• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of availability and reliability among differentcombined-GNSS/RNSS precise point positioning①

    2020-10-09 09:01:36ChenJianYueDongjieZhuShaolinLiuZhiqiangDaiJianbiao
    High Technology Letters 2020年3期

    Chen Jian (陳 健), Yue Dongjie②, Zhu Shaolin, Liu Zhiqiang, Dai Jianbiao

    (School of Earth Science and Engineering, Hohai University, Nanjing 211100, P.R.China)

    Abstract

    Key words: precise point positioning (PPP), positioning accuracy, convergence rate, multiple global and regional navigation satellite systems (multi-GNSS/RNSS), reliability and availability

    0 Introduction

    Precise point positioning (PPP) on the basis of global positioning system (GPS) has such advantages as absence of ground reference station, independence of baseline length, and high precision of coordinates[1], which endow it with wide applications like satellite geometric orbit determination[2], monitoring of bridge[3], earthquake monitoring and warning[4], etc. At present, positioning accuracy at centimeter and decimeter level can be achieved for static and kinematic PPP of single-system GPS. However, its intolerable convergence time that impedes the achievement of high positioning accuracy exists as a major drawback. On such basis, the multiple global navigation satellite system (GNSS) integration is considered a valid measure to improve convergence speed and reduce consequently the time needed for convergence.

    Following the modernization of American GPS, the restoration of Russian Global Navigation Satellite System (GLONASS), and also developments of Chinese BeiDou Navigation Satellite System (BDS), European Galileo Satellite Navigation System (Galileo), and Japanese Quasi-Zenith Satellite System (QZSS), the positioning stability, reliability, and availability of PPP solution are all much enhanced by multiple global and regional navigation satellite systems (multi-GNSS/RNSS) especially in challenging environments like urban areas and ravines[5-7].Therefore, the multi-GNSS/RNSS PPP will become the developing trend of GNSS precise positioning in the future. The combination PPP research is originally established on the combined dual-system of GPS/GLONASS. Functional and stochastic models of the integrated GPS/GLONASS PPP have been deduced based on the ionosphere-free observation model. The test results suggested that in spited of an enhanced convergence speed, the combined PPP still showed equal positioning accuracy as that of the single-system GPS PPP[8]. On the other hand, improvements in both positioning accuracy and convergence time of PPP under challenging conditions (limited GPS satellites) could be realized by integration of GLONASS and GPS[9]. Meanwhile, the integrated dual-system GPS/GLONASS PPP could enhance the accuracy of initial ambiguity solution and then shorten the ambiguity fixed timing for PPP[10,11]. Since December 27, 2012, the Chinese BDS has been servicing the Asia-Pacific region for positioning, navigation, and timing. Slight deterioration has been observed in the combined GPS/BDS PPP compared with single GPS system, resulting probably from the multipath of BDS GEO satellites[12]. PPP of the combined three-system GPS/GLONASS/BDS possesses better convergence time than single-system GPS or single-system GLONASS does, but no apparent enhancement for positioning accuracy has been observed using the processed daily data[13]. But gratifyingly, PPP solution of the combined four-system GPS/GLONASS/BDS/Galileo can realize enhanced reliability and availability in challenging environments relative to the single-system GPS PPP[14-16]. Recently, QZSS has attracted more research attentions thanks to its increasing development and application. Its signal design and orbit characteristics and signal design has been introduced[17], while its noise, signal to noise ratio as well as the multipath error are evaluated according to the measurement data in international GNSS service (IGS). QZSS performance in China region has been analyzed from 3 aspects, i.e. signal accuracy, availability, and kinematic PPP[18]. For the moment, many studies are mainly focused on single-system QZSS, dual-system GPS/GLONASS, dual-system GPS/BDS, and three-system GPS/GLONASS/BDS. Further evaluation on the performance of the latest five-system GPS/GLONASS/BDS/Galileo/QZSS PPP is still in need.

    In this contribution, the observation model and data processing strategy of PPP in the five-system GPS/GLONASS/BDS/Galileo/QZSS are expounded subsequently in Section 1. Afterwards, the kinematic and static multi-GNSS/RNSS PPP solution is mainly evaluated via data from 6 MGEX reference stations in Section 2, with respect to the accuracy of positioning and timespan needed for convergence. Finally, important conclusions accompanied by experimental results are summarized briefly in Section 3.

    1 Multