• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MSONoC: a non-blocking optical interconnection network for inter cluster communication①

    2020-10-09 07:38:16JiangLinCuiPengfeiShanRuiWuHaoyue
    High Technology Letters 2020年3期

    Jiang Lin (蔣 林)②, Cui Pengfei , Shan Rui , Wu Haoyue

    (*Integrated Circuit Laboratory, Xi’an University of Science and Technology, Xi’an 710054, P.R.China) (* *School of Electronic and Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, P.R.China)

    Abstract

    Key words: network on chip (NoC), optical interconnection, wavelength division multiplexing (WDM), non-blocking, multilevel switching

    0 Introduction

    In order to improve overall performance of the system and enhance parallel efficiency of the algorithm, the number of processor cores integrated on a single chip is increasing. The chip area becomes larger and larger, which means that the communication delay between processor cores and memory become very large, so data communication becomes the bottleneck of the overall system performance. The network on chip (NoC)[1]architecture alleviates the communication delay between processor cores on-chip to some extent, but the number of processor cores increases. Optical network on-chip (ONoC) has the advantages of effective bandwidth, transmission delay and power consumption superior to traditional electrical interconnections, and plays an increasingly important role in the core communication of the chip[2].

    In circuit switching interconnection network, active micro-ring resonator is mainly used to build optical router, and it is suitable for large-scale computation on chip. Many optical routers are designed by researchers. Refs[3-5] optimized the traditional optical router, reduced the number of micro-ring resonator, and designed a 4-port and 5-port optical router. For the extensibility of network, Ref.[6] designed a 6-port optical router. Ref.[7] used the crossing angles of 60 degrees or 120 degrees instead of the conventional 90 degrees crossing angle to reduce the crosstalk noise in the waveguide crossing regions. Ref.[8] utilized the feature of micro-ring resonator that the optical signal can be rotated 90 degrees and 270 degrees in the MR, and it designed a 5-port optical router by allocating the specific wavelengths for routing. The number of MRs is reduced further. A kind of network structure in one cluster is designed with the optimized 5-port optical router. Communication intra cluster[9,10]uses general electric interconnection network, and communication inter cluster uses optical interconnection network, so the communication delay can be reduced effectively. With the development of 3D technology, Ref.[11] optimized the traditional 5-port optical router based on crossbar and Ref.[12,13] designed a 7-port optical router. Although the number of micro-ring resonators decreases, the insertion loss becomes very small, the confliction of data communication in active optical interconnection networks are more worse, at the same time, making link utilization very low.

    In packet switching interconnection network, WDM technology is used to allocate specific wavelengths to achieve point-to-point communication. Due to the limitation of wavelength, it is suitable for small-scale interconnection. Ref.[14] used several 2×2 optical switches to construct a λ-router and realize a full optical connection structure for multi-processors. Ref.[15] designed a 4×4 optical switch which consists of 8 MRs. Ref.[5] designed a 5×5 optical switch and Ref.[11] designed a 7×7 optical switch. By connecting the switch with the bending waveguide, the non-blocking parallel access is implemented, but the number of MRs is large, and the power consumption cannot be tolerated. A two-level switching interconnection network was designed by using passive broadband micro-ring resonator, but the second level switch structure adopted crossbar switch mode, and the micro ring redundancy was big[16,17]. Refs[18-20] based on interconnection structure in cluster, used two links to achieve intra cluster communication and inter cluster communication. Although the number of wavelengths can be reduced, the exchange structure on the boundary needs special design, which is not conducive to the expansion of network scale. Ref.[21] employed 8 broadband micro-ring resonators and implemented a 5-port optical router. Using WDM[22-24]technology, the router can exchange the signal in between the 5 ports without blocking. However, as the network size is increasing, the structure needs to be redesigned.

