• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of W6+ Modification on Electrical Properties of Bi4Ti3O12 High Temperature Piezoelectric Ceramics

    2020-10-13 06:26:18
    陶瓷學報 2020年1期

    (School of Materials Science and Engineering, Jingdezhen Ceramic Institute; China National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen 333403, Jiangxi, China)

    Abstract: WO3 modified bismuth layer-structured Bi4Ti3O12(Bi4Ti3-xWxO12, 0.00≤x≤0.16, BITW) ferroelectric ceramics were synthesized by using asolid-state reaction method. The effect of W6+ modification on microstructure and electrical properties of the Bi4Ti3O12(BIT) ceramics was studied. It was found that the grains of the BITW ceramics were refined and the microstructure was homogenized at the optimal doping concentration of W6+. As a consequence, both the conductivity and dielectric loss of the ceramics were reduced, while the piezoelectric and electromechanical properties were enhanced, due to the improved densification behavior of the materials. When the WO3 doping concentration was x=0.14, the ceramics exhibited optimum electrical properties, with d33=16 pC/N, kp=8.1%, Qm=1942, εr=160(at 100 kHz), tanδ=0.016(at 100 kHz), TC=632 ℃ and ρ=9.4×107 Ω·cm at 500 ℃, indicating that the BITW ceramics could have potential in high temperature applications.

    Key words: bismuth piezoelectric ceramics; Bi4Ti3O12; piezoelectric properties; dielectric properties; thermal stability

    1 Introduction

    Bismuth layer-structured compounds consist of(Bi2O2)2+and perovskite-like (Am-1BmO3m+1)2-layers compiled in an alternative manner alongc-axis, leading to a chemical formula of(Bi2O2)2+(Am-1BmO3m+1)2-, where A is occupied by cations with dodecahedral coordination or complex cations through the combination of Na+, K+, Ba2+,Sr2+, Bi3+, and so on, while B is occupied by cations with hexahedral coordination or complex cations of Co3+, Fe3+, Zr4+, Ti4+, Nb5+, W6+, and so on.Meanwhile,mis a value of 1-5, which is the number of the perovskite-like layer between two (Bi2O2)2+layers[1-10]. Bismuth layer-structured ferroelectrics(BLSFs) have attracted much attention, due to the high fatigue resistance, high Curie temperatures,high coercive fields, high electromechanical figure of merit and low ageing rate. Currently, various BLSFs have been reported in the open literatures,such as CaBi2Nb2O9, Bi4Ti3O12, CaBi4Ti4O15,Na0.5Bi4.5Ti4O15, K0.5Bi4.5Ti4O15and SrBi4Ti4O15[9-19].

    Bi4Ti3O12(BIT,m=3) is a typical BLSF material,with a high Curie temperature ofTC~675 ℃[1,7]. It is composed of (Bi2Ti3O10)2-and (Bi2O2)2+layers with an alternative configuration. Due to its isotropic structure, the spontaneous polarization is only present on thea-bplane. However, owing to thea-bplane conductivity is higher than that in thec-axis direction by about one order of magnitude, the BIT ceramics cannot be easily poled when they have a relatively low density. As a result, it is still a challenge to fabricate BIT ceramics with desired piezoelectric properties, thus limiting their practical applications[3-7].

    During past years, various doping methods have been adopted to modify the properties of BIT ceramics. For example, Zheng et al. used Nb2O5to increase the density, reduce the conductivity and enhance the dielectric properties of BIT ceramics[7].Peng et al. reported a W/Nbco-doping approach to substitute Ti at B site, which could reduce the concentration of oxygen vacancy, thus leading to enhanced dielectric and piezoelectric performances[3]. However, the effect of doping with W6+has not been well clarified. In this regard, the current work was aimed to have a systematic study on the influence of W6+doping on phase evolution,microstructure characterization, dielectric properties,ferroelectric behaviors, high-temperature resistivity and thermal stability of BIT ceramics by using the conventional solid-state reaction method.

