為鈣。

    1.3 砂柱遷移試驗

    在高15 cm、內徑3 cm的有機玻璃柱中,填充石英砂、改性石英砂進行GO、As(V)的遷移試驗。為最大限度減少分層,排空砂柱中的空氣,采用濕法填裝石英砂柱[23]。在濕法填裝過程中,共加入48 mL蒸餾水,遷移柱的孔隙體積(Pore Volume,PV)設定為48 mL,孔隙率為0.45。試驗前,使用蒸餾水持續(xù)沖洗砂柱,直至出流液中不含可見雜質。

    將填裝比例0%、10%、30%和50%的改性石英砂(蒙脫石、高嶺石)與未改性石英砂混勻,采用濕法裝填遷移砂柱。遷移試驗分為2個部分,1)用NaCl背景溶液(濃度為1 mmol/L,pH值為6)沖洗砂柱以平衡遷移條件,之后分別輸入60 mL的20 mg/LGO、20 mg/L As(V),最后將沖洗液切換為背景溶液繼續(xù)沖洗,直至出流液中無GO、As(V);2)用NaCl背景溶液沖洗以平衡遷移條件,將60 mL的GO-As(V)(20 mg/LGO、20 mg/L As(V))混合溶液輸入砂柱,之后再將沖洗液切換為背景溶液繼續(xù)沖洗,直至出流液中無GO、As(V)。砂柱遷移試驗重復2次。

    試驗流速通過蠕動泵(HL-2B,上海滬西分析儀器有限公司)控制為1 mL/min。使用自動收集器(EBS-20,上海滬西分析儀器有限公司)收集出流液。通過紫外-可見分光光度計(UV-2800,上海尤尼柯儀器有限公司)在波長229 nm下測定GO的濃度[25]。As(V)的濃度使用火焰石墨爐原子吸收光譜儀(PinAAciie 900F,美國珀金埃爾默有限公司)進行測定。使用Zetasizer nano ZS90測定0%、10%、30%和50%改性石英砂表面的Zeta電位[26]。測定方如下:遷移試驗前,從砂柱中取出完整的石英砂置于背景溶液中,超聲10 min后浸泡6 h,測定溶液的Zeta電位。純石英砂的Zeta電位為(?19.4±0.8) mV;10%、30%和50%高嶺石改性石英砂的Zeta電位分別為(?21.4±1.6)、(?22.45±0.4)和(?26.4±0.7) mV;10%、30%和50%蒙脫石改性石英砂的Zeta電位分別為(?23.2±1.3)、(?29.6±2.4)和(?37.5±0.9) mV。

    1.4 數(shù)據(jù)分析

    Darjaguin-Landau-Verwey-Overbeek(DLVO)理論用于計算GO和石英砂表面的相互作用力[12],通常用來解釋膠體在多孔介質中的遷移行為。 DLVO能(ΔDLVO,kT)是范德華作用能(ΔEL,kT)和靜電作用能(ΔLW,kT)兩相互作用能的總和,計算如式(1)所示。

    ΔDLVO=ΔLW+ΔEL(1)

    Microsoft Excel軟件用于處理標準偏差。通過質量守恒計算As(V)和GO的回收率(%)。不同因素對As(V)和GO遷移影響的差異使用t檢驗的配對樣本檢驗進行分析,顯著水平設置為0.05。

    2 結果與分析

    2.1 五價砷、氧化石墨烯在改性石英砂中的單獨遷移

    As(V)在高嶺石、蒙脫石改性石英砂柱中的遷移曲線如圖3所示。

    圖3 不同改性石英砂填加量下五價砷(As(V))的遷移曲線

    As(V)在蒙脫石比例為0%、10%、30%和50%的改性石英砂柱中呈現(xiàn)出不同的遷移曲線(圖3a)。純石英砂柱中,在PV為0.8處As(V)被檢出,之后As(V)濃度迅速升高,在PV為2處達到峰值,相對濃度達0.95,表明As(V)在純石英砂柱中的遷移性極強。對比圖3a和圖3b 中的遷移曲線發(fā)現(xiàn),隨著砂柱中蒙脫石和高嶺石改性石英砂填加比例的增大,As(V)在砂柱中的沉積量逐漸增加。As(V)在比例為0%、10%、30%和50%蒙脫石改性石英砂柱中的回收率分別為94%、92%、88%和82%,在相應比例高嶺石改性石英砂柱中的回收率分別為94%、89%、83%和79%(表1)。As(V)在50%蒙脫石改性石英砂柱中的回收率相對于純石英砂柱下降了12%,在高嶺石改性石英砂柱的回收率下降了15%,通過t檢驗的配對樣本檢驗進行差異分析發(fā)現(xiàn)在不同比例間As(V)的遷移均呈顯著性差異(0.05)。

    GO在不同質量比例的蒙脫石、高嶺石改性石英砂柱中的穿透曲如圖4所示。在純石英砂柱中,GO幾乎全部流出砂柱,表明GO在純石英砂中不受阻滯作用。GO在10%蒙脫石改性石英砂柱中的遷移曲線與純石英砂柱中的遷移曲線差異不顯著(0.05),表明較低含量的蒙脫石改性石英砂對GO的遷移影響較小。GO在50%蒙脫石改性石英砂柱中的回收率相對于純石英砂柱下降了17%,經過t檢驗-配對樣本檢驗進行差異分析發(fā)現(xiàn),GO在純石英砂和10%蒙脫石改性石英砂中的遷移曲線與30%和50%蒙脫石改性石英砂柱中的遷移曲線呈顯著性差異(0.05)。結果表明隨著蒙脫石改性石英砂填加量的進一步增加,GO受到的阻滯作用愈加明顯。