    To alleviate above problems and adapt to the topology of the video array processor, a broadband micro-ring resonator is used in this paper to design a multi-level switching inter-cluster communication optical interconnection network called multilevel switching optical network on chip (MSONoC), enabling non-blocking concurrent access between multiple processing element clusters. The results show that compared to λ-route, GWOR, Crossbar, and the new topology structure, the number of micro-ring resonators of MSONoC is reduced by 95.5%, 95.5%, 87.5%, and 60%, respectively, while the insertion loss of MSONoC increase is quite small.

    1 Optical interconnection network

    1.1 Basic optical switch structure

    Many micro-ring resonators are responsible for the coupling, transmission, steering and filtering of optical signals in an optical interconnect network. Micro-ring resonators are divided into active and passive by transmitting wavelength signals.

    As shown in Fig.1, for the conventional micro-ring resonator, when the input signalλiis consistent with the resonant wavelengthλrof the micro-ring resonator, the signal will be rotated 90 degrees around the micro-ring resonator; when the wavelength of the input portλiand the resonant wavelengthλrare not isochronous, the signal will be output in the horizontal direction.

    The broadband MR[25-27]plays an importand role in an active comb switch, it allows multiple wavelengths of light to be switched simultaneously. Similar to the traditional micro-ring resonator, its input optical signal can drop or through along the broadband micro-ring resonators (BMR), but once the BMR is configured, it can have multiple resonant wavelengths to transmit and forward a variety of wavelengths of optical signal.

    Fig.1 Structure of traditional micro-ring resonator and multi resonant wavelength micro-ring resonator

    1.2 The basic switch unit of MSONoC

    Two crossed optical waveguides and one BMR form a 2×2 optical switch unit. Assuming that the resonant wavelength of the BMR is a set ofλr, if the input light wavelength belongs to the set ofλr, theI0signal is rotated 270 degrees around the BMR and output fromO0, and theI1signal is rotated 90 degrees around the BMR to the output ofO1; otherwise, theI0signal is output fromO1along the waveguide. TheI1signal is output fromO0along the waveguide.

    It is usually point-to-point communication process of storage access in the multi-core system, so it is necessary to filter the specific wavelength signal of an input port.

    By analyzing the optical signal exchange process of the basic 2×2 optical switch unit, it is found that the BMR actually filters the corresponding wavelengths from the optical signals of the 2 input ports respectively, and distinguishes the signal from the wavelength to the resonant wavelength setting. Signals with wavelengths do not belong to the resonant wavelength set, so a particular wavelength signal can be filtered from the input port by multiple exchanges.

    Accordingly, in order to achieve multiple switching purposes, many similar optical switching structures are required. By using and distributing a 2×2 basic optical switch unit, as shown in Fig.2, the structure of the optical switch unit of 4×4, 8×8 and 16×16 can be easily obtained. Fig.3 shows the 16×16 optical interconnect switch structure.

    Fig.2 Structure diagram of basic 2×2 light switching unit

    Fig.3 16 × 16 optical switching unit structure diagram

    1.3 MSONoC architecture

    As for a structure with node numberN,Nelectro-optical conversion units andNphotoelectric conversion units are required for sending and receiving the request signal. At the same time, log2Nlevel switches are required, and each stage of switch consists ofNbroadband micro-ring resonators. Among them,Nmust be a value of power of 2. This paper takes the structure with the node of 16 as an example.

    As shown in Fig.4, the 16×16 optical interconnection network requires a 4-stage optical switch to transmit a request signal during the memory access process. The first level of switching consists of 16 port switching units, and the second level of switching consists of two 8-port switching units. The third stage switch consists of four 4-port switch units, and the fourth stage switch consists of eight dual port switch units.

