葛冰景 曹紅燕 戴彥成 闕任燁 傅志泉
〔摘要〕 目的 探討白芍總苷對(duì)葡聚糖硫酸鈉(dextran sulfate sodium, DSS)誘導(dǎo)的小鼠炎癥性腸?。╥nflammatory bowel disease, IBD)模型的作用及相關(guān)機(jī)制研究。方法 將50只SPF級(jí)C57BL/6小鼠隨機(jī)分成正常組(N組)、模型組(M組)、柳氮磺吡啶組(L組)、低劑量白芍總苷組(BL組)、高劑量白芍總苷組(BH組),每組10只。M組及治療組小鼠自由飲用30 g/L DSS,同時(shí)予以相應(yīng)藥物灌胃1次;N組自由飲水、進(jìn)食,連續(xù)7 d后處死。期間每天記錄小鼠體質(zhì)量及糞便情況,進(jìn)行結(jié)腸炎疾病活動(dòng)指數(shù)(disease activity index, DAI)評(píng)分,利用結(jié)腸組織HE染色進(jìn)行組織病理學(xué)評(píng)價(jià),利用ELISA法檢測(cè)血清中IL-8、IL-10、IL-23、IL-36、CCL20、CCR6的表達(dá)。結(jié)果 與M組比較,用藥組DAI評(píng)分均顯著降低(P<0.05或P<0.01),各用藥組之間差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);與M組比較,用藥組均可下調(diào)IL-8、IL-23、IL-36、CCL20和CCR6的表達(dá),上調(diào)IL-10的表達(dá),并以L組、BH組最為顯著(P<0.05或P<0.01);病理組織學(xué)結(jié)果顯示,L組、BH組結(jié)腸組織的炎癥反應(yīng)得到了顯著改善。結(jié)論 白芍總苷可以有效調(diào)節(jié)炎癥因子表達(dá),減少結(jié)腸組織的炎癥損傷,并改善小鼠的腹瀉及便血癥狀。
〔關(guān)鍵詞〕 白芍總苷;炎癥性腸病;葡聚糖硫酸鈉;炎癥因子;疾病活動(dòng)指數(shù)
〔中圖分類號(hào)〕R285.5? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2020.08.010
〔Abstract〕 Objective To explore the effect and the underlying mechanism of total glucosides of paeony on inflammatory factors in dextran sulfate sodium (DSS) induced-mice model of inflammatory bowel disease (IBD). Methods A total of 50 SPF-class C57BL/6 mice were randomly divided into a normal group (N group), a model group (M group), a sulfasalazine group (L group), a low-dose of total glucosides of paeony group (BL group) and high-dose of total glucosides of paeony group (BH group), with 10 mice in each group. The mice in M group and treatment groups were free to drink 30 g/L DSS, and were given the corresponding medicine by gavage once, while the mice in the N group were free to drink water and eat. All the mice were executed 7 days later. During this period, the status of weight and feces of the mice were recorded, and colitis disease activity index (DAI) score were assessed. In addition, HE staining of colon tissue were performed to evaluate the histopathological injury, and the expression of serum IL-8, IL-10, IL-23, IL-36, CCL20 and CCR6 were determined by using ELISA. Results Compared with the M group, DAI scores of mice in the treatment group were significantly decreased (P<0.05 or P<0.01), and the differences in each treatment group was not statistically significant (P>0.05). Compared with the M group, the expression of IL-8, IL-23, IL-36, CCl20, and CCR6 were decreased in the treatment group, while the expression of IL-10 was increased, in which the L group and the BH group were most significant (P<0.05 or P<0.01). The histopathological results showed that the inflammatory response of colon tissue in the L group and the BH group was significantly improved. Conclusion Total glucosides of paeony could effectively regulate the expression of inflammatory factors, reduce the inflammatory injury of colon tissues, and improve the diarrhea and hematochezia symptoms in mice.