    與填加不同比例蒙脫石改性石英砂的結果類似,隨著高嶺石改性石英砂所占比例的增加,GO的遷移能力也隨之下降(圖4b),根據(jù)質量平衡計算,GO在高嶺石改性石英砂填加比例為0%、10%、30%和50% 的砂柱中的回收率分別為96%、91%、87%和82%(表1)。GO在不同比例高嶺石改性石英砂柱中的遷移曲線均存在顯著差異(0.05)。

    2.2 氧化石墨烯與五價砷在改性石英砂中的共遷移

    GO與As(V)在蒙脫石和高嶺石改性石英砂柱中的共遷移曲線(圖5),其中圖5a和圖5b分別為GO-As在高嶺石和蒙脫石改性石英砂柱中GO的遷移曲線。在純石英砂柱中,GO的回收率為99%(表1),相比于單獨遷移的96%,回收率有所上升,但兩者的穿透曲線無顯著差異(0.05)。10%、30%和50%填加比例的高嶺石改性石英砂中GO的回收率分別為96%、95%和93%;蒙脫石改性石英砂中GO的回收率分別為97%、90%和84%(表1)??芍狦O-As(V)共遷移中GO在砂柱中具有很強的遷移性,且遷移能力高于單獨遷移的GO。

    GO-As(V)在高嶺石和蒙脫石改性石英砂柱中As(V)的遷移曲線見圖5c和圖5d。As(V)的遷移曲線與GO保持一致,在PV為0.8處被檢測出來,之后濃度迅速升高,在PV為2處出流液濃度達到峰值。根據(jù)質量守恒計算,As(V)在填加0%、10%、30%和50%高嶺石改性石英砂柱中的回收率依次為100%、97%、91%和85%,蒙脫石改性石英砂柱中的回收率依次為100%、98%、94%和92%(表1),表明高嶺石改性石英砂對As(V)的滯留能力高于蒙脫石改性石英砂。

    表1 五價砷(As(V))和氧化石墨烯在填加不同比例改性石英砂柱中的回收率

    注:As(V)/GO-As(V)為氧化石墨烯與五價砷共遷移中的五價砷,GO/GO-As(V) 為氧化石墨烯與五價砷共遷移中的氧化石墨烯。

    Note: As(V)/GO-As(V) is the As(V) in the co-transport of Graphene Oxide (GO) and As(V), GO/GO-As(V) is the Graphene Oxide (GO) in the co-transport of Graphene Oxide (GO) and As(V).

    圖5 氧化石墨烯與五價砷(As(V))在改性石英砂柱中的共遷移曲線

    2.3 DLVO理論分析

    GO與改性石英砂之間的DLVO相互作用能譜如圖6所示。

    隨著改性石英砂質量比例的增加,GO和高嶺石及蒙脫石改性石英砂之間的能壘逐漸增大,表明隨著改性石英砂比例的增加,GO與介質表面的排斥力增大,不易沉積于介質表面。圖6a中展示出GO和介質之間的能壘均大于20 kT,表明GO顆粒難以通過布朗運動而沉積于介質的表面。同時,GO與蒙脫石改性石英砂之間的能壘大于GO與高嶺石改性石英砂之間的能壘,表明GO顆粒在蒙脫石改性石英砂柱中更不容易通過布朗運動克服能壘而永久性地沉積在石英砂表面[21]。GO與純石英砂、10%蒙脫石改性石英砂、30%蒙脫石改性石英砂、50%蒙脫石改性石英砂、10%高嶺石改性石英砂、30%高嶺石改性石英砂以及50%高嶺石改性石英砂的二次能量最小值分別為?0.112、?0.103、?0.094、?0.091、?0.102、?0.093和?0.089 kT。表明隨著蒙脫石改性石英砂、高嶺石改性石英砂比例增加,GO和高嶺石及蒙脫石改性石英砂之間的二次能量最小值逐漸增大。

    圖6 氧化石墨烯與不同比例改性石英砂的DLVO能譜圖

    2.4 黏土礦物對氧化石墨烯和五價砷遷移的影響

    土壤中污染物的移動性主要是由土壤的吸附特性控制,黏土礦物是土壤中活性較強的固體成分,在影響污染物的遷移轉化方面起著重要的作用[16-19]。As(V)在黏土礦物改性石英砂柱中的遷移結果顯示,As(V)的遷移能力受到了抑制。Lin等[27]指出蒙脫石和高嶺石外表面的邊緣斷鍵,像Si-OH和Al-OH,讓其外部邊緣擁有類似氧化物的特性,黏土礦物表面可以吸附As(V)。Eleonora等[28]和Ladeira等[29]等研究發(fā)現(xiàn),As(V)與蒙脫石周圍的≡Al-OH官能團結合形成單核或雙核雙配位絡合基團,從而吸附在蒙脫石的表面。As(V)在0%、10%、30%和50%比例蒙脫石和高嶺石改性石英砂柱中的遷移能力逐漸降低,是因為隨著蒙脫石和高嶺石改性石英砂填加量的增加,砂柱中供As(V)沉積的位點也隨之增加。盡管As(V)在不同比例高嶺石改性石英砂柱中的遷移規(guī)律與在蒙脫石改性石英砂柱中的基本一致,但經過t檢驗分析發(fā)現(xiàn),As(V)在2種改性石英砂柱中的遷移行為存在著差異性(0.05),As(V)在高嶺石改性石英砂柱中的整體回收率均低于在蒙脫石改性石英砂柱中的回收率。這是因為高嶺石晶體破裂所形成的正電荷多于蒙脫石,整體呈現(xiàn)出的Zeta電位大于蒙脫石,因而As(V)在高嶺石改性石英砂柱的滯留量更多[30]。由測定的Zeta電位可以得知蒙脫石表面的負電性更大,對As(V)的排斥作用更強,因而As(V)的出流更多。這與Yin等[31]對蒙脫石改性石英砂柱中Pb(II)和Cd(II)在遷移的研究現(xiàn)象一致:蒙脫石改性石英砂柱中Pb(II)和Cd(II)的沉積量大于高嶺石改性石英砂柱中的沉積量。此外,與單獨遷移的As(V)相比,GO-As(V)混合液As(V)的遷移能力明顯提升(0.05)。主要是因為GO能夠作為As(V)的載體攜帶As(V)遷移。這與目前的一些研究結果類似,溶液中存在GO顆粒時,Pb(II)、Cd(II)、Cu(II)和U(VI)在介質中的遷移能力均有提升[12-14]。

