• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Image texture smoothing method by a novel L0-norm optimization model①

    2020-10-09 09:02:24NieDongdong聶棟棟GeXindiZhangTianlai
    High Technology Letters 2020年3期

    Nie Dongdong (聶棟棟), Ge Xindi②, Zhang Tianlai

    (*College of Sciences, Yanshan University, Qinhuangdao 066004, P.R.China) (* *Bank of Xingtai, Xingtai 054001, P.R.China)

    Abstract

    Key words: texture smoothing, structure preserving, L0-norm minimization, relative total variation

    0 Introduction

    The key to texture smoothing[1,2]is to remove small textures while preserving the significant edges and structures in the images. Texture smoothing is used in many fields, such as image segmentation[3,4], edge detection[5,6], object recognition[7,8]and image enhancement[9-11]. Although several proposed variation models are very effective for removing image noise, they cannot distinguish image structures and textures effectively. In Ref.[12], anL0-norm minimization algorithm is proposed to restrain the number of non-zero image gradients and produce a global sparse solution, which can preserve the image significance structure and remove detail textures and noises effectively. The advantage of theL0minimization is that it can smooth texture and preserve edges better than others, such as the weighted least square (WLS)[13], and bilateral filter (BLF)[14]. Shen et al.[15]extended theL0objective function by adoptingL1-norm instead ofL2-norm in the data fidelity term and achieved some promising results. Cheng et al.[16]presented a novel approximation algorithm forL0gradient minimization in a fused coordinate descent framework. Unfortunately, since these methods highly depend on the magnitude of image gradients, and image gradients haven’t enough structure extraction ability, the methods mentioned above cannot remove high contrast texture details effectively.

    Xu et al.[17]defined a new relative total variation (RTV), in which textures and main structures show completely different properties, and presented an optimization framework based on RTV regularization term for structure-texture decomposition. Since then, many scholars have made further research on RTV to improve the discrimination between textures and structures. Ref.[18] defined a modified relative total variation (mRTV) to make it more suitable inL0-norm minimization by proposing a new function. mRTV is small in texture regions and large along structure edges. Liu et al.[19]made further extension of RTV and proposed a general relative total variation (GRTV) model by expanding the norm of windowed total variation (WTV) in RTV from 0 to [0,1].

    This work presents a novelL0-norm optimization model, which combines the data fidelity term, a new gradient fidelity term and a regularization term based on theL0-norm of mRTV. Due to the non-convex and non-linear property of the optimization model, it is a challenge to obtain the solution directly. Subsequently, an efficient approximate solution is also given. It can be found that the difference between textures and main structures becomes larger with the increase of the parameterαin the proposed model. The most important thing is that the results are not only sufficiently similar to the original images but also have clear edges and suppressed textures.

    This paper includes 4 sections. Section 1 briefly reviews the definition of mRTV measure and theL0gradient minimization method. Section 2 presents the optimization framework with a new gradient consistency constraint and mRTV sparse constraint. Section 3 discusses the parameters of the proposed optimization model and gives some comparison experiments. The conclusion is in Section 4.

    1 Related background

    Here the notations used in this work are giving in Table 1.

    Table 1 Explanation of notations

    1.1 Modified RTV measure

    Based on the relative total variation, Ref. [18] proposed modified RTV measure, which is expressed as

    R(p)=Rx(p)+Ry(p)

    (1)

    where

    Rd(p)=sφd(p)φd(p)α

    (2)

    (3)

    (4)

    (5)

    heresis the normalization factor,Irepresents the input image,Ωpis the set of pixels in the local neighborhood centered atppoint, and ?dIdenote the partial derivatives ofIalong thexandydirections respectively,d∈{x,y} represents the direction to compute the partial derivatives, |·| indicates the absolute value of a number,ωp,qis a Gaussian weighting function.αis used to enhance the discrimination between structures and textures.

    Compared with RTV, the modified RTV adopts an exponent parameterαto accentuate the image structures, and uses multiplication instead of division to make the mRTV values bigger along edges and smaller for textures, which makes it more suitable toL0-norm minimization.

    1.2 L0 gradient minimization

    L0-norm directly measures the sparsity of a vector, soL0-norm minimization is usually used to obtain a sparse solution. Many algorithms adopt it for texture details smoothing or significant edge structures extracting. However, due to the non-convexity of theL0-norm, it is difficult to be minimized directly. In Ref.[12], for the task of image texture smoothing, a split method was applied to solve theL0-norm minimization problem, which achieved good results.

    Assuming thatIrepresents the input image,Sis the output image. The vector (?xSp, ?ySp)Tfor each pixelpis calculated as the partial derivatives ofSalong thexandydirections respectively. Then theL0-norm measures of the imageSgradients is the number of non-zero gradients, which can be defined by

    C(S)=#{p||?xSp|+|?ySp|≠0}

    (6)

    According to the definition in Eq.(6), the model of image texture smoothing method based on the gradientL0-norm minimization can be written by

    (7)

    The data term (Sp-Ip)2is to make the output image similar to the input image. The second termλ·C(S) is a regular term, also known as a smooth term to ensure the gradient sparseness of the output image.λis a non-negative parameter controlling the significance ofC(S).

    2 Proposed method

    The framework of the proposed method is shown in Fig.1. Different from above 2 methods, for an input imageI, the output smoothed imageSis calculated by solving the following objective function.

    (8)

    where ▽ is the gradient operator, the second term is the gradient fidelity term which ensures that the gradient of the output imageSis similar to that of input imageI,λ·|R|0indicates theL0-norm of the mRTV measure of the output imageS, which directly measures the sparseness of mRTV and ensures the smoothness of the imageS.

    Fig.1 Framework of this proposed method

    Due to the non-convexity of theL0-norm and the non-linearity of mRTV, it is hard to solve Eq.(8) by using traditional gradient decent method directly. Inspired by the methods of Refs[12] and [18], an alternating optimization strategy is adopted to solve it iteratively.

    In particular, considering the non-negativity of Rxand Ry, two non-negative auxiliary variablesδandρrespectively corresponding to Rxand Ryare introduced, then the Eq.(8) is equivalent to the following function:

    (9)

    The first 2 terms are the data term and the gradient fidelity term, the third term controls the smoothness of the output imageS.βis the adaptive parameter for controlling the similarity between (δ,ρ) and (Rx, Ry). The fourth term controls the sparseness of the sum of non-negative auxiliary variablesδandρ.

    Define a binary function:

    (10)

    The Eq.(9) can be expressed as

    +(Ry(p)-ρp)2)+λ·H(δp,ρp))

    (11)

    For the sake of simplicity, the nonlinear objective function Eq.(11) is transformed into 2 separate problems and solve it iteratively.

    2.1 Solving (δ, ρ)

    Fixing the output imageS, then the Eq.(11) can be represented by

    (12)

    Let

    Bp=(Rx(p)-δp)2+(Ry(p)-ρp)2

    (13)

    i) Whenδp+ρp≠0 andH(δp,ρp)=1

    Bp((δp,ρp)≠(0,0))

    (14)

    ii) Whenδp+ρp=0, that is (δp,ρp)=(0, 0), andH(δp,ρp)=0

    Bp((δp,ρp)=(0, 0))

    (15)

    So the minimum energyBp=(Rx(p))2+(Ry(p))2is acquired when (δp,ρp)=(0, 0).

    i) Whenδp+ρp≠0 andH(δp,ρp)=1

    Bp((δp,ρp)≠(0, 0))=

    (16)

    ii) Whenδp+ρp=0 andH(δp,ρp)=0

    Bp((δp,ρp)=(0, 0))

    (17)

    In summary, Eq.(12) has solution:

    (δp,ρp)=

    (18)

    2.2 Solving S

    Fixingδandρ, theS-estimation problem corresponds to minimizing:

    +β·((Rx(p)-δp)2+(Ry(p)-ρp)2))

    (19)

    Due to the non-linearity of Rxand Ry, the above objective equation is still difficult to be solved. Eq.(19) is decomposed into a relatively simple problem and solve it iteratively.