〔Keywords〕 total glucosides of paeony; inflammatory bowel disease; dextran sulfate sodium; inflammatory factor; disease activity index
炎癥性腸?。╥nflammatory bowel disease, IBD)是一組以腹痛、腹瀉、黏液膿血便為主要表現(xiàn)的慢性非特異性腸道炎癥性疾病,包括克羅恩病(Crohn's disease, CD)和潰瘍性結(jié)腸炎(ulcerative colitis, UC)。其病因和發(fā)病機(jī)制均未明確,目前認(rèn)為該疾病與遺傳、免疫、精神應(yīng)激等因素相關(guān)[1]。由于該病遷延難愈,又易轉(zhuǎn)化為結(jié)腸癌,因此被世界衛(wèi)生組織定義為世界難治病之一,發(fā)病率為5/10萬(wàn)~12/10萬(wàn)[2]。我國(guó)對(duì)此病尚無(wú)完整的統(tǒng)計(jì),但就臨床所見(jiàn)病例而言并非罕見(jiàn),且有增多趨勢(shì)[3]。
根據(jù)IBD臨床表現(xiàn)的腹瀉、腹痛、里急后重、黏液或膿血便等癥狀,中醫(yī)學(xué)將其歸屬于“腸癖”“泄瀉”“痢疾”“腸風(fēng)”“臟毒”等范疇[4],認(rèn)為其病因與濕熱之邪、飲食所傷、情志郁結(jié)及稟賦不足等有關(guān),肝郁脾虛為其本,濕熱蘊(yùn)結(jié)為其標(biāo),并常見(jiàn)本虛標(biāo)實(shí)、寒熱錯(cuò)雜之證。因此,健脾疏肝、清濕熱、化瘀血之治法已成為目前中醫(yī)藥治療IBD的重要策略。白芍味酸甘,性微寒,可養(yǎng)血斂陰,又能柔肝,炒制后酸甘微寒,焦助肝陰,補(bǔ)肝之體,緩中止痛作用增強(qiáng)。研究表明,白芍的主要成分為白芍總苷、氧化芍藥苷、苯甲酰芍藥苷、芍藥內(nèi)酯苷等,具有抗炎、抗?jié)?、抗氧化、調(diào)節(jié)免疫等作用[5]。白芍總苷能抑制副交感神經(jīng)的興奮性而具有解痙作用,在動(dòng)物模型中對(duì)胃腸道電運(yùn)動(dòng)有明顯的抑制作用;通過(guò)延長(zhǎng)豚鼠結(jié)腸平滑肌橫肌收縮時(shí)間而促進(jìn)結(jié)腸運(yùn)動(dòng)[6]。故本研究采用葡聚糖硫酸鈉(dextran sulfate sodium, DSS)誘導(dǎo)小鼠IBD模型,觀察白芍總苷對(duì)小鼠一般情況、結(jié)腸病理及炎癥相關(guān)指標(biāo)的影響,探討其防治IBD的作用機(jī)制。
1 材料與方法
1.1? 實(shí)驗(yàn)動(dòng)物
C57BL/6雄性小鼠50只,SPF級(jí),6~8周齡,體質(zhì)量(20±2) g,由上海中醫(yī)藥大學(xué)實(shí)驗(yàn)動(dòng)物中心提供。動(dòng)物許可證號(hào):SYXK(滬2014-008)。所有小鼠于動(dòng)物中心飼養(yǎng)、造模和觀察,自由飲食飲水。
1.2? 藥物和主要試劑
白芍總苷(寧波立華制藥有限公司,批號(hào):190305);柳氮磺吡啶腸溶片(上海福達(dá)制藥有限公司,批號(hào):2215272);DSS,分子量為36 000~50 000 DA(MP Biomedicals公司,批號(hào):Q4299);糞隱血測(cè)試盒(南京建成生物工程研究院,批號(hào):20180521);IL-8 ELISA試劑盒(批號(hào):MEI023)、IL-10 ELISA試劑盒(批號(hào):MEI025)、IL-23 ELISA試劑盒(批號(hào):MEI036)、IL-36 ELISA試劑盒(批號(hào):MEI048)、趨化因子CCL20 ELISA試劑盒(批號(hào):MEI055)、趨化因子CCR6 ELISA試劑盒(批號(hào):MEI045)均由上海博谷生物科技有限公司提供。
1.3? 方法
1.3.1? 分組及造模? 將50只SPF級(jí)C57BL/6小鼠按照體質(zhì)量分層隨機(jī)的方法分成:正常組(N組)、模型組(M組)、柳氮磺吡啶組(L組)、白芍總苷低劑量組(BL組)、白芍總苷高劑量組(BH組),每組10只。適應(yīng)性飼養(yǎng)1周后,N組自由飲食飲水,其余組小鼠自由飲用3% DSS溶液,連續(xù)7 d,建立小鼠炎癥性腸病的急性模型。