    GO和介質之間的能壘大于15 kT,且與不同比例蒙脫石改性石英砂間的二次能量最小值均小于高嶺石改性石英砂。根據(jù)DLVO理論,當能壘大于15 kT時,GO在介質表面上的沉積行為通常會發(fā)生在二次能量最小值處,二次能量最小值越小,越容易發(fā)生沉積[12]??梢酝茰y出相對于高嶺石改性石英砂,GO在蒙脫石改性石英砂中更容易沉積。GO在黏土礦物改性石英砂柱中的遷移結果顯示,高嶺石改性石英砂中對GO的阻滯能力小于蒙脫石改性石英砂,表明試驗結果符合DLVO理論的預測。在Yin等[31]研究中同樣發(fā)現(xiàn)蒙脫石改性石英砂對GO的遷移能力的抑制作用大于高嶺石改性石英砂,主要是因為涂覆在石英砂表面的蒙脫石相比于高嶺石褶皺更多,比表面積更大,砂柱中的吸附位點更多,使得GO滯留在砂柱中。隨著蒙脫石和高嶺石改性石英砂填加量的進一步增加,GO受到的阻滯作用愈加明顯,是因為黏土礦物進一步增大了石英砂的比表面積,提供了更多的沉積位點[31]。

    GO-As(V)共遷移結果顯示出GO在砂柱中具有很強的遷移性,且遷移能力高于單獨遷移的GO。主要是因為GO負載As(V)后,其Zeta電位比GO更低,因而與介質表面間的靜電排斥力更大,導致GO的遷移能力增強。與GO單獨遷移結果類似的是隨著高嶺石和蒙脫石改性石英砂填加量的增大,GO受到的阻滯作用均逐漸增大,且GO在蒙脫石改性石英砂柱中受到的阻滯作用更為明顯,表明在GO-As(V)遷移過程中,GO與黏土礦物間的相互作用起著主導作用[31]。通過分析討論As(V)與GO的共遷移結果可知,當溶液中同時存在GO和As(V)時,二者在介質中的遷移能力均大于其單獨遷移,因此當GO、As(V)共同釋放到土壤中后,會加速As(V)的遷移,造成地下水As(V)污染。

    3 結 論

    1)五價砷(As(V))在填加0%、10%、30%和50%蒙脫石改性石英砂柱中的回收率依次為94%、92%、88%和82%,在相同比例高嶺石改性石英砂柱中的回收率依次為94%、89%、83%和79%,顯示出高嶺石和蒙脫石改性石英砂的含量越高,As(V)在砂柱中的沉積量愈多,As(V)隨著蒙脫石和高嶺石改性石英砂填加比例的增加,遷移能力逐漸降低,氧化石墨烯(Graphene Oxide,GO)亦是同樣的結果;

    2)As(V)在不同性質介質中的遷移能力從大到小為純石英砂、蒙脫石改性石英砂、高嶺石改性石英砂,而GO的遷移能力從大到小則為純石英砂、高嶺石改性石英砂、蒙脫石改性石英砂;

    3)當溶液中同時存在GO和As(V)時,GO的Zeta電位由?21.3下降至?26.7 mV,主要原因是As(V)的存在增加了GO表面攜帶的負電荷,增大了與介質表面間的排斥力,另一方面說明GO可以作為As(V)的載體攜帶As(V)進行遷移,因此GO和As(V)在高嶺石和蒙脫石改性石英砂中的遷移能力均大于其單獨遷移。

    綜上所述,GO、As(V)共同釋放到農田土壤中后,會加速As(V)的遷移,造成農田土壤砷污染的擴大化,不利于土壤砷污染的修復。

    [1]董雙快,徐萬里,吳福飛,等. 鐵改性生物炭促進土壤砷形態(tài)轉化抑制植物砷吸收[J]. 農業(yè)工程學報,2016,32(15):204-212.

    Dong Shuangkuai, Xu Wanli, Wu Fufei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 204- 212. (in Chinese with English abstract)

    [2]姜曉璐,鄒濱,湯景文,等. 廣東省東南部菜地水田砷含量空間分布[J]. 農業(yè)工程學報,2016,32(23):263-268.

    Jiang Xiaolu, Zou Bin, Tang Jingwen, et al. Spatial distribution of As in vegetable field and paddy in southeast of Guangdong province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 263-268. (in Chinese with English abstract)

    [3]焦常鋒,常會慶,王啟震,等. 碳酸鈣和殼聚糖聯(lián)用對高pH值石灰性土壤砷污染的鈍化[J]. 農業(yè)工程學報,2020,36(11):234-240.

    Jiao Changfeng, Chang Huiqing, Wang Qizhen, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 234-240. (in Chinese with English abstract)

    [4]吳福飛,賈宏濤,董雙快,等. 鐵改性生物炭抑制土壤中As的遷移[J]. 農業(yè)工程學報,2020,36(6):215-222.

    Wu Fufei, Jia Hongtao, Dong Shuangkuai, et al. Inhibition effect of iron modified biochar on migration of As in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 215-222. (in Chinese with English abstract)

    [5]Ishak C F, Seaman J C, Miller W P, et al. Contaminant mobility in soils amended with fly ash and flue-gas gypsum: Intact soil cores and repacked columns[J]. Water Air & Soil Pollution, 2002, 134(1): 285-303.

    [6]DouOvá B, Martaus A, Filippi M, et al. Stability of arsenic species in soils contaminated naturally and in an anthropogenic manner[J]. Water Air & Soil Pollution, 2008, 187(1): 233-241.

    [7]Farid A, Debora F R. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study[J]. Journal of Hazardous Materials, 2013, 256-257: 33-39.

    [8]Bai Jing, Sun Huimin, Yin Xiaojie, et al. Oxygen- content-controllable graphene oxide from electron-beam- irradiated graphite: Synthesis, characterization, and removal of aqueous lead [Pb(II)][J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25289-25296.

    [9]Yang Kaijie, Chen Baoliang, Zhu Xiaoying, et al. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations[J]. Environmental Science & Technology, 2016, 50(20): 11066-11075.

    [10]Aniruddha M, Li Yuanyuan, Bikash M, et al. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis[J]. Applied Surface Science, 2019, 464: 170-177.

    [11]Franois A P, Faria F, Menachem E. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896.

    [12]Jiang Yanji, Zhang Xiongxiong, Yin Xianqiang, et al. Graphene oxide-facilitated transport of Pb2+and Cd2+in saturated porous media[J]. Science of the Total Environment, 2018(631/632): 369-376.

    [13]Zhou D D, Jiang X H, Lu Y, et al. Cotransport of graphene oxide and Cu(II) through saturated porous media[J]. Science of the Total Environment, 2016, 550: 717-726.

    [14]Zhao Kang, Chen Chong, Cheng Tao, et al. Graphene oxide-facilitated uranium transport and release in saturated medium: Effect of ionic strength and medium structure[J]. Environment Pollution, 2019, 247: 668-677.

    [15]Liu Xianwei, Li Meng, Liu Fuyang, et al. Cotransport of graphene oxides/reduced graphene oxides with BPA in both bare and iron oxides coated quartz sand[J]. Science China Technological Sciences, 2019, 62(11): 1-11.

    [16]Li Yanrong. Effects of particle shape and size distribution on the shear strength behavior of composite soils[J]. Bulletin of Engineering Geology & the Environment, 2013, 72(3/4): 371-381.

    [17]Roberto R F, Lidia L F, Cecilia I C, et al. Particle-size distribution in soils: A critical study of the fractal model validation[J]. Geoderma, 2006, 134(3): 320-334.

    [18]Zhao Lijuan, Jose R P, Hernandez J A, et al. Transport and retention behavior of ZnO nanoparticles in two natural soils: Effect of surface coating and soil composition[J]. Journal of Nano Research, 2012, 17: 229-242.

    [19]Morillo E, Undabeytia T, Maqueda C, et al. The effect of dissolved glyphosate upon the sorption of copper by three selected soils[J]. Chemosphere, 2002, 47(7): 740-752.

    [20]Selim H M. Modeling the transport and retention of arsenic (V) in soils[J]. Soil Science Society of America Journal. 1992, 70(5): 1677-1687.

    [21]Constantinos V C, Nikolaos P S, Nikolaos G K. Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media[J]. Transport in Porous Media, 2017, 119(1): 181-204.

    [22]Indranil C, Matthew C D, Nikhita D M, et al. Response to comment on “colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment”[J]. Environmental Science & Technology, 2013, 47(12): 6288-6296.

    [23]孫慧敏,殷憲強,曹秀蓉. 離子強度對蒙脫石膠體在飽和多孔介質中運移與釋放的影響[J]. 環(huán)境科學學報,2012,32(5):1120-1125.

    Sun Huimin, Yin Xianqiang, Cao Xiurong. The effect of solution ionic strength on the transport and release of montmorillonite colloid in saturated porous media[J]. Acta Scientiae Circumstantiae, 2012, 32(5): 1120-1125. (in Chinese with English abstract)

    [24]Philip R J, Sun Ning, Menachem E. Colloid transport in geochemically heterogeneous porous media:?Modeling and measurements[J]. Environmental Science & Technology, 1996, 30(11): 3284-3293.

    [25]Xia Tianjiao, Lin Yixuan, Guo Xuetao, et al. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions[J]. Environment Pollution, 2019, 251(8): 723-730.

    [26]Jorge J, Flury M. Humic acid-, ferrihydrite-, and aluminosilicate-coated sands for column transport experiments[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 273(1/3): 90-96.

    [27]Lin Z, Puls R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 2000, 39(7): 753-759.

    [28]Eleonora D, Ciminelli V S T, Weidler P G, et al. Arsenic sorption onto soils enriched in Mn and Fe minerals[J]. Clays & Clay Minerals, 2003, 51(2): 197-204.

    [29]Ladeira A C Q, Ciminelli V S T, Duarte H A, et al. Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite[J]. Geochimica Et Cosmochimica Acta, 2001, 65(8): 1211-1217.

    [30]韓永華. 高嶺石、蒙脫石表面性質及其分散機理的量子化學研究[D]. 北京:中國礦業(yè)大學,2017.

    Han Yonghua. Quantum Chemistry Study on Surface Properties and Dispersion of Kaolinite and Montmorillonite[D]. Beijing: China University of Mining and Technology, 2017. (in Chinese with English abstract)

    [31]Yin Xianqiang, Jiang Yanji, Tan Yuihui, et al. Co-transport of graphene oxide and heavy metal ions in surface-modified porous media[J]. Chemosphere, 2019,218:1-13.

    Co-transport characteristics of graphene oxide and pentavalent arsenic in modified porous media

    Meng Qingtao1,2,3, Guan Duo3,Jiang Yanji3, Sun Huimin3, Yin Xianqiang3※, Wang Nong4

    (1,730000,; 2100049;3.712100,;4300191,)

    Arsenic is one of the main elements of heavy metal pollution in farmland soil. In the process of remediation of arsenic-contaminated farmland soil, it is often overlooked that nanoparticles can re-release the bound arsenic, leading to an increase in the effective arsenic concentration. Due to its high specific surface area and strong adsorption capacity, Graphene Oxide (GO) can be used as a carrier of pollutants to carry pollutants and migrate in groundwater environments. However, researches on the transport behavior of anions Arsenic (As(V)) and GO have not been reported. Clay minerals are more active solid components in the soil and play an important role in affecting the migration and transformation of pollutants. Exploring the influence of clay minerals in the soil on the transport behavior of GO and As(V) in porous media is of great significance for improving the theory and model of the fate and transport of nanoparticles and As(V) in the soil, and protecting the soil-groundwater environment. In this study, the influence of clay minerals on the transport behavior of GO and pentavalent As(V) in porous media was investigated. The montmorillonite and kaolinite were used to modify the quartz sand, and the surface characteristics of the modified quartz sand were characterized by a scanning electron microscope and energy dispersive spectrometer. The migration behavior of GO, As(V) and GO-As(V) in 0%, 10%, 30%, and 50% montmorillonite and kaolinite modified quartz sand column was systematically studied by sand column transport experiment. The difference of the effect of different addition ratios on the transport of As(V) and GO was analyzed with the t-test (paired sample test), and the transport behavior of GO colloids in porous media was explained with Darjaguin-Landau-Verwey-Overbeek (DLVO) theory. The research results showed that the kaolinite particles coated on the surface of quartz sand were separated between particles, and the size was different. The montmorillonite particles coated on the surface of the quartz sand were stacked layer by layer in the shape of an amorphous sheet with a pore-shaped structure. GO and As(V) alone had high mobility in porous media. GO and As(V) both had high mobility in pure quartz sand column, and the recovery rates were 96% and 94%, respectively. The proportion of kaolinite and montmorillonite modified quartz sand added was increased to 10%, 30%, and 50%. The migration ability of GO and As(V) all showed a decreasing trend, there were significant differences in the migration curves of GO and As(V) under different conditions (<0.05). The recovery rate of GO in the 50% kaolinite modified quartz sand column was 14% lower than that of the quartz sand column, and the recovery rate in the montmorillonite modified quartz sand column was reduced by 17%, while the As(V) decreased by 15% and 12% respectively. When both GO and As(V) existed in the solution, the Zeta potential of GO decreased from -21.3 to -26.7 mV. The presence of As(V) increased the negative charge carried on the GO surface and increased the repulsive force with the surface of the medium. On the other hand, it showed that GO could be used as a carrier of As(V) to carry As(V) for migration. Therefore, the migration ability of GO and As(V) in kaolinite and montmorillonite modified quartz sand was greater than their transport alone. The analysis showed that the mobility of As(V) in the montmorillonite modified quartz sand column was greater than that of kaolinite modified quartz sand, while the mobility of GO was opposite. When both GO and As(V) existed in the solution, the mobility of both in the medium was greater than their transport alone. The transport behavior of GO in packing modified quartz sand with different proportions was consistent with the DLVO theory. This study showed that they could accelerate the transport of As(V) and caused the expansion of soil arsenic pollution after GO and As(V) being released into the porous media.

    heavy metals; soils; water; graphene oxide; kaolinite; montmorillonite; As(V); transport

    孟慶濤,管多,姜延吉,等. 氧化石墨烯和五價砷在改性多孔介質中的共遷移特性[J]. 農業(yè)工程學報,2020,36(17):142-148.doi:10.11975/j.issn.1002-6819.2020.17.017 http://www.tcsae.org

    Meng Qingtao, Guan Duo, Jiang Yanji, et al. Co-transport characteristics of graphene oxide and pentavalent arsenic in modified porous media[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 142-148. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.017 http://www.tcsae.org

    2020-04-25

    2020-07-22

    國家重點研發(fā)計劃項目(2018YFC1800600);國家自然科學基金面上項目(41877018,41771260);陜西省重點研發(fā)項目(2018ZDXM-SF-030,2017SF-377)

    孟慶濤,博士生,主要從事水土環(huán)境污染控制與生態(tài)修復研究。Email:mqt@nwafu.edu.cn

    殷憲強,博士,教授,主要從事環(huán)境污染治理領域的納米材料的環(huán)境效應、微量元素的遷移轉化、土壤重金屬污染修復、有機污染物的降解等研究。Email:xqyin@nwsuaf.edu.cn

    10.11975/j.issn.1002-6819.2020.17.017

    X8

    A

    1002-6819(2020)-17-0142-07

    猜你喜歡
    高嶺石石英砂蒙脫石
    高溫高壓下石英砂粒徑對油井水泥石性能的影響
    葛根固斂湯聯(lián)合蒙脫石散治療小兒腹瀉的臨床觀察
    鳴律
    炎黃地理(2021年12期)2021-01-04 18:52:33
    二氧化碳在高嶺石孔隙中吸附的分子模擬
    內蒙高嶺石燒結性能與應用試驗
    山東冶金(2018年6期)2019-01-28 08:14:42
    高嶺石電子結構的密度泛函理論研究
    石英砂巖礦浮選降鐵試驗研究
    草酸對蒙脫石的作用及機理研究
    碳化鎢與蒙脫石納米復合材料的制備與電催化活性
    聚合羥基鐵改性蒙脫石的制備、表征及吸附Se(Ⅵ)的特性
    亚洲精品视频女| 在线观看国产h片| 激情视频va一区二区三区| 精品国产露脸久久av麻豆| 亚洲av福利一区| 丝袜美足系列| 国产男女超爽视频在线观看| 国产探花极品一区二区| a级片在线免费高清观看视频| 成人二区视频| 亚洲综合精品二区| 啦啦啦在线观看免费高清www| 波多野结衣一区麻豆| 日本黄大片高清| 亚洲中文av在线| 日韩欧美一区视频在线观看| 国产精品久久久久久精品古装| 2021少妇久久久久久久久久久| 黄色怎么调成土黄色| 五月玫瑰六月丁香| 汤姆久久久久久久影院中文字幕| 老司机影院毛片| 日韩在线高清观看一区二区三区| 久久久久久久国产电影| 下体分泌物呈黄色| 大片电影免费在线观看免费| 亚洲精品,欧美精品| 日本-黄色视频高清免费观看| 亚洲成av片中文字幕在线观看 | 伊人亚洲综合成人网| 成人亚洲精品一区在线观看| 久久久a久久爽久久v久久| 亚洲欧美日韩另类电影网站| 嫩草影院入口| 日韩av免费高清视频| 亚洲一级一片aⅴ在线观看| 欧美精品人与动牲交sv欧美| 在线天堂中文资源库| 九草在线视频观看| 精品亚洲成a人片在线观看| a级毛片黄视频| xxxhd国产人妻xxx| 少妇的丰满在线观看| 成人手机av| 一级毛片黄色毛片免费观看视频| 国产午夜精品一二区理论片| 香蕉精品网在线| 下体分泌物呈黄色| 亚洲精品久久午夜乱码| 99热网站在线观看| 一区在线观看完整版| 国产精品久久久久久久电影| 老女人水多毛片| 国产精品蜜桃在线观看| 亚洲欧美清纯卡通| 最近中文字幕高清免费大全6| 18禁裸乳无遮挡动漫免费视频| 两性夫妻黄色片 | 中文字幕人妻熟女乱码| 亚洲精品乱码久久久久久按摩| 成人亚洲欧美一区二区av| 国产成人一区二区在线| 国产欧美亚洲国产| 十八禁网站网址无遮挡| 日本欧美视频一区| 伊人久久国产一区二区| 热re99久久精品国产66热6| 夜夜骑夜夜射夜夜干| av国产精品久久久久影院| 亚洲欧洲日产国产| 成人国产av品久久久| 日本免费在线观看一区| 久久鲁丝午夜福利片| 考比视频在线观看| 国产高清三级在线| 天天躁夜夜躁狠狠躁躁| 国产精品一二三区在线看| 老司机亚洲免费影院| 中国三级夫妇交换| 26uuu在线亚洲综合色| 两性夫妻黄色片 | 777米奇影视久久| 一区二区三区精品91| 欧美亚洲 丝袜 人妻 在线| 日本-黄色视频高清免费观看| 久久女婷五月综合色啪小说| 久久精品国产亚洲av涩爱| 亚洲欧美成人精品一区二区| 亚洲国产看品久久| 啦啦啦视频在线资源免费观看| 日本猛色少妇xxxxx猛交久久| 午夜激情久久久久久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲av成人精品一二三区| 又大又黄又爽视频免费| 国产永久视频网站| 男女下面插进去视频免费观看 | 看免费av毛片| 狂野欧美激情性xxxx在线观看| 欧美少妇被猛烈插入视频| 草草在线视频免费看| 最新的欧美精品一区二区| 久久久久久久久久久久大奶| 色网站视频免费| freevideosex欧美| 亚洲国产看品久久| 免费黄网站久久成人精品| 熟女人妻精品中文字幕| 国产综合精华液| 国产男女内射视频| 黄片无遮挡物在线观看| 男女免费视频国产| 在线天堂中文资源库| 80岁老熟妇乱子伦牲交| 99久久人妻综合| 日韩欧美精品免费久久| 在线观看美女被高潮喷水网站| 各种免费的搞黄视频| 国产精品成人在线| 制服丝袜香蕉在线| 久久精品人人爽人人爽视色| 少妇被粗大的猛进出69影院 | 亚洲精品一二三| 国产高清三级在线| 亚洲成人一二三区av| 曰老女人黄片| 欧美成人午夜精品| 黄色 视频免费看| 午夜福利视频在线观看免费| 日韩视频在线欧美| 午夜福利乱码中文字幕| 久久亚洲国产成人精品v| 久久久久精品人妻al黑| 国产成人精品在线电影| 90打野战视频偷拍视频| 国产精品久久久久久久电影| 男的添女的下面高潮视频| 国产精品国产三级专区第一集| 国产 一区精品| 2022亚洲国产成人精品| 一区二区三区精品91| 如日韩欧美国产精品一区二区三区| 91国产中文字幕| 国产永久视频网站| 中文字幕人妻熟女乱码| 99热网站在线观看| 亚洲内射少妇av| 美女xxoo啪啪120秒动态图| 91在线精品国自产拍蜜月| 国产免费一区二区三区四区乱码| 我要看黄色一级片免费的| 日韩一区二区三区影片| 自线自在国产av| 青春草视频在线免费观看| 精品国产一区二区三区久久久樱花| 视频在线观看一区二区三区| 黄片无遮挡物在线观看| 亚洲美女黄色视频免费看| 中文字幕人妻熟女乱码| 色吧在线观看| 欧美精品国产亚洲| 激情五月婷婷亚洲| 啦啦啦视频在线资源免费观看| 99久久精品国产国产毛片| 中文乱码字字幕精品一区二区三区| 激情视频va一区二区三区| 黄色 视频免费看| 亚洲av在线观看美女高潮| 丁香六月天网| 久久这里有精品视频免费| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区| 亚洲人成77777在线视频| 永久网站在线| 18在线观看网站| 亚洲色图 男人天堂 中文字幕 | 97在线视频观看| 国产综合精华液| 精品卡一卡二卡四卡免费| 国产精品嫩草影院av在线观看| 欧美精品亚洲一区二区| 韩国高清视频一区二区三区| 国产精品蜜桃在线观看| 国产日韩欧美亚洲二区| 免费人成在线观看视频色| 久久久欧美国产精品| 十八禁网站网址无遮挡| 两个人看的免费小视频| 黄色怎么调成土黄色| 精品久久久精品久久久| 国产成人aa在线观看| 999精品在线视频| 自线自在国产av| 久久久久久久亚洲中文字幕| 宅男免费午夜| 午夜福利在线观看免费完整高清在| 色网站视频免费| 中文字幕另类日韩欧美亚洲嫩草| 香蕉丝袜av| 性高湖久久久久久久久免费观看| 少妇高潮的动态图| 国产成人精品在线电影| 亚洲国产日韩一区二区| 99re6热这里在线精品视频| 成人午夜精彩视频在线观看| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 亚洲欧洲日产国产| av国产久精品久网站免费入址| 国产精品久久久久久精品电影小说| 免费黄色在线免费观看| 97在线人人人人妻| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 国产成人免费观看mmmm| 久久人人爽人人爽人人片va| 精品一区在线观看国产| 99久久综合免费| 青春草国产在线视频| 欧美97在线视频| 成年人免费黄色播放视频| 成人毛片a级毛片在线播放| 精品国产一区二区久久| 中文字幕最新亚洲高清| 久久国内精品自在自线图片| 久久久精品区二区三区| 天天影视国产精品| 久久亚洲国产成人精品v| 人体艺术视频欧美日本| 国产极品天堂在线| av免费在线看不卡| 黄色怎么调成土黄色| www日本在线高清视频| 欧美日韩亚洲高清精品| 久久精品熟女亚洲av麻豆精品| 成年人免费黄色播放视频| 亚洲国产精品一区二区三区在线| 亚洲精品久久久久久婷婷小说| 亚洲综合色惰| 美女内射精品一级片tv| 黑人巨大精品欧美一区二区蜜桃 | 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 一个人免费看片子| 欧美老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 国产男人的电影天堂91| 视频中文字幕在线观看| 婷婷色综合www| 亚洲五月色婷婷综合| 涩涩av久久男人的天堂| 国产又色又爽无遮挡免| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 国产麻豆69| 国产高清国产精品国产三级| 一本大道久久a久久精品| 欧美亚洲日本最大视频资源| 免费人成在线观看视频色| 黄色一级大片看看| 天天操日日干夜夜撸| 啦啦啦在线观看免费高清www| 亚洲精品国产av成人精品| 亚洲欧美色中文字幕在线| 国产精品不卡视频一区二区| 国产女主播在线喷水免费视频网站| 国产极品粉嫩免费观看在线| 亚洲精品乱久久久久久| 天美传媒精品一区二区| 丝袜脚勾引网站| av在线app专区| 欧美人与善性xxx| 美女大奶头黄色视频| 日韩制服骚丝袜av| 综合色丁香网| 曰老女人黄片| 精品亚洲成国产av| 99国产精品免费福利视频| 久久国产精品大桥未久av| 亚洲国产精品一区二区三区在线| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 久久99一区二区三区| 久久精品国产自在天天线| 国产高清国产精品国产三级| 久久久久网色| 三级国产精品片| h视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 日韩中字成人| 搡老乐熟女国产| 成年人午夜在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 国产免费一级a男人的天堂| 国产精品 国内视频| 最新的欧美精品一区二区| 久久人人爽人人爽人人片va| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 久久久久网色| 精品一区二区三卡| 国产熟女欧美一区二区| 国产精品秋霞免费鲁丝片| 国产综合精华液| 一边摸一边做爽爽视频免费| 免费人成在线观看视频色| 狠狠婷婷综合久久久久久88av| 婷婷色综合大香蕉| 在线观看国产h片| 久久精品夜色国产| 日韩精品免费视频一区二区三区 | 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 国产黄色视频一区二区在线观看| 日韩视频在线欧美| 精品熟女少妇av免费看| 七月丁香在线播放| 18禁在线无遮挡免费观看视频| 少妇 在线观看| 日日啪夜夜爽| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 国产乱来视频区| 国产不卡av网站在线观看| 日韩人妻精品一区2区三区| 日韩av免费高清视频| 在现免费观看毛片| 又黄又爽又刺激的免费视频.| 国产免费现黄频在线看| 又大又黄又爽视频免费| 一区二区三区四区激情视频| 婷婷成人精品国产| 亚洲成av片中文字幕在线观看 | 97在线人人人人妻| 亚洲国产精品999| 22中文网久久字幕| 黑人高潮一二区| av在线播放精品| 久久99热6这里只有精品| 精品国产一区二区三区四区第35| 国产精品一区二区在线观看99| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 久久午夜福利片| 国产欧美日韩一区二区三区在线| kizo精华| 边亲边吃奶的免费视频| 一本色道久久久久久精品综合| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线观看播放| 免费观看av网站的网址| 亚洲欧洲国产日韩| 色视频在线一区二区三区| 亚洲精品第二区| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 午夜激情久久久久久久| 两个人看的免费小视频| 日韩 亚洲 欧美在线| av在线老鸭窝| 成人亚洲精品一区在线观看| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| av在线app专区| 国产熟女欧美一区二区| 又粗又硬又长又爽又黄的视频| 国产精品99久久99久久久不卡 | 最近最新中文字幕大全免费视频 | 精品一区二区免费观看| 美女内射精品一级片tv| 国产又爽黄色视频| 丝袜人妻中文字幕| 国精品久久久久久国模美| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 精品人妻偷拍中文字幕| 国产成人av激情在线播放| 国产精品蜜桃在线观看| 精品熟女少妇av免费看| 精品一区在线观看国产| 婷婷成人精品国产| 99精国产麻豆久久婷婷| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 免费黄色在线免费观看| 大香蕉久久网| 亚洲精品乱久久久久久| 少妇 在线观看| 国产一区二区三区综合在线观看 | 人妻系列 视频| 亚洲精品美女久久av网站| av片东京热男人的天堂| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 日本与韩国留学比较| 国精品久久久久久国模美| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 99香蕉大伊视频| 精品少妇内射三级| 国产一级毛片在线| 大陆偷拍与自拍| 高清av免费在线| 在线观看www视频免费| 久久久久久久久久成人| 精品久久久久久电影网| 日本欧美国产在线视频| 一区二区日韩欧美中文字幕 | 国产精品欧美亚洲77777| 制服诱惑二区| 色视频在线一区二区三区| 自线自在国产av| 国产有黄有色有爽视频| 久久久精品94久久精品| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 一级毛片电影观看| 在线亚洲精品国产二区图片欧美| 在线看a的网站| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 91在线精品国自产拍蜜月| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看 | 欧美97在线视频| 如日韩欧美国产精品一区二区三区| 成人无遮挡网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久精品区二区三区| 亚洲久久久国产精品| 午夜福利在线观看免费完整高清在| 亚洲欧美一区二区三区黑人 | 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 不卡视频在线观看欧美| 色吧在线观看| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 久久久国产一区二区| 精品一区二区三卡| 亚洲综合色网址| 久久国产精品男人的天堂亚洲 | 欧美成人午夜免费资源| 国产精品一国产av| 欧美国产精品va在线观看不卡| 少妇高潮的动态图| 国产综合精华液| 国产探花极品一区二区| av天堂久久9| 亚洲精品一二三| 国产激情久久老熟女| 久热这里只有精品99| 黑人猛操日本美女一级片| 久久精品aⅴ一区二区三区四区 | 亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 日韩中字成人| 久久人人97超碰香蕉20202| 又大又黄又爽视频免费| 高清毛片免费看| 日日撸夜夜添| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 91国产中文字幕| 一二三四在线观看免费中文在 | 亚洲综合色网址| 久久久久久久国产电影| 久久99蜜桃精品久久| 亚洲欧美日韩另类电影网站| 久久久久久久久久久久大奶| 日本欧美国产在线视频| 亚洲中文av在线| av天堂久久9| 国产xxxxx性猛交| 中国三级夫妇交换| 久久人人97超碰香蕉20202| av播播在线观看一区| 97精品久久久久久久久久精品| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 最近中文字幕2019免费版| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 久久午夜综合久久蜜桃| 国产精品麻豆人妻色哟哟久久| 日本wwww免费看| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 水蜜桃什么品种好| 免费观看av网站的网址| 亚洲精品国产av成人精品| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 大香蕉久久网| 国产av国产精品国产| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 熟妇人妻不卡中文字幕| 国产 一区精品| 在线观看www视频免费| 亚洲美女黄色视频免费看| 婷婷成人精品国产| 哪个播放器可以免费观看大片| 最近中文字幕高清免费大全6| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 大香蕉97超碰在线| 最近中文字幕2019免费版| 午夜91福利影院| 国产av精品麻豆| 一区二区三区乱码不卡18| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜制服| 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 国产乱来视频区| 国产精品一国产av| 中文字幕亚洲精品专区| 午夜av观看不卡| 18禁观看日本| 少妇人妻久久综合中文| 国产亚洲av片在线观看秒播厂| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| √禁漫天堂资源中文www| 美女中出高潮动态图| www.熟女人妻精品国产 | 一级毛片 在线播放| 久久国产精品男人的天堂亚洲 | 国产精品国产av在线观看| 欧美性感艳星| 日韩,欧美,国产一区二区三区| 卡戴珊不雅视频在线播放| 熟女电影av网| 女性被躁到高潮视频| 国产免费一级a男人的天堂| 中文乱码字字幕精品一区二区三区| 免费观看在线日韩| 丰满少妇做爰视频| 国产av精品麻豆| 2021少妇久久久久久久久久久| 久久久久久久久久久久大奶| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 丝袜在线中文字幕| 亚洲欧洲国产日韩| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 午夜福利,免费看| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 国产亚洲精品久久久com| 亚洲欧美精品自产自拍| 十八禁网站网址无遮挡| 日本爱情动作片www.在线观看| 五月开心婷婷网| 亚洲综合精品二区| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| 美女主播在线视频| 亚洲少妇的诱惑av| 高清av免费在线| 色5月婷婷丁香| 久久韩国三级中文字幕| 欧美日韩一区二区视频在线观看视频在线| 久久久久精品性色| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 久久婷婷青草| 综合色丁香网| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 免费高清在线观看视频在线观看| 18禁动态无遮挡网站| 十分钟在线观看高清视频www| 在线观看免费视频网站a站| 久久综合国产亚洲精品| 亚洲人成77777在线视频| www日本在线高清视频| 午夜av观看不卡| 欧美精品高潮呻吟av久久| 制服人妻中文乱码| 国产白丝娇喘喷水9色精品| 一本大道久久a久久精品| 精品人妻偷拍中文字幕| 人妻少妇偷人精品九色| 波多野结衣一区麻豆| 成人午夜精彩视频在线观看| 亚洲欧美清纯卡通| 精品国产乱码久久久久久小说| kizo精华| 亚洲国产色片| 一级毛片 在线播放| 国产在线免费精品| 建设人人有责人人尽责人人享有的|