    In order to make the formula look more concise, letχd(p)=sφd(p)α, then Rd(p)=χd(p)φd(p).

    Take Rxas an example, its non-linearity can be eliminated by approximately expanding the (Rx(p)-δp)2term in Eq.(19) as

    =(χx(p)·ωp, p|?xSp|+χx(p)

    =(kxp|?xSp|+bxp)2

    (20)

    (21)

    (22)

    (23)

    (24)

    Similarly, the above derivation can be also applied to eliminate the non-linearity ofRy(p).

    As a result, the Eq.(19) can be transformed into the following quadratic minimization problem:

    +β·((?xSp-ηp)2+(?ySp-γp)2))

    (25)

    Hereη,γonly depends on auxiliary variablesδ,ρ

    (ηp,γp)=

    (26)

    Therefore, it can be learned that the solution of Eq.(25) converges to the solution of Eq.(19). Eq.(25) is quadratic, and thus it can be solved easily.

    By diagonalizing the partial derivative operators and the accelerating fast Fourier transform (FFT), the solution of Eq.(25) in each iteration is

    (27)

    where

    L=N·F(I)

    (28)

    M=F(?x)*·F(η)+F(?y)*·F(γ)

    (29)

    N=F(?x)*·F(?x)+F(?y)*·F(?y)

    (30)

    hereFis the FFT operator,F*denotes the conjugate ofF. The multiplication and division are all component-wise operators.

    Algorithm 1 sketches the procedure of the proposed method. Fig.2 exhibits the results of different iterations. Here, it only needs 3 iterations to get a texture smoothing results. It is shown that the approximate solution given in the above deduction has a very fast convergence speed and the objective function constructed in this study is effective to texture smoothing and edge preserving.

    Algorithm1: The proposed image texture smoothing method1Input: image I, gradient weight α, smoothing weight λ, detail scale σ, parameters β0,βmax2Initialization:S0←I,β←β0, i←03repeat4 Calculate Rd(p) for each pixel p in S(i)5 Solve for δp and ρp in Eq.(18)6 With δp and ρp, solve for ηp and γp in Eq.(26)7 Minimization for S(i+1) according to ηp and γp8 β←2β, σ←σ*0.92, i++9untilβ>βmax10Output: image S

    3 Experiment and analysis

    3.1 Discussion of parameters

    There are 3 significant parameters:α,σandλin the proposed method.αis a parameter which enhances the discrimination between structure and texture,σdetermines the spatial scale of the texture features, andλis the parameter controlling the smoothness of the image.

    3.1.1 Discussion of parameterα

    Fig.3 shows the results with differentαvalues (forσ=3,λ=0.8). With the increase ofα, the discrimination between texture and edge structures becomes larger. In the close-up images, it can be seen that some low-contrast image structures can be better preserved. But the performance of the method on texture smoothing becomes worse with biggerα. Therefore, the parameterαin the experiments is set to [6,7] as a compromise.

    3.1.2 Discussion of parameterσ

    The parameterσin Eq.(5) controls the spatial weights, also determines the window size for computing the windowed variations. With the decrease ofσ(forα=6,λ=0.8), the difference of Rdbetween weak edges and textures gets smaller, which destroys the weak edge structures. Fig.4 shows that the region of skirt hem and feet becomes more blurred asσdecreases. Butσcannot be set too big, which may result in that the texture near the edges cannot be completely removed.

    Fig.2 Smoothing results with different iteration

    Fig.3 Effect of parameter α

    Fig.4 Effect of parameter σ

    3.1.3 Discussion of parameterλ

    With the increase ofλ, the fidelity becomes weaker, and the structure sparsity increases, which promotes the smoothness of the result images. Fig.5 exhibits that the output image becomes smoother asλincreases (forα=6,σ=3). That is, more weak edges and textures are smoothed, and only a few main structures are preserved. But in practice, ifλis too large, the image will be over-smoothing.

    Fig.5 Effect of parameter λ

    3.2 Comparison with other methods

    As shown in Section 2, the problem of texture smoothing and edge preserving is solved in a newL0-norm minimization model, the validity of the new objective function and the effectiveness of corresponding approximate solution are demonstrated in Fig.6 and Fig.7 by comparing the results with other 3 methods, includingL0smoothing[12], RTV[17]and mRTV[18].

    The test environment is an Acer MS2360 laptop, and the software environment is MatlabR2015b. For the sake of the objectivity and fairness of the experimental results, the parameters of each method are adjusted to the best. The parameters of each method in Fig.6 areL0smoothingλ= 0.08; RTVσ=3,λ=0.015; mRTV:σ=3,λ=0.003; the methodα=7,σ=3,λ=1.3. The parameters of each method in Fig.7 are:L0smoothingλ= 0.08; RTVσ=2,λ=0.015; mRTV:σ=2,λ=0.002; the proposed methodα=3.2,σ=3,λ=0.2.

    Since theL0smoothing method is heavily dependent on the magnitude of image gradients, it fails to preserve weak edges with small gradients, thus the edges on the middle pumpkin are blurred seriously in Fig.6(g). After applying RTV and mRTV to distinguish textures and edges of image, the results of the RTV and mRTV are significantly improved. And the proposed method achieves better results than mRTV by preserving sharper edges on the middle pumpkin in Fig.6(j).

    Fig.6 Smoothing results and comparison on Crossstitch

    Fig.7 Smoothing results and comparison on Fish

    Compared with Figs7(b), (c) and (d), the proposed method can better preserve the edges with small size or weak gradients and in the image in Fig.7(e), such as the teeth of fish and the structures on fruits.

    For the sake of fairness, the edge peak signal-to-noise ratio (EPSNR) and edge structural similarity index (ESSIM)[20]are used to quantitatively illustrate the smoothing effect of the proposed method. EPSNR/ESSIM is to calculate the PSNR/SSIM value of the input image and the output image after Canny edge detection. The larger the EPSNR/ESSIM value, the better the ability of the method to maintain the structure. As can be seen from Table 2, the EPSNR , ESSIM values of the proposed method in Figs6 and 7 are higher than those of other methods.

    Table 2 The EPSNR/ESSIM values with different filters

    4 Conclusion

    A new objective function is constructed for texture smoothing and edge preserving. The success comes from 2 aspects. First, a novel optimization model is proposed to capture the structures of input images. Second, an efficient approximate solution is given by transforming the original non-linear and non-convex optimization problem to a set of subproblems that can be solved iteratively. In the future work, a variety of applications will be explored for totally applying the proposed method, such as detail enhancement, inverse halftone, and edge detection.

    国产精品久久久久久人妻精品电影| 乱人伦中国视频| 热99re8久久精品国产| 十八禁人妻一区二区| 久久人妻福利社区极品人妻图片| 国产野战对白在线观看| 欧美精品亚洲一区二区| 久久 成人 亚洲| 人妻久久中文字幕网| 99香蕉大伊视频| 男女之事视频高清在线观看| 俄罗斯特黄特色一大片| 极品教师在线免费播放| 久久天堂一区二区三区四区| 欧美日韩黄片免| 国产成人精品久久二区二区免费| 亚洲一区高清亚洲精品| 久久久久久久久久久久大奶| 亚洲男人天堂网一区| 99国产极品粉嫩在线观看| 男男h啪啪无遮挡| 免费在线观看日本一区| 男男h啪啪无遮挡| netflix在线观看网站| 最近最新中文字幕大全免费视频| 国产一区有黄有色的免费视频| 18禁观看日本| 久久人人97超碰香蕉20202| 成人特级黄色片久久久久久久| 18禁观看日本| 国产精品久久久av美女十八| 国产亚洲av高清不卡| 亚洲一区中文字幕在线| 中文字幕精品免费在线观看视频| 香蕉久久夜色| 亚洲国产精品合色在线| 激情视频va一区二区三区| 国产精品免费视频内射| 久久青草综合色| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕一二三四区| 电影成人av| 香蕉国产在线看| 狂野欧美激情性xxxx| 99热网站在线观看| tocl精华| 久久这里只有精品19| 99热网站在线观看| 亚洲五月婷婷丁香| 大型av网站在线播放| 一级,二级,三级黄色视频| 一边摸一边抽搐一进一小说 | 99热网站在线观看| 成人国语在线视频| 成人黄色视频免费在线看| 亚洲熟妇熟女久久| 国产三级黄色录像| 51午夜福利影视在线观看| 免费看十八禁软件| 日本vs欧美在线观看视频| 熟女少妇亚洲综合色aaa.| 法律面前人人平等表现在哪些方面| 精品福利永久在线观看| 国产欧美日韩精品亚洲av| 国产xxxxx性猛交| 丝瓜视频免费看黄片| 国产亚洲精品久久久久久毛片 | 久久中文看片网| 日韩精品免费视频一区二区三区| 婷婷精品国产亚洲av在线 | av超薄肉色丝袜交足视频| 亚洲熟妇熟女久久| 精品亚洲成a人片在线观看| 午夜激情av网站| 精品卡一卡二卡四卡免费| xxx96com| 成熟少妇高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片大片在线免费观看| 日韩欧美三级三区| 亚洲欧美精品综合一区二区三区| 一区二区三区国产精品乱码| 夫妻午夜视频| 久久久久视频综合| 黄色片一级片一级黄色片| 麻豆av在线久日| 日韩欧美免费精品| 深夜精品福利| 极品少妇高潮喷水抽搐| 老汉色∧v一级毛片| 黄网站色视频无遮挡免费观看| 国产精品乱码一区二三区的特点 | 国产真人三级小视频在线观看| 亚洲美女黄片视频| 欧美黑人精品巨大| 亚洲久久久国产精品| 天堂中文最新版在线下载| 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片 | 久久久久国内视频| 国产成人av教育| 国产精品久久电影中文字幕 | 好看av亚洲va欧美ⅴa在| 又黄又粗又硬又大视频| 麻豆成人av在线观看| 91字幕亚洲| 国产一区在线观看成人免费| 午夜影院日韩av| 侵犯人妻中文字幕一二三四区| 91精品国产国语对白视频| 超碰97精品在线观看| 在线观看66精品国产| 午夜精品国产一区二区电影| 国产xxxxx性猛交| 大香蕉久久网| 视频区欧美日本亚洲| 91成年电影在线观看| av网站免费在线观看视频| 国产伦人伦偷精品视频| 99国产精品一区二区蜜桃av | av电影中文网址| 老司机在亚洲福利影院| 精品一区二区三区视频在线观看免费 | 中文字幕人妻丝袜一区二区| 日韩成人在线观看一区二区三区| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| 国产午夜精品久久久久久| 麻豆av在线久日| 两性夫妻黄色片| 91av网站免费观看| 午夜福利在线免费观看网站| 一个人免费在线观看的高清视频| 久久久久久久午夜电影 | 宅男免费午夜| 两个人免费观看高清视频| 国产亚洲欧美在线一区二区| 丝袜美腿诱惑在线| 欧美激情高清一区二区三区| 五月开心婷婷网| 亚洲熟妇熟女久久| 亚洲精品美女久久久久99蜜臀| 久久精品国产清高在天天线| 一区二区日韩欧美中文字幕| 巨乳人妻的诱惑在线观看| 国产一区有黄有色的免费视频| 午夜影院日韩av| 精品亚洲成国产av| 999久久久国产精品视频| 久久久久久人人人人人| 欧美日韩亚洲高清精品| 久久久久久免费高清国产稀缺| 曰老女人黄片| 国产乱人伦免费视频| 超碰成人久久| 超碰成人久久| 欧美日韩瑟瑟在线播放| 女性被躁到高潮视频| 欧美精品啪啪一区二区三区| 亚洲国产精品合色在线| 亚洲一区中文字幕在线| 久久香蕉精品热| 一二三四在线观看免费中文在| 动漫黄色视频在线观看| 久久国产精品男人的天堂亚洲| 欧美激情极品国产一区二区三区| 大香蕉久久成人网| 欧美丝袜亚洲另类 | 狂野欧美激情性xxxx| 成人三级做爰电影| 女人爽到高潮嗷嗷叫在线视频| 好男人电影高清在线观看| 亚洲第一青青草原| 麻豆av在线久日| 少妇的丰满在线观看| 黄色怎么调成土黄色| 老熟妇乱子伦视频在线观看| 国产深夜福利视频在线观看| 黄片小视频在线播放| 亚洲国产精品一区二区三区在线| 免费不卡黄色视频| 啦啦啦在线免费观看视频4| 色婷婷久久久亚洲欧美| 韩国精品一区二区三区| 一区福利在线观看| 成人亚洲精品一区在线观看| 久久性视频一级片| 国产精品久久电影中文字幕 | 一级a爱视频在线免费观看| 日韩欧美国产一区二区入口| 99re6热这里在线精品视频| 久久99一区二区三区| 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 他把我摸到了高潮在线观看| 香蕉丝袜av| 波多野结衣一区麻豆| 婷婷丁香在线五月| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲| av中文乱码字幕在线| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 99精品在免费线老司机午夜| 99久久人妻综合| 大香蕉久久网| 丝袜人妻中文字幕| 精品国内亚洲2022精品成人 | 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 亚洲国产欧美一区二区综合| av片东京热男人的天堂| av国产精品久久久久影院| 亚洲精品国产区一区二| 亚洲av美国av| 久久99一区二区三区| 免费在线观看黄色视频的| 最新美女视频免费是黄的| 岛国在线观看网站| 涩涩av久久男人的天堂| 国产男女超爽视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 嫩草影视91久久| 国产一区有黄有色的免费视频| 国产欧美亚洲国产| a在线观看视频网站| 精品欧美一区二区三区在线| 91九色精品人成在线观看| 亚洲精品在线美女| 99国产精品免费福利视频| 久久国产精品大桥未久av| 啪啪无遮挡十八禁网站| 欧美在线一区亚洲| 女人精品久久久久毛片| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 在线永久观看黄色视频| 久久亚洲真实| 久久草成人影院| 国产免费男女视频| 男人舔女人的私密视频| 另类亚洲欧美激情| 性色av乱码一区二区三区2| 香蕉国产在线看| 一级片'在线观看视频| 国产成人免费无遮挡视频| 变态另类成人亚洲欧美熟女 | 波多野结衣一区麻豆| √禁漫天堂资源中文www| 色综合婷婷激情| 精品国产亚洲在线| 精品电影一区二区在线| 91精品三级在线观看| 啪啪无遮挡十八禁网站| 在线观看日韩欧美| 免费久久久久久久精品成人欧美视频| 久久热在线av| 99国产精品一区二区三区| 不卡一级毛片| tube8黄色片| 99国产精品免费福利视频| 久久精品国产亚洲av高清一级| 制服诱惑二区| 中文字幕色久视频| 久久青草综合色| 成年人午夜在线观看视频| 欧美 日韩 精品 国产| av在线播放免费不卡| 五月开心婷婷网| 色精品久久人妻99蜜桃| 久久这里只有精品19| 制服人妻中文乱码| 又黄又粗又硬又大视频| 免费看a级黄色片| 十八禁网站免费在线| 欧美日韩一级在线毛片| 国产亚洲欧美精品永久| 久久国产亚洲av麻豆专区| 在线观看66精品国产| 精品一区二区三卡| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 国产有黄有色有爽视频| 99香蕉大伊视频| 真人做人爱边吃奶动态| 亚洲全国av大片| 视频区欧美日本亚洲| 美女 人体艺术 gogo| 色综合婷婷激情| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 一二三四社区在线视频社区8| av超薄肉色丝袜交足视频| 搡老乐熟女国产| 亚洲精品国产区一区二| 1024香蕉在线观看| 男人的好看免费观看在线视频 | 啦啦啦免费观看视频1| 国产亚洲精品久久久久5区| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线 | 亚洲成a人片在线一区二区| 亚洲色图综合在线观看| 曰老女人黄片| 91成人精品电影| 日本精品一区二区三区蜜桃| 欧美日韩视频精品一区| 免费在线观看日本一区| 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 国产精品免费大片| 不卡av一区二区三区| 免费黄频网站在线观看国产| 大香蕉久久网| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 高潮久久久久久久久久久不卡| 精品国产亚洲在线| 久久久国产精品麻豆| 亚洲免费av在线视频| 美女福利国产在线| av线在线观看网站| 性色av乱码一区二区三区2| 国产精品免费大片| 国产精品亚洲一级av第二区| 日本黄色日本黄色录像| av片东京热男人的天堂| 国产亚洲精品久久久久久毛片 | 黄色片一级片一级黄色片| 91老司机精品| 国产精品98久久久久久宅男小说| 午夜福利欧美成人| 高清毛片免费观看视频网站 | 精品一区二区三区四区五区乱码| 不卡av一区二区三区| av在线播放免费不卡| 欧美日韩乱码在线| 操美女的视频在线观看| 9191精品国产免费久久| 中文字幕制服av| 女性生殖器流出的白浆| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 精品电影一区二区在线| videosex国产| 午夜老司机福利片| 午夜日韩欧美国产| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| av电影中文网址| 涩涩av久久男人的天堂| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| 欧美最黄视频在线播放免费 | 精品欧美一区二区三区在线| 亚洲av成人一区二区三| 亚洲av成人不卡在线观看播放网| 国产三级黄色录像| av福利片在线| 日日夜夜操网爽| 午夜精品国产一区二区电影| 露出奶头的视频| 久久久国产成人免费| 欧美乱码精品一区二区三区| 久热这里只有精品99| 一级作爱视频免费观看| 久久热在线av| 免费看a级黄色片| 国产精品 国内视频| 国产片内射在线| 亚洲中文字幕日韩| 深夜精品福利| 男人的好看免费观看在线视频 | 国产精华一区二区三区| 黄色a级毛片大全视频| 国产真人三级小视频在线观看| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 国产99白浆流出| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 90打野战视频偷拍视频| www.熟女人妻精品国产| 国产日韩欧美亚洲二区| 一边摸一边抽搐一进一小说 | 午夜免费成人在线视频| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 亚洲一区中文字幕在线| 亚洲国产精品sss在线观看 | 国产精品1区2区在线观看. | 深夜精品福利| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 日韩熟女老妇一区二区性免费视频| 视频区图区小说| 又黄又爽又免费观看的视频| 男女床上黄色一级片免费看| 在线av久久热| 亚洲精品一卡2卡三卡4卡5卡| 1024香蕉在线观看| 如日韩欧美国产精品一区二区三区| 人妻丰满熟妇av一区二区三区 | 亚洲成av片中文字幕在线观看| 91国产中文字幕| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 1024视频免费在线观看| 日日爽夜夜爽网站| avwww免费| 精品一区二区三区四区五区乱码| 国产亚洲精品久久久久久毛片 | 日韩有码中文字幕| 热re99久久国产66热| 另类亚洲欧美激情| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 国产xxxxx性猛交| 中国美女看黄片| 亚洲成人手机| 精品国产美女av久久久久小说| 日韩一卡2卡3卡4卡2021年| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| 国产成人免费观看mmmm| 亚洲国产欧美网| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 91九色精品人成在线观看| 一区福利在线观看| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 国产午夜精品久久久久久| 精品久久蜜臀av无| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 成年女人毛片免费观看观看9 | 在线视频色国产色| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 999久久久国产精品视频| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 午夜视频精品福利| 黑丝袜美女国产一区| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 女人久久www免费人成看片| 成人国语在线视频| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 精品午夜福利视频在线观看一区| 亚洲精品成人av观看孕妇| 久久久久久久午夜电影 | 国产精品美女特级片免费视频播放器 | 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区| 欧美 日韩 精品 国产| 国产精品九九99| 国产精品一区二区在线不卡| 亚洲成人免费av在线播放| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 日韩 欧美 亚洲 中文字幕| 18禁裸乳无遮挡免费网站照片 | 国产精品免费大片| 免费少妇av软件| 亚洲人成伊人成综合网2020| 身体一侧抽搐| 又大又爽又粗| 老司机在亚洲福利影院| 免费观看人在逋| 久久影院123| 国产在线一区二区三区精| 久久久久久久精品吃奶| 校园春色视频在线观看| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜添小说| 欧美激情 高清一区二区三区| 色综合欧美亚洲国产小说| 久久精品国产a三级三级三级| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 日韩欧美免费精品| 久久国产精品人妻蜜桃| 99国产极品粉嫩在线观看| 亚洲五月婷婷丁香| 757午夜福利合集在线观看| videosex国产| www.熟女人妻精品国产| 美女午夜性视频免费| 性少妇av在线| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 18禁美女被吸乳视频| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 国产深夜福利视频在线观看| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 色在线成人网| 国产熟女午夜一区二区三区| 久久国产精品影院| 俄罗斯特黄特色一大片| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 欧美国产精品一级二级三级| 搡老岳熟女国产| 久久久久视频综合| 十八禁高潮呻吟视频| 国产亚洲欧美98| 亚洲精品在线观看二区| 99香蕉大伊视频| 妹子高潮喷水视频| 亚洲精品自拍成人| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| 欧美一级毛片孕妇| 国产男靠女视频免费网站| 欧美黄色淫秽网站| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 桃红色精品国产亚洲av| 又紧又爽又黄一区二区| 亚洲av日韩在线播放| 美女福利国产在线| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 久久久国产成人精品二区 | 欧美激情久久久久久爽电影 | 欧美性长视频在线观看| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 老司机午夜福利在线观看视频| 午夜影院日韩av| 夜夜夜夜夜久久久久| 国产又爽黄色视频| 老司机午夜福利在线观看视频| 精品亚洲成a人片在线观看| 精品国产一区二区久久| 每晚都被弄得嗷嗷叫到高潮| 最新的欧美精品一区二区| 国产精品国产高清国产av | 人人妻人人添人人爽欧美一区卜| 人妻 亚洲 视频| 777米奇影视久久| 精品久久久久久,| 国产麻豆69| 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 97人妻天天添夜夜摸| 亚洲一码二码三码区别大吗| 悠悠久久av| 一边摸一边抽搐一进一小说 | 黄色视频,在线免费观看| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 制服人妻中文乱码| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看 | av有码第一页| 精品久久久精品久久久| 天堂中文最新版在线下载| 手机成人av网站| 电影成人av| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 黄色 视频免费看| bbb黄色大片| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 久热这里只有精品99| 久久人妻av系列| 99精品欧美一区二区三区四区| 人人澡人人妻人| 另类亚洲欧美激情| 夫妻午夜视频| 欧美午夜高清在线| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 亚洲情色 制服丝袜| 亚洲熟妇中文字幕五十中出 | 丝袜美足系列| 日韩欧美免费精品| 少妇 在线观看| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼 | 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 国产一区有黄有色的免费视频| 法律面前人人平等表现在哪些方面|