    2 Experimental

    Bi4Ti3-xWxO12(0.00≤x≤0.16) ceramics were prepared by using the conventional solid-state reaction method, with commercial powders of Bi2O3(99%), TiO2(98%) and WO3(99%) as the starting materials. The powders with designed compositions were mixed by using ball milling in ethanol with ZrO2balls for 12 h. The mixtures were calcined at 800 ℃ for 3 h, followed by ball milling for 24 h. The milled samples were dried and sieved through 60 mesh-screen. The dried powders were granulated with PVA solution (4wt.%) and compacted into pellets with a diameter of about 12 mm and thickness of about 0.6 mm at pressures of 10-12 MPa. The pellet samples were then treated with cold isostatic pressing at a pressure of 250 MPa. Finally, the green bodies were heated at 650 ℃ for 140 min to remove the PVA and sintered at 1100 ℃ for 3 h. The sintered samples were polished, coated with silver paste and fired to electrode, poled at 160 ℃ in silicone oil at electric fields of 12-15 kV/mm for 20 min. Electrical properties of the samples were measured after the poling process was finished.

    Phase structure of the samples were analyzed by using X-ray diffraction (XRD, D8-Advance, Bruker,Germany), while their microstructures were observed by using scanning electron microscopy(SEM, JSM-6700F, JEOL, Japan). Piezoelectric constant (d33) was measured by using ad33-meter(ZJ-2,Institute of Acoustics, Academia Sinica).Dielectric properties as a function of temperatures were recorded at 100 kHz by using a precision impedance analyzer (TH282S). Planar electromechanical coupling factor (kp) and electromechanical quality factor (Qm) were obtained by using Agilent 4294A impedance analyzer according to the resonance-antiresonance characteristics. Ferroelectric properties of the samples were characterized by using a ferroelectric-tester (Precision Workstation).

    3 Results and Discussion

    3.1 Phase composition and microstructure

    Fig.1 (a) shows XRD patterns of BITW ceramics doped with different concentrations of W6+,while zoom-in view of the patterns over 29.6-30.4 °are depicted in Fig. 1 (b). As observed in Fig.1 (a),the samples withx= 0-0.12 are of rhombohedral structure, with (117) to be the strongest peak,consistent with the characteristic of BLSFs(112m+1), while no secondary phase is present.However, in the samples withx≥ 0.12, a secondary phase is detected with a peak at about 30 °,corresponding to Bi2Ti2O7(444). This is because the substituted Ti4+ions at the B-site drafted away from the lattice site, which reacted with Bi2O3to form Bi2Ti2O7, once the concentration is sufficiently high.The presence of secondary phases inevitably has negative effect on dielectric, piezoelectric and electromechanical properties of the BITW ceramics.At the same time, the diffraction peaks shift slightly to lower angle, as illustrated in Fig. 1 (b), indicating that the unit cell is expanded, simply because the ionic radius r(W6+) = 62 pm > r(Ti4+) = 60.5 pm,according to the Bragg equation (2dsinθ = nλ).

    Fig.1 XRD patterns of the BITW ceramic samples with different doping concentrations (a) wide angle and (b)zoom-in view

    Fig.2 shows SEM images of the BITW ceramics(x= 0.00, 0.08, 0.14, 0.16) after polishing and thermally etching. It is found that the samples have been nearly fully densified, with strong adhesion among the grains. The microstructures are characterized by randomly distributed plate-like grains, because the grain growth rate in thec-axis direction is lower than that along thea-bplane, thus leading to planar grains[6,9]. After introducing a small quantity of W6+(x=0.08), the grain size of the ceramics is slightly decreased, as seen in Fig.2 (b).Also, the doping with W6+resulted in a refinement in the grains and microstructure. However, further increase in the concentration of W6+led to excess grain growth. In this case,x=0.14 is the optimal doping concentration for the BIT ceramics, with most homogeneous microstructure, lowest porosity and highest density, as demonstrated in Fig.2 (c). As expected, this sample exhibits the highest piezoelectric performances.

    3.2 Dielectric properties

    Fig.3 depicts dielectric constant and loss tangent of the BITW ceramics at 100 kHz, as a function of temperature. As revealed in Fig.3, for the samples withx≤ 0.12, dielectric constant at both room temperature and Curie temperature is increased with increasing doping concentration of W6+. This is because the substitution of Ti4+with W6+led to the formation of bismuth vacancydue to the requirement of electric neutrality. As a result, the crystal lattice is distorted and the domain wall motion is enhanced, thus leading to increase in dielectric constant[7]. Meanwhile, the Curie temperature is reduced as shown in the inset of Fig.3,since the 5d electron of W6+has higher energy than the 3d electron of Ti4+. Also, owing to r(W6+)=62 pm>r(Ti4+)=60.5 pm, the unit cell is expanded and the W6+occupied more space, so that the octahedron is squeezed[3,24]. In addition, the volatilization of Bi2O3during the high temperature sintering process would also reduce the Curie temperature[25]. For pure BIT ceramics, tanδstarts to rise at about 250 ℃ and rapidly increases as the temperature approachesTCdue to the leakage current at high temperatures, as observed in Fig.3. With the introduction of WO3, the tanδnearTCis largely reduced, suggesting the effect of WO3doping in decreasing the dielectric loss and improving dielectric properties of the BITW ceramics.

    Fig.2 Surface SEM images of the polished and thermally etched BITW ceramics(a) x = 0.00, (b) x = 0.08, (c) x = 0.14 and (d) x = 0.16

    Fig.3 Dielectric constant (εr) and loss tangent (tanδ) of the BITW ceramics as a function of temperature

    Room temperature electrical properties of the BITW ceramics are listed in Tab.1. With increasing doping concentration (x), both thed33andkpare maximized atx= 0.14, with values of 16 pC/N and 8.1%, respectively. As compared with that of the pure BIT, the piezoelectric constant is increased by about 5 times, while the value of tanδ (at 100 kHz) is 0.016, which is nearly the lowest among all the samples, further demonstrating the positive effect of W6+doping.

    Tab. 1 Electrical properties of the BITW ceramics

    3.3 DC resistivity

    DC conductivities of the BITW ceramics versus 1/T are shown in Fig.4. DC resistivities of the samples as a function of temperature are plotted as the inset in the figure. The substitution for the B-site Ti4+with W6+could increase the resistivity of the BITW ceramics, because BIT hasp-type conduction characteristics[16]. Due to the volatilization of Bi2O3during the sintering process, both oxygen vacancyand bismuth vacancywould be produced,through the following equation:

    During the cooling process, oxygen is dissolved and incorporated into the crystal lattice, creating holes, as given by:

    On the other hand, when Ti4+ions at the B-site are substituted with W6+ions, the defectis formed, while releasing electrons:

    The electrons would neutralize the holes, thus suppressing the concentration of the carriers[7,15].According to conductivity equation (σ=nqμ), the W-doping reduces the conductivity and increases the resistivity of the materials. At 550 ℃, the resistivity of the BITW ceramics is maximized atx= 0.14,which is 9.4×107Ω·cm, thus demonstrating potential applications in high temperature piezoelectric devices.

    Fig.4 Temperature dependence of conductivity of the BITW ceramics, with the inset showing the temperature dependence of DC resistivity

    3.4 Ferroelectric properties

    Fig.5 shows P-E hysteresis loops of the BITW ceramics measured at room temperature. All the curves are not closed, reflecting the presence of internal field related to the crystal defects and domain motion[1,25,26]. With varying concentration of W6+, spontaneous polarization (Ps) rises first and then declines, while both the remnant polarization and coercive field are increased. SEM results indicated that grain size of the BITW ceramics was reduced after the introduction of W6+, which results in an increase in coercive field, even though the content of oxygen vacancy is decreased. It is widely accepted that the coercive field is inversely proportion to the grain size, because domain motion is more difficult when there are more grain boundaries[7,29]. In addition, both the charge and radius of W6+ion is larger than those of Ti4+ion,the dipole-dipole distance is increased and the WO6octahedron is distorted, thus leading to enhancedPr.Therefore, W-doping significantly improved the ferroelectric properties of the BITW ceramics.

    Fig.5 P-E hysteresis loops of the BITW ceramics

    3.5 Thermal stability

    Fig.6 shows variations ofd33as a function of annealing temperature, in which the inset depicts the value ofd33versus doping concentration (x). For pure BIT ceramics, the value ofd33is very slightly decreasing with increasing temperature and suddenly drops near the Curie temperature. This is because the presence of the oxygen vacancies facilitated the reorientation of the dipoles, so that the anti-fatigue capability is weakened[7,26,27]. After doping with W6+,the concentration of the oxygen vacancy is reduced,thermal stability of the materials is enhanced. As a result, the W-doped BIT ceramics still have relatively high remnant polarization near the Curie temperature. The sample withx=0.14 has ad33level of 16 pC/N at room temperature, while the value ofd33is 14.4 pC/N at 600 ℃, corresponding to about 90% retention. Therefore, W6+-doping could improve the thermal stability of BIT ceramics.