    The 16-port switching unit of the first-stage switching switch is composed of 16 micro-ring resonators and 16 optical waveguides, and the resonant wavelength of each micro-ring resonator isλ0,λ1,λ2,λ3,λ4,λ5,λ6,λ7, performing first-stage switching; second-stage switching switch, each micro-ring resonator resonant wavelength isλ0,λ1,λ2,λ3,λ8,λ9,λ10,λ11; third-stage switching switch, each micro-ring resonator resonant wavelengths isλ0,λ1,λ4,λ5,λ8,λ9,λ12,λ13; fourth-stage switching switch, each of the micro-ring resonator resonance wavelengths isλ0,λ2,λ4,λ6,λ8,λ10,λ12,λ14.

    2 Communication process

    For a wavelength assignment method is designed for the proposed ONoC system. A specific carrier wavelength is assigned for each communication pair. ForNnodes architecture, Table 1 and Table 2 show the wavelength assignment of 8×8 and 16×16 optical networks respectively. Table 3 is the algorithm for wavelength assignment.

    Table 1 and Table 2 are 8×8 and 16×16 optical interconnect network wavelength allocation. The different size of optical interconnect networks on chip uses different wavelengths, between processing units ensure non-blocking transmission. When the signal is transmitted, the waiting time is smaller. Therefore, the problem of blocking and delay should be fully considered when configuring the resonant wavelength of each micro-ring resonator to realize large-scale processing of non-blocking communication between cells.

    Before the request is issued, the response configuration packet information needs to be transmitted at the electrical configuration layer, and the BMR in the optical transport network is configured according to the requirements of each resonant wavelength. When the configuration is completed, each processing element issues a storage access request signal through the electro-optical conversion device, the request signal is coupled to the corresponding wavelength, and the non-blocking parallel access can be completed through the MSONoC structure.

    Fig.4 Optical link layer structure

    Table 1 Wavelength assignment scheme in 8×8 optical interconnection network

    To more clearly describe the concentric process, the micro-ring resonators in the MSONoC structure are numbered. The thick density dashed line and fine density dashed lines in Fig.5 indicate the case where PEG4 and PEG2 simultaneously access the RAM 7. When PEG4 needs to access the memory RAM 7, according to the wavelength allocation table, the required wavelength is λ1. When the request signal reaches the MR5, since the wavelength λ1is within the resonant wavelength group of the MR8, it rotates along the micro-ring; the MR9, λ1of the secondary switch structure also belongs to the resonant wavelength group of the MR9, and then rotates along the micro-ring; enters the micro-ring of the third-stage switching structure, λ1belongs to the resonant wavelength group of the MR20, and will enter the MR28 of the fourth stage switching structure, λ1does not belong to the resonant wavelength set of the MR28, which propagates along a straight line and reaches the corresponding memory.

    Fig.5 Signal transmission path

    Analyzing the access process of PEG4 and PEG2 to RAM 7, the MSONoC structure can implement non-blocking parallel access of one or more memories of multiple processing meta-clusters, but memory can only responds to one request at the same time. In this case,each bank requires a request cache unit to buffer the request signal that has not yet responded when multiple processing element clusters are simultaneously accessed.

    Table 2 Wavelength assignment scheme in 16×16 optical interconnection network

    Table 3 The algorithm of optical router design

    3 Network performance analysis

    Waveguide, wavelength and micro-ring resonators are 3 important parameters in an optical interconnect network on chip. The number of micro-ring resonators and waveguides affects the insertion loss of the entire network. Therefore, to improve the performance of the optical interconnection network, it is necessary to use the minimum number of micro-ring resonators and waveguides under the premise of ensuring the basic functions of the optical interconnection network. As the scale of optical interconnection network becomes larger, to ensure non-blocking communication of large-scale optical interconnection networks, the wavelengths used in the networks play a vital role. This paper uses wavelength division multiplexing technology to synthesize and decompose optical wavelengths, setting different fixed wavelength ranges for different micro-ring resonator resonances. The wavelength assignment tables in Table 1 and Table 2 are used to achieve non-blocking signal transmission. In optical interconnect networks on chip, the loss and dispersion of the optical waveguides that make up the micro-ring are not considered in this paper. Therefore, different input wavelengths have little effect on the network from the aspects of waveguide loss and dispersion.

    The number of micro-ring resonators in the optical interconnect network, the number of wavelengths used in the network, and the insertion loss are closely related to the performance of the entire network. The insertion loss can be calculated by Eq.(1).

    IL=∑ILbend+∑ILcross+∑ILdrop+∑ILthrough

    (1)

    where,ILis the insertion loss,ILbendis the waveguide bending loss,ILcrossis the waveguide direct loss,ILdropis the micro-ring resonator resonant loss, andILthroughis the micro-ring resonator direct loss. According to Ref.[3], the parameters in the formula are shown in Table 4.

    Table 4 Optical signal parameters

    Table 5 presents the statistical results of the number of micro-ring resonators and the number of wavelengths on the 2×2, 4×4, 8×8, and 16×16 network sizes. It can be seen from the table that with the network scale expansion, the number of micro-ring resonators and the number of wavelengths increases. As the size of the optical network increases, the number and size of wavelengths required are matched.

    Table 5 Results of resource statistics under

    Table 6 shows the wavelength range of each stage of the optical switching unit. In the wavelength range of λ0-λ15, the obtained values are 1553.33 nm, 1552.52 nm, 1551.72 nm,1550.92 nm,1550.12 nm,1549.32 nm,1548.52 nm,1547.72 nm,1546.92 nm,1546.12 nm,1545.32 nm,1544.53 nm,1543.73 nm,1542.94 nm, 1542.14 nm, and 1541.35 nm, respectively. Therefore, the reasonable allocation of wavelengths for large-scale optical networks, the structure designed in this paper can meet the non-blocking communication between processing elements.

    Table 6 Wavelength range assignment

    Fig.6, Fig.7, and Table 5 display the comparison results of the number of micro-ring resonators and the number of wavelengths for the structure of MSONoC and the λ-router[14], GWOR[15], Crossbar[28], and new topology[16]structures respectively. The results show that the MSONoC structure has a great advantage in the number of micro-ring resonators, which makes the insertion loss small, and the number of wavelengths required is not much different from the reference structure.

    Fig.6 Comparison of the number of microring resonators

    Fig.7 Comparison of wavelengths in different structures

    In order to facilitate comparison, based on the design of the original 16×16 scale, this paper carried out the design of an 8×8 scale multilevel switched optical interconnect network structure. Table 7 shows the different structures of the 8×8 network scale of insert loss comparison results.

    With the analysis of the above results, under the condition that the insertion loss does not increase much, the design of this paper reduces the number of micro-rings by 95.5%, 95.5%, 87.5% and 60% compared to the λ-route, GWOR, Crossbar, and new topology structures on the 16×16 network size. Compared with the traditional electrical interconnection, the optical interconnection network uses the wavelength division multiplexing technology to make the wavelength distribution reasonably realize the non-blocking communication between the multi-cores, which has great advantages for the current large-scale circuit popularization.

    Table 7 Insertion loss comparison results in different structures

    4 Conclusion

    In this article, multi-wavelength resonant micro-ring resonators are used to design multi-stage switching optical interconnection networks to enable non-blocking parallel access to cluster memory of multiple processing elements. At present, with the popularity of large-scale circuits, the performance requirements of the entire circuit for inter-processor communication are becoming stricter. The optical interconnect network designed in this paper can realize large-scale circuit non-blocking communication, and the number of micro-ring resonators is much smaller compared with the state of the art optical network structure. The results show that compared with λ-route, GWOR, Crossbar and new topology structure, the number of micro-ring resonators of MSONoC is reduced by 95.5%, 95.5%, 87.5% and 60%, respectively, and the minimum link insertion loss is 47.9% and 47.5% lower than the new topology and mesh structure. Therefore, compared with new topology and mesh structure, MSONoC structure has a certain advantage.

    亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 国产视频一区二区在线看| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 九色国产91popny在线| 亚洲欧美日韩卡通动漫| 午夜免费成人在线视频| 男女那种视频在线观看| 18禁在线播放成人免费| 亚洲精品成人久久久久久| 亚洲成av人片在线播放无| 毛片女人毛片| 在线观看免费视频日本深夜| 国产精品久久电影中文字幕| 亚洲熟妇中文字幕五十中出| 欧美精品啪啪一区二区三区| 日本黄色片子视频| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 婷婷丁香在线五月| 午夜福利免费观看在线| 在线天堂最新版资源| 十八禁国产超污无遮挡网站| 十八禁人妻一区二区| 美女大奶头视频| 免费观看精品视频网站| 99在线视频只有这里精品首页| 欧美+亚洲+日韩+国产| av在线老鸭窝| 女人十人毛片免费观看3o分钟| 亚洲乱码一区二区免费版| 免费一级毛片在线播放高清视频| 免费在线观看亚洲国产| 在线观看美女被高潮喷水网站 | 国产免费男女视频| 久久99热6这里只有精品| 九色成人免费人妻av| 黄色日韩在线| 99热这里只有精品一区| 岛国在线免费视频观看| 少妇人妻一区二区三区视频| 美女被艹到高潮喷水动态| 午夜老司机福利剧场| 村上凉子中文字幕在线| 国产av麻豆久久久久久久| 成年人黄色毛片网站| 亚洲美女视频黄频| 国产精品乱码一区二三区的特点| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 直男gayav资源| 91在线精品国自产拍蜜月| 在线观看av片永久免费下载| a级一级毛片免费在线观看| 一级av片app| 九九热线精品视视频播放| 人妻夜夜爽99麻豆av| 特级一级黄色大片| 99国产精品一区二区三区| 成人国产综合亚洲| 白带黄色成豆腐渣| 免费av不卡在线播放| 三级男女做爰猛烈吃奶摸视频| av福利片在线观看| 久久香蕉精品热| 熟女电影av网| 色哟哟哟哟哟哟| 欧美日韩黄片免| 欧美区成人在线视频| 亚洲经典国产精华液单 | 国产av不卡久久| 丰满乱子伦码专区| 欧美一区二区国产精品久久精品| 琪琪午夜伦伦电影理论片6080| 极品教师在线免费播放| 啪啪无遮挡十八禁网站| 在线观看午夜福利视频| 中亚洲国语对白在线视频| 男女视频在线观看网站免费| 久久久久九九精品影院| 给我免费播放毛片高清在线观看| 国产精品嫩草影院av在线观看 | 日韩欧美三级三区| 99热只有精品国产| 免费av毛片视频| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 久久精品国产清高在天天线| 婷婷六月久久综合丁香| 久久精品夜夜夜夜夜久久蜜豆| 最新中文字幕久久久久| 97超视频在线观看视频| 一二三四社区在线视频社区8| 国产成人福利小说| 九色成人免费人妻av| 亚洲国产欧美人成| 欧美一区二区国产精品久久精品| 亚洲av熟女| 亚洲欧美清纯卡通| 久久午夜亚洲精品久久| 老司机午夜十八禁免费视频| 欧美成人免费av一区二区三区| 国产综合懂色| 99热这里只有是精品50| 日日夜夜操网爽| 一个人看视频在线观看www免费| 亚洲av二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美 国产精品| 在线观看av片永久免费下载| 精品一区二区三区人妻视频| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| av在线观看视频网站免费| 午夜福利在线在线| 一区福利在线观看| 亚洲国产精品999在线| 精品久久久久久,| 国产免费av片在线观看野外av| 91麻豆精品激情在线观看国产| 色吧在线观看| 一a级毛片在线观看| 日韩欧美三级三区| 99国产综合亚洲精品| 亚洲精品久久国产高清桃花| 亚洲成a人片在线一区二区| 国产欧美日韩精品亚洲av| 免费看a级黄色片| 一级a爱片免费观看的视频| 男女下面进入的视频免费午夜| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 男人的好看免费观看在线视频| 亚洲av不卡在线观看| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 熟妇人妻久久中文字幕3abv| 欧美日韩瑟瑟在线播放| 欧美又色又爽又黄视频| 免费高清视频大片| 最后的刺客免费高清国语| 日本黄色片子视频| 国产精品人妻久久久久久| 婷婷精品国产亚洲av| 神马国产精品三级电影在线观看| 在线免费观看的www视频| 国内毛片毛片毛片毛片毛片| 毛片一级片免费看久久久久 | 嫩草影视91久久| 亚洲经典国产精华液单 | 亚洲精品影视一区二区三区av| 久久午夜亚洲精品久久| 18禁裸乳无遮挡免费网站照片| a在线观看视频网站| 国产一区二区亚洲精品在线观看| 国产三级黄色录像| 欧美性猛交╳xxx乱大交人| 男人舔奶头视频| 好男人电影高清在线观看| 日韩中文字幕欧美一区二区| 国产高清视频在线播放一区| 日韩免费av在线播放| 一进一出抽搐gif免费好疼| 波多野结衣高清无吗| 草草在线视频免费看| 亚洲18禁久久av| 久久久精品欧美日韩精品| 日日干狠狠操夜夜爽| 99在线视频只有这里精品首页| 在线播放国产精品三级| 一本综合久久免费| 日韩欧美 国产精品| 久久精品夜夜夜夜夜久久蜜豆| 九九热线精品视视频播放| 一本久久中文字幕| 人妻久久中文字幕网| 成人精品一区二区免费| 黄色一级大片看看| 成人国产一区最新在线观看| 日韩欧美三级三区| 狠狠狠狠99中文字幕| 亚洲人成电影免费在线| 国产在视频线在精品| 久久久久久久久中文| 免费av不卡在线播放| 91字幕亚洲| 五月伊人婷婷丁香| 精品一区二区免费观看| а√天堂www在线а√下载| 亚洲欧美日韩高清专用| 亚洲av电影不卡..在线观看| 好看av亚洲va欧美ⅴa在| 亚洲中文字幕一区二区三区有码在线看| 午夜福利18| 一二三四社区在线视频社区8| 免费观看的影片在线观看| 久久久国产成人精品二区| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 草草在线视频免费看| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片 | 欧美精品啪啪一区二区三区| 身体一侧抽搐| 美女免费视频网站| a级毛片免费高清观看在线播放| 久久久色成人| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 热99re8久久精品国产| 高潮久久久久久久久久久不卡| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| 欧美激情在线99| bbb黄色大片| 尤物成人国产欧美一区二区三区| 欧美+日韩+精品| 夜夜看夜夜爽夜夜摸| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 日本一二三区视频观看| 久久这里只有精品中国| 一夜夜www| 国产成人欧美在线观看| 中文资源天堂在线| 国产精品一区二区性色av| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 高潮久久久久久久久久久不卡| 国产成人aa在线观看| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 99热精品在线国产| 婷婷丁香在线五月| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 亚洲国产高清在线一区二区三| 99久久精品一区二区三区| 少妇的逼水好多| 国产av在哪里看| 我要搜黄色片| bbb黄色大片| 免费av观看视频| 国产精品久久久久久久电影| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| 狂野欧美白嫩少妇大欣赏| 乱码一卡2卡4卡精品| 亚洲成人免费电影在线观看| av在线观看视频网站免费| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看的高清视频| 精品熟女少妇八av免费久了| 中文字幕久久专区| 国产视频一区二区在线看| 免费av毛片视频| 久久九九热精品免费| 日韩欧美国产在线观看| 国内精品一区二区在线观看| 亚洲精品在线观看二区| 九九热线精品视视频播放| 免费在线观看成人毛片| 欧美日韩国产亚洲二区| 亚洲专区中文字幕在线| 九九热线精品视视频播放| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 日韩欧美国产一区二区入口| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 欧美一级a爱片免费观看看| 成人国产综合亚洲| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6 | 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 一卡2卡三卡四卡精品乱码亚洲| 老司机深夜福利视频在线观看| 我的老师免费观看完整版| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| 欧美潮喷喷水| 91午夜精品亚洲一区二区三区 | 久久久成人免费电影| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 亚洲成人久久性| a级毛片a级免费在线| 禁无遮挡网站| 高清在线国产一区| 亚洲最大成人中文| 亚洲美女视频黄频| 毛片女人毛片| 最近最新中文字幕大全电影3| 变态另类成人亚洲欧美熟女| 精品一区二区免费观看| 男插女下体视频免费在线播放| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 久久国产乱子伦精品免费另类| АⅤ资源中文在线天堂| 国产精品久久视频播放| 99久久精品国产亚洲精品| 内射极品少妇av片p| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| 国产乱人伦免费视频| 久久久成人免费电影| 成人无遮挡网站| 亚洲久久久久久中文字幕| 又紧又爽又黄一区二区| 久久精品久久久久久噜噜老黄 | 不卡一级毛片| 露出奶头的视频| 中文字幕精品亚洲无线码一区| 午夜精品一区二区三区免费看| 97碰自拍视频| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 淫妇啪啪啪对白视频| 国产免费一级a男人的天堂| 亚洲自偷自拍三级| 欧美日韩福利视频一区二区| 尤物成人国产欧美一区二区三区| 亚洲av五月六月丁香网| 在线观看一区二区三区| 国模一区二区三区四区视频| 男女那种视频在线观看| 精品国产亚洲在线| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看 | 男女之事视频高清在线观看| 国内精品久久久久久久电影| 看片在线看免费视频| 好男人电影高清在线观看| 国产一区二区在线av高清观看| 在线免费观看不下载黄p国产 | av女优亚洲男人天堂| 久久人妻av系列| 免费av不卡在线播放| 久久99热这里只有精品18| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 亚洲色图av天堂| 免费av毛片视频| 一本一本综合久久| 老司机午夜福利在线观看视频| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 色播亚洲综合网| 国产 一区 欧美 日韩| 国产乱人视频| 欧美性猛交黑人性爽| 日韩有码中文字幕| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 特大巨黑吊av在线直播| 日本熟妇午夜| 亚洲片人在线观看| 亚洲av一区综合| 亚洲第一电影网av| 精品福利观看| 午夜福利欧美成人| 亚洲av一区综合| 熟女人妻精品中文字幕| 成人欧美大片| 免费无遮挡裸体视频| eeuss影院久久| 搡老妇女老女人老熟妇| 如何舔出高潮| 亚洲va日本ⅴa欧美va伊人久久| 97人妻精品一区二区三区麻豆| 欧美在线一区亚洲| 国产高清三级在线| 1000部很黄的大片| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 亚洲成av人片在线播放无| avwww免费| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 亚州av有码| 久久久久性生活片| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 麻豆av噜噜一区二区三区| 脱女人内裤的视频| 国产高清激情床上av| 午夜福利视频1000在线观看| 国产成人啪精品午夜网站| 欧美日韩瑟瑟在线播放| 欧美黑人欧美精品刺激| 1024手机看黄色片| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 久久精品久久久久久噜噜老黄 | 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 亚洲精品乱码久久久v下载方式| 99久久久亚洲精品蜜臀av| 国产精品女同一区二区软件 | 夜夜躁狠狠躁天天躁| 亚洲精品日韩av片在线观看| 青草久久国产| 啦啦啦观看免费观看视频高清| av在线观看视频网站免费| 一级作爱视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 热99在线观看视频| 一级作爱视频免费观看| 在线十欧美十亚洲十日本专区| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 99久久精品一区二区三区| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 无遮挡黄片免费观看| 18禁裸乳无遮挡免费网站照片| 小蜜桃在线观看免费完整版高清| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 久久久久国产精品人妻aⅴ院| 丰满人妻一区二区三区视频av| 日韩 亚洲 欧美在线| 黄色配什么色好看| 欧美性猛交╳xxx乱大交人| 亚洲男人的天堂狠狠| 亚洲成人久久性| 欧美zozozo另类| 免费人成在线观看视频色| avwww免费| 51国产日韩欧美| 亚洲,欧美,日韩| 美女高潮喷水抽搐中文字幕| 国产精品亚洲av一区麻豆| 黄色日韩在线| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 国产免费一级a男人的天堂| 嫩草影院入口| 成人永久免费在线观看视频| 久久99热这里只有精品18| 两人在一起打扑克的视频| 在线观看免费视频日本深夜| 美女xxoo啪啪120秒动态图 | 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 亚洲va日本ⅴa欧美va伊人久久| 综合色av麻豆| 国产 一区 欧美 日韩| 中文字幕人成人乱码亚洲影| 久9热在线精品视频| 波野结衣二区三区在线| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 全区人妻精品视频| 我要搜黄色片| 夜夜躁狠狠躁天天躁| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 欧美色欧美亚洲另类二区| 国产精品一区二区性色av| 国产精品久久久久久人妻精品电影| 中文资源天堂在线| 国产欧美日韩精品亚洲av| 免费黄网站久久成人精品 | 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 成人特级av手机在线观看| 久久人妻av系列| 色噜噜av男人的天堂激情| xxxwww97欧美| 成人毛片a级毛片在线播放| 日韩高清综合在线| 中文字幕高清在线视频| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看 | 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 男女之事视频高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 九九在线视频观看精品| 乱人视频在线观看| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 国产中年淑女户外野战色| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 国产老妇女一区| 最近中文字幕高清免费大全6 | 免费看日本二区| 男人舔奶头视频| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久 | av国产免费在线观看| 免费在线观看亚洲国产| 国产免费一级a男人的天堂| 中国美女看黄片| 国内精品一区二区在线观看| 99在线人妻在线中文字幕| 国产在视频线在精品| 国产精品久久久久久精品电影| 国产日本99.免费观看| 欧美日韩黄片免| 一区二区三区免费毛片| 日韩国内少妇激情av| 日本精品一区二区三区蜜桃| 真实男女啪啪啪动态图| av欧美777| 免费在线观看亚洲国产| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 日本熟妇午夜| 午夜亚洲福利在线播放| 色综合婷婷激情| АⅤ资源中文在线天堂| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 国产亚洲欧美98| 全区人妻精品视频| 69人妻影院| 亚洲第一欧美日韩一区二区三区| 91久久精品电影网| 精品欧美国产一区二区三| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 免费av不卡在线播放| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 嫩草影院精品99| 日韩国内少妇激情av| 制服丝袜大香蕉在线| 国产精品人妻久久久久久| 色哟哟·www| 国产伦精品一区二区三区四那| a级毛片a级免费在线| 免费一级毛片在线播放高清视频| 亚洲精品粉嫩美女一区| 在线播放无遮挡| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看电影| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 欧美日韩乱码在线| 亚洲无线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 精品国内亚洲2022精品成人| 90打野战视频偷拍视频| 18+在线观看网站| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 深爱激情五月婷婷| 一本综合久久免费| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| or卡值多少钱| 91九色精品人成在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲av中文字字幕乱码综合| 九九热线精品视视频播放| 国产亚洲精品综合一区在线观看| 亚洲av电影在线进入| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看| 国产精品女同一区二区软件 | 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院入口| 动漫黄色视频在线观看| 最近在线观看免费完整版| 1000部很黄的大片| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 在线看三级毛片| 色在线成人网| 成人鲁丝片一二三区免费| 丁香欧美五月| 蜜桃久久精品国产亚洲av| 91麻豆精品激情在线观看国产|