1.3.2? 給藥方式? 根據(jù)動(dòng)物實(shí)驗(yàn)等效劑量系數(shù)折算法,將人每天9.1倍劑量折算成小鼠等效劑量。白芍總苷人常用劑量為0.6 g,1天2~3次口服。將柳氮磺吡啶(300 mg/kg)、白芍總苷低劑量(180 mg/kg)和白芍總苷高劑量(250 mg/kg)用0.3%羧甲基纖維素鈉稀釋成混懸液。自造模起,各用藥組每日定時(shí)根據(jù)小鼠體質(zhì)量以0.02 mL/g混懸液灌胃1次,對(duì)照組給予0.9%氯化鈉灌胃1次,均連續(xù)灌胃7 d。
1.3.3? 樣品采集與處理? 禁食12 h后,用3%戊巴比妥鈉,按照2 mL/kg體質(zhì)量的劑量腹腔注射麻醉,由下腔靜脈收集血液,將小鼠結(jié)腸、直腸組織用PBS溶液沖洗干凈。選取肛門上1 cm組織,置于10%福爾馬林中,剩余腸組織裝入凍存管,-80 ℃保存。腸組織于福爾馬林中固定24 h后予以脫水、包埋,并制成切片,以蘇木精-伊紅染色后于顯微鏡下觀察。血液予以4 ℃下靜置3 h后,在低溫離心機(jī)4 ℃環(huán)境下3 000 r/min離心15 min,分離血清,分裝后于-70 ℃保存待用。
1.4? 觀測(cè)指標(biāo)
1.4.1? 結(jié)腸炎疾病活動(dòng)指數(shù)(disease activity index, DAI)評(píng)分? 每日灌胃前稱小鼠體質(zhì)量,計(jì)算小鼠體質(zhì)量下降率=(當(dāng)天體質(zhì)量/實(shí)驗(yàn)前體質(zhì)量)×100%,觀察糞便性狀,測(cè)定糞便隱血情況,并進(jìn)行相應(yīng)評(píng)分。DAI評(píng)分標(biāo)準(zhǔn)具體如下:(1)體質(zhì)量評(píng)分:無(wú)變化或增加,0分;減輕1%~5%,1分;減輕5%~10%,2分;減輕10%~15%,3分;減輕大于15%,4分[7-8]。(2)糞便性狀評(píng)分:正常,0分;軟便、球狀便,1分;膏狀或半球狀便,肛門無(wú)附著,2分;膏狀便,肛門有附著,3分;稀便,4分。(3)糞便隱血評(píng)分:陰性,0分;弱陽(yáng)性,1分;陽(yáng)性,2分;強(qiáng)陽(yáng)性,3分;肉眼血便,4分。
DAI評(píng)分=(體質(zhì)量評(píng)分+糞便性狀評(píng)分+糞便隱血評(píng)分)/3
1.4.2? 直腸病理組織學(xué)評(píng)價(jià)? 切片以蘇木精-伊紅染色后于顯微鏡下觀察,病理組織學(xué)評(píng)判標(biāo)準(zhǔn)如下:(1)炎癥程度:無(wú)、輕、中、重;(2)病變累及深度:無(wú)病變、黏膜層、黏膜下層、透壁;(3)隱窩破壞情況:無(wú)破壞、基底1/3破壞、基底2/3破壞、基底破壞僅上皮完整;(4)病變累及范圍:1%~25%,26%~50%,51%~75%,76%~100%。
在本實(shí)驗(yàn)中,L組與BH組顯著降低了體質(zhì)量下降率,隨著治療周期的延長(zhǎng)更為顯著,對(duì)便血、腹瀉的改善兩者最終無(wú)差異。同時(shí)BH組能有效減少杯狀細(xì)胞和淋巴細(xì)胞浸潤(rùn)。ELISA的結(jié)果證實(shí)炎癥因子的表達(dá)受到了有效抑制。由此可見(jiàn),白芍總苷在治療DSS誘導(dǎo)的IBD小鼠模型切實(shí)有效。當(dāng)腸道發(fā)生急性黏膜損傷時(shí),白芍總苷顯著抑制了IL-8、CCL20和CCR6的表達(dá),降低了對(duì)炎癥因子的趨化作用,使IL-23表達(dá)減少,IL-36的生成亦減少,最終抑制了Th1-Th17型免疫反應(yīng),保護(hù)了腸道黏膜上皮的完整性。
綜上所述,白芍總苷可顯著抑制炎癥因子的表達(dá),減少炎性細(xì)胞的浸潤(rùn),調(diào)節(jié)免疫功能,從而改善IBD小鼠腹瀉及便血癥狀,同時(shí)改善結(jié)腸組織的炎性損傷。
參考文獻(xiàn)
[1] 傅志泉,李? 珍,趙思宇,等.精神情志對(duì)炎癥性腸病影響的作用機(jī)制及中醫(yī)藥干預(yù)對(duì)策的研究現(xiàn)狀[J].世界中醫(yī)藥,2017,12(8):1979-1984.