    Fig.6 d33 of the BITW ceramics versus annealing temperature,with the inset showing content x dependence of d33

    4 Conclusions

    (1) XRD results indicated that orthorhombic phase was observed as the content of WO3wasx≤0.10, while the samples withx≥0.12 contained secondary phase Bi2Ti2O7. Meanwhile, the diffraction peaks shifted to low-angle side,suggesting the distortion of the crystal lattice, which is beneficial to the enhancement of piezoelectric properties of the BITW ceramics.

    (2) SEM observation revealed that the grain growth of the BITW ceramics was effectively retarded due to the doping with WO3as its concentration was appropriate. Due to the reduction in grain size and the increase in density, the BITW ceramics had fewer defects and thus enhanced electrical properties. Specifically, the sample withx=0.14 exhibited optimal electrical performances,withd33= 16 pC/N, tanδ= 0.016(at 100 kHz),kp8.1%, andQm= 1942.

    (3) Resistivity of the BITW ceramics was also maximized in the sample withx=0.14, which was 9.4×107Ω·cm at 500 ℃, thus expanding their applications in high-temperature devices.

    国产精品影院久久| www.www免费av| 黄色片一级片一级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 国产精品影院久久| 国产精品自产拍在线观看55亚洲| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 少妇粗大呻吟视频| 琪琪午夜伦伦电影理论片6080| 一边摸一边抽搐一进一小说| 国产人伦9x9x在线观看| 久热爱精品视频在线9| 成人三级黄色视频| 黄频高清免费视频| 成人三级做爰电影| 亚洲一区中文字幕在线| 午夜a级毛片| 俄罗斯特黄特色一大片| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 欧美亚洲日本最大视频资源| 久久精品影院6| 成人手机av| 制服人妻中文乱码| 国产一区二区三区视频了| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 美女扒开内裤让男人捅视频| 亚洲专区国产一区二区| 色综合亚洲欧美另类图片| 亚洲精品国产精品久久久不卡| 久久中文字幕人妻熟女| 99热6这里只有精品| 国产区一区二久久| 国产免费男女视频| 国产不卡一卡二| 国产亚洲精品久久久久5区| 亚洲免费av在线视频| 国产亚洲精品综合一区在线观看 | 好男人电影高清在线观看| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟女乱码| 精品国产国语对白av| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 久久久久国内视频| 高清在线国产一区| 色哟哟哟哟哟哟| 亚洲av美国av| 亚洲人成电影免费在线| 一级毛片高清免费大全| 色在线成人网| 日本 欧美在线| 午夜成年电影在线免费观看| 精品国产亚洲在线| 久久精品影院6| 欧美日韩一级在线毛片| 国产伦一二天堂av在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 亚洲自偷自拍图片 自拍| av天堂在线播放| 亚洲av电影在线进入| 午夜老司机福利片| 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| videosex国产| 亚洲一区高清亚洲精品| 搞女人的毛片| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 黄色视频不卡| 中文字幕精品亚洲无线码一区 | 久久天堂一区二区三区四区| 国产亚洲av嫩草精品影院| 91老司机精品| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| aaaaa片日本免费| 香蕉久久夜色| 国产不卡一卡二| 最近最新免费中文字幕在线| 日日夜夜操网爽| 此物有八面人人有两片| 欧美zozozo另类| 亚洲男人的天堂狠狠| 美女大奶头视频| av视频在线观看入口| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 一本大道久久a久久精品| 99re在线观看精品视频| 一本久久中文字幕| 亚洲欧美日韩高清在线视频| 91字幕亚洲| 亚洲九九香蕉| 伦理电影免费视频| 午夜福利高清视频| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 日韩精品中文字幕看吧| 婷婷六月久久综合丁香| 99精品久久久久人妻精品| 久久久久久久久中文| 久久人人精品亚洲av| 满18在线观看网站| 91老司机精品| 国产成人系列免费观看| 禁无遮挡网站| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆 | 国产伦一二天堂av在线观看| 欧美激情 高清一区二区三区| 99在线视频只有这里精品首页| 人人妻人人看人人澡| 色在线成人网| 成人手机av| 一区二区三区国产精品乱码| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 99国产精品99久久久久| 99国产综合亚洲精品| 欧美成狂野欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区| 91av网站免费观看| 亚洲人成电影免费在线| 国产精品电影一区二区三区| 不卡一级毛片| 1024香蕉在线观看| 色播亚洲综合网| 亚洲avbb在线观看| 国产精品乱码一区二三区的特点| 韩国精品一区二区三区| 露出奶头的视频| 人人妻人人澡人人看| 免费一级毛片在线播放高清视频| 国产精品综合久久久久久久免费| 亚洲精品美女久久av网站| 久久九九热精品免费| 啦啦啦观看免费观看视频高清| 黄色 视频免费看| 88av欧美| 丝袜人妻中文字幕| 黄片播放在线免费| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 国产高清videossex| 777久久人妻少妇嫩草av网站| 色综合亚洲欧美另类图片| 国产成人影院久久av| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 国产成人欧美| 国产精品av久久久久免费| 午夜久久久在线观看| 亚洲中文字幕一区二区三区有码在线看 | 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 成人三级做爰电影| 韩国精品一区二区三区| 亚洲黑人精品在线| 午夜日韩欧美国产| 国产91精品成人一区二区三区| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 亚洲男人天堂网一区| 桃色一区二区三区在线观看| 妹子高潮喷水视频| 日本a在线网址| 中文在线观看免费www的网站 | 亚洲人成77777在线视频| 国产精品久久电影中文字幕| 日本五十路高清| 99久久无色码亚洲精品果冻| 久久精品国产综合久久久| 久久亚洲精品不卡| 国产区一区二久久| 老熟妇仑乱视频hdxx| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 波多野结衣巨乳人妻| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲精品一卡2卡三卡4卡5卡| 国产黄a三级三级三级人| 成人三级做爰电影| 国产av在哪里看| 中亚洲国语对白在线视频| 中文字幕av电影在线播放| 男人舔女人下体高潮全视频| e午夜精品久久久久久久| 日本成人三级电影网站| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 国产色视频综合| 美国免费a级毛片| 99热只有精品国产| 亚洲avbb在线观看| 村上凉子中文字幕在线| 免费在线观看黄色视频的| 精品福利观看| 91av网站免费观看| 看黄色毛片网站| 黄色女人牲交| 久久草成人影院| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久男人| 正在播放国产对白刺激| 久久狼人影院| 十分钟在线观看高清视频www| 亚洲电影在线观看av| 一夜夜www| 啦啦啦观看免费观看视频高清| 国产不卡一卡二| 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 18禁美女被吸乳视频| 一级毛片女人18水好多| 啦啦啦观看免费观看视频高清| 久久久久久九九精品二区国产 | 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 麻豆av在线久日| 成人永久免费在线观看视频| 午夜福利免费观看在线| 我的亚洲天堂| 欧美午夜高清在线| 精品久久久久久成人av| 无遮挡黄片免费观看| 精品欧美国产一区二区三| 欧美激情久久久久久爽电影| 日本免费a在线| 免费在线观看日本一区| 国产精品,欧美在线| 首页视频小说图片口味搜索| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 欧美成人午夜精品| 免费人成视频x8x8入口观看| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕| 欧美国产日韩亚洲一区| 男人舔女人的私密视频| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 天堂动漫精品| 久久热在线av| av在线播放免费不卡| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 久久性视频一级片| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 欧美日本视频| 亚洲av电影在线进入| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 亚洲精品中文字幕在线视频| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 久久精品国产亚洲av高清一级| 精品高清国产在线一区| 久久香蕉国产精品| 一级毛片女人18水好多| 亚洲国产欧洲综合997久久, | 久久久久久国产a免费观看| 久久午夜综合久久蜜桃| 黄色女人牲交| 色尼玛亚洲综合影院| 天天躁狠狠躁夜夜躁狠狠躁| 99热6这里只有精品| 不卡一级毛片| 制服诱惑二区| 亚洲中文字幕一区二区三区有码在线看 | 日本五十路高清| 亚洲一卡2卡3卡4卡5卡精品中文| 日本黄色视频三级网站网址| 十八禁人妻一区二区| 91九色精品人成在线观看| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 日韩大尺度精品在线看网址| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站 | 视频在线观看一区二区三区| 一二三四在线观看免费中文在| 少妇裸体淫交视频免费看高清 | 欧美日韩精品网址| 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 黄片小视频在线播放| 色尼玛亚洲综合影院| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 美女午夜性视频免费| 亚洲一区高清亚洲精品| 精品久久久久久,| 99热6这里只有精品| 久久久久久人人人人人| 可以在线观看的亚洲视频| 999精品在线视频| 一区二区三区精品91| 亚洲色图av天堂| 精品免费久久久久久久清纯| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 无限看片的www在线观看| 亚洲av日韩精品久久久久久密| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 欧美大码av| 国产精品久久久久久精品电影 | 88av欧美| 久久青草综合色| 中文字幕人妻丝袜一区二区| 久久青草综合色| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| www.999成人在线观看| 国产又黄又爽又无遮挡在线| 亚洲男人天堂网一区| 九色国产91popny在线| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 亚洲片人在线观看| 伦理电影免费视频| 他把我摸到了高潮在线观看| 久久人妻av系列| 亚洲成人国产一区在线观看| xxx96com| 长腿黑丝高跟| 精品久久久久久久人妻蜜臀av| 日韩三级视频一区二区三区| 一区二区三区国产精品乱码| 黄色视频,在线免费观看| 亚洲午夜理论影院| 国产亚洲精品久久久久5区| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| 精品久久久久久久人妻蜜臀av| 国产三级黄色录像| 看黄色毛片网站| 一个人免费在线观看的高清视频| 精品国产国语对白av| 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看 | 成年免费大片在线观看| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 18禁黄网站禁片免费观看直播| 可以免费在线观看a视频的电影网站| 2021天堂中文幕一二区在线观 | 国产91精品成人一区二区三区| 一本精品99久久精品77| 岛国视频午夜一区免费看| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 男女那种视频在线观看| 国产一区二区在线av高清观看| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 亚洲专区字幕在线| 狠狠狠狠99中文字幕| 亚洲一区中文字幕在线| 亚洲精品久久国产高清桃花| 国产一级毛片七仙女欲春2 | 国产不卡一卡二| 日韩欧美在线二视频| 丰满的人妻完整版| 人人澡人人妻人| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 一级毛片精品| 视频区欧美日本亚洲| 亚洲av片天天在线观看| 久久精品国产亚洲av高清一级| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 久久久久国内视频| 12—13女人毛片做爰片一| 99久久国产精品久久久| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 国产一卡二卡三卡精品| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 色婷婷久久久亚洲欧美| 最近最新免费中文字幕在线| 欧美日韩黄片免| 可以在线观看的亚洲视频| 午夜福利在线在线| 黄色 视频免费看| 午夜激情福利司机影院| 午夜影院日韩av| 欧美成人免费av一区二区三区| 国内揄拍国产精品人妻在线 | 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 搞女人的毛片| 视频在线观看一区二区三区| 成人av一区二区三区在线看| 很黄的视频免费| 丁香欧美五月| 亚洲天堂国产精品一区在线| 长腿黑丝高跟| av电影中文网址| 