[2] HAN Y, MA T M, LU M L, et al. Role of moxibustion in inflammatory responses during treatment of rat ulcerative colitis[J]. World Journal of Gastroenterology, 2014, 20(32): 11297-11304.
[3] FRATILA O C, CRACIUN C. Ultrastructural evidence of mucosal healing after infliximab in patients with ulcerative colitis[J]. Journal of Gastrointestinal and Liver Diseases: JGLD, 2010, 19(2): 147-153.
[4] 吳淑芬,桂茜茹,張小萍.潰瘍性結(jié)腸炎中醫(yī)藥治療認(rèn)識(shí)[J].江西中醫(yī)藥,2013,44(3):14-16.
[5] 王朝虹,閔知大.芍藥化學(xué)成分及藥理研究[J].時(shí)珍國(guó)醫(yī)國(guó)藥,1999,10(7):3-5.
[6] 向軍英,歐陽(yáng)欽,胡仁偉,等.白芍總苷對(duì)小鼠潰瘍性結(jié)腸炎的作用[J].中華臨床營(yíng)養(yǎng)雜志,2010,18(4):230-234.
[7] 王旭丹,袁學(xué)勤,邱澤計(jì),等.四神丸改善TNBS及DSS誘導(dǎo)小鼠實(shí)驗(yàn)性結(jié)腸炎的研究[J].北京中醫(yī)藥大學(xué)學(xué)報(bào),2014,37(11):781-785,4.
[8] 王? 新.小檗堿對(duì)DSS結(jié)腸炎小鼠保護(hù)作用的研究[D].廣州:廣東藥科大學(xué),2016.
[9] YAN Y T, KOLACHALA V, DALMASSO G, et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis[J]. Plos One, 2009, 4(6): e6073.
[10] RANDHAWA P K, SINGH K, SINGH N, et al. A review on chemical-induced inflammatory bowel disease models in rodents[J]. The Korean Journal of Physiology & Pharmacology, 2014, 18(4): 279-288.
[11] ALEX P, ZACHOS N C, NGUYEN T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis[J]. Inflammatory Bowel Diseases, 2009, 15(3): 341-352.
[12] MEDINA-CONTRERAS O, HARUSATO A, NISHIO H, et al. Cutting edge: IL-36 receptor promotes resolution of intestinal damage[J]. Journal of Immunology (Baltimore, Md.: 1950), 2016, 196(1): 34-38.
[13] SCHEIBE K, BACKERT I, WIRTZ S, et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo[J]. Gut, 2017, 66(5): 823-838.
[14] AWASTHI A, RIOL-BLANCO L, JAGER A, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells[J]. Journal of Immunology (Baltimore, Md.: 1950), 2009, 182(10): 5904-5908.
[15] ZENEWICZ L A, FLAVELL R A. Recent advances in IL-22 biology[J]. International Immunology, 2011, 23(3): 159-163.
[16] BECKER C, DORNHOFF H, NEUFERT C, et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis[J]. Journal of Immunology (Baltimore, Md.: 1950), 2006, 177(5): 2760-2764.
[17] KHN R, LHLER J, RENNICK D, et al. Interleukin-10-deficient mice develop chronic enterocolitis[J]. Cell, 1993, 75(2): 263-274.
[18] SPENCER S D, DI MARCO F, HOOLEY J, et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor[J]. Journal of Experimental Medicine, 1998, 187(4): 571-578.
[19] GEUKING M B, CAHENZLI J, LAWSON M A, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses[J]. Immunity, 2011, 34(5): 794-806.
[20] HUBER S, GAGLIANI N, ESPLUGUES E, et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner[J]. Immunity, 2011, 34(4): 554-565.
[21] ZIGMOND E, BERNSHTEIN B, FRIEDLANDER G, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis[J]. Immunity, 2014, 40(5): 720-733.
[22] SHOUVAL D S, BISWAS A, GOETTEL J A, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function[J]. Immunity, 2014, 40(5): 706-719.
[23] GIRARD-MADOUX M J, OBER-BLBAUM J L, COSTES L M, et al. IL-10 control of CD11c + myeloid cells is essential to maintain immune homeostasis in the small and large intestine[J]. Oncotarget, 2016, 7(22): 32015-32030.
[24] GLOCKER EO, KOTLARZ D, BOZTUG K. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor[J]. The New England Journal of Medicine, 2009, 361(21): 2033-2045.
[25] PIGNEUR B, ESCHER J, ELAWAD M, et al. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: A survey of the Genius Working Group[J]. Inflammatory Bowel Diseases, 2013, 19(13): 2820-2828.
[26] BEGUE B, VERDIER J, RIEUX-LAUCAT F, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease[J]. American Journal of Gastroenterology, 2011, 106(8): 1544-1555.
[27] COOK D N, PROSSER D M, FORSTER R, et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue[J]. Immunity, 2000, 12(5): 495-503.
[28] DIEU-NOSJEAN M C, MASSACRIER C, HOMEY B, et al. Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors[J]. The Journal of Experimental Medicine, 2000, 192(5): 705-718.
[29] IWASAKI A, KELSALL B L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokinesmacrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine[J]. The Journal of Experimental Medicine, 2000, 191(8): 1381-1394.
[30] DIEU M C, VANBERVLIET B, VICARI A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites[J]. The Journal of Experimental Medicine, 1998, 188(2): 373-386.
[31] LI Q, LAUMONNIER Y, SYROVETS T, et al. Recruitment of CCR6-expressing Th17 cells by CCL20 secreted from plasmin-stimulated macrophages[J]. Acta Biochimica et Biophysica Sinica, 2013, 45(7): 593-600.
[32] COMERFORD I, BUNTING M, FENIX K, et al. An immune paradox: How can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20 chemokine axis balancing immunological tolerance and inflammation in autoimmune disease[J]. BioEssays, 2010, 32(12): 1067-1076.
[33] YAMAZAKI T, YANG X O, CHUNG Y, et al. CCR6 regulates the migration of inflammatory and regulatory T cells[J]. Journal of Immunology, 2008, 181(12): 8391-8401.
[34] KWON J H, KEATES S, BASSANI L, et al. Colonic epithelial cells are a major site of macrophage inflammatory protein 3alpha (MIP-3alpha) production in normal colon and inflammatory bowel disease[J]. Gut, 2002, 51(6): 818-826.
[35] KASER A, LUDWICZEK O, HOLZMANN S, et al. Increased expression of CCL20 in human inflammatory bowel disease[J]. Journal of Clinical Immunology, 2004, 24(1): 74-85.
[36] SKOVDAHL H K, GRANLUND A V, STVIK A E, et al. Expression of CCL20 and its corresponding receptor CCR6 is enhanced in active inflammatory bowel disease, and TLR3 mediates CCL20 expression in colonic epithelial cells[J]. Plos One, 2015, 10(11): e0141710.
[37] LIU J Z, VAN SOMMEREN S, HUANG H L, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations[J]. Nature Genetics, 2015, 47(9): 979-986.
[38] MACKAY C R. Moving targets: Cell migration inhibitors as new anti-inflammatory therapies[J]. Nature Immunology, 2008, 9(9): 988-998.
[39] LEE H J, CHOI S C, LEE M H, et al. Increased expression of MIP-3alpha/CCL20 in peripheral blood mononuclear cells from patients with ulcerative colitis and its down-regulation by sulfasalazine and glucocorticoid treatment[J]. Inflammatory Bowel Diseases, 2005, 11(12): 1070-1079.
[40] HE C, ZHANG S L, HU C J, et al. Higher levels of CCL20 expression on peripheral blood mononuclear cells of Chinese patients with inflammatory bowel disease[J]. Immunological Investigations, 2010, 39(1): 16-26.
[41] SPAGNUOLO R, DATTILO V, DANTONA L, et al. Deregulation of SGK1 in ulcerative colitis: A paradoxical relationship between immune cells and colonic epithelial cells[J]. Inflammatory Bowel Diseases, 2018, 24(9): 1967-1977.
(本文編輯? 匡靜之)