色播亚洲综合网| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 一级a爱片免费观看的视频| 久久伊人香网站| 久久久久久久久久黄片| 欧美久久黑人一区二区| 午夜福利免费观看在线| 又黄又爽又免费观看的视频| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| www国产在线视频色| 久久精品国产亚洲av香蕉五月| 久久久久久久久免费视频了| 免费电影在线观看免费观看| 高潮久久久久久久久久久不卡| av有码第一页| 成人永久免费在线观看视频| 亚洲国产欧美一区二区综合| 悠悠久久av| 97超级碰碰碰精品色视频在线观看| 美女午夜性视频免费| 一本精品99久久精品77| 视频区欧美日本亚洲| 香蕉久久夜色| 免费看十八禁软件| 男人舔女人的私密视频| 精品日产1卡2卡| 亚洲第一青青草原| 亚洲av片天天在线观看| 夜夜爽天天搞| 欧美亚洲日本最大视频资源| 成人国语在线视频| 国产私拍福利视频在线观看| 色播在线永久视频| 老鸭窝网址在线观看| 身体一侧抽搐| 国产视频内射| 久久天堂一区二区三区四区| 男男h啪啪无遮挡| 两个人视频免费观看高清| 又紧又爽又黄一区二区| 可以在线观看的亚洲视频| 美女免费视频网站| 黑人欧美特级aaaaaa片| 99国产综合亚洲精品| 777久久人妻少妇嫩草av网站| 好男人在线观看高清免费视频 | 中文字幕最新亚洲高清| 久久久久久大精品| 国产黄片美女视频| 一级作爱视频免费观看| 丁香欧美五月| 我的亚洲天堂| 黄频高清免费视频| 亚洲精品在线美女| 桃色一区二区三区在线观看| 亚洲激情在线av| 成人精品一区二区免费| 色播亚洲综合网| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 国产一卡二卡三卡精品| 91在线观看av| 欧美成人一区二区免费高清观看 | 成人特级黄色片久久久久久久| 人人妻人人澡人人看| av在线播放免费不卡| 一级毛片女人18水好多| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 97超级碰碰碰精品色视频在线观看| 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| 成人午夜高清在线视频 | 99久久精品国产亚洲精品| 婷婷六月久久综合丁香| 久久 成人 亚洲| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利免费观看在线| 国产精品免费视频内射| 精品一区二区三区四区五区乱码| 男女做爰动态图高潮gif福利片| 日日摸夜夜添夜夜添小说| 亚洲一码二码三码区别大吗| 国产高清视频在线播放一区| 校园春色视频在线观看| 国产黄a三级三级三级人| 日韩精品中文字幕看吧| 亚洲人成电影免费在线| 久久精品夜夜夜夜夜久久蜜豆 | 美女国产高潮福利片在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 久久青草综合色| 亚洲一码二码三码区别大吗| ponron亚洲| www.精华液| 欧美日韩中文字幕国产精品一区二区三区| 国产乱人伦免费视频| 一进一出抽搐动态| 黄色女人牲交| 99久久99久久久精品蜜桃| 久久精品91无色码中文字幕| 波多野结衣高清无吗| 国产片内射在线| 成人亚洲精品一区在线观看| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 18禁国产床啪视频网站| 国产伦在线观看视频一区| 给我免费播放毛片高清在线观看| 美女免费视频网站| 窝窝影院91人妻| 欧美黑人巨大hd| 成人国产一区最新在线观看| 精品久久久久久久久久久久久 | 国产精品野战在线观看| cao死你这个sao货| 韩国精品一区二区三区| 制服人妻中文乱码| 男女之事视频高清在线观看| 一区二区三区高清视频在线| 国产精品 欧美亚洲| 久久久精品欧美日韩精品| 日韩中文字幕欧美一区二区| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 老司机在亚洲福利影院| 免费在线观看成人毛片| 欧美黄色片欧美黄色片| 欧美日韩瑟瑟在线播放| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三| 国产伦在线观看视频一区| 亚洲色图 男人天堂 中文字幕| 国产一区在线观看成人免费| 精品久久久久久久人妻蜜臀av| 免费看十八禁软件| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 母亲3免费完整高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 日本三级黄在线观看| av在线天堂中文字幕| 亚洲一区二区三区色噜噜| 亚洲男人的天堂狠狠| 久久久精品欧美日韩精品| 精品一区二区三区视频在线观看免费| 成人三级做爰电影| a级毛片a级免费在线| 亚洲精品在线美女| 国产激情久久老熟女| 黄色视频,在线免费观看| 不卡一级毛片| √禁漫天堂资源中文www| 国产精品av久久久久免费| 老司机靠b影院| 国产激情久久老熟女| 国产精品精品国产色婷婷| 999久久久精品免费观看国产| 色av中文字幕| 日韩视频一区二区在线观看| 在线观看www视频免费| 亚洲av电影不卡..在线观看| 成人亚洲精品一区在线观看| 在线观看www视频免费| 亚洲男人的天堂狠狠| 亚洲九九香蕉| 欧美一区二区精品小视频在线| 日韩欧美国产在线观看| 欧美成人性av电影在线观看| 欧美又色又爽又黄视频| 淫妇啪啪啪对白视频| 男女视频在线观看网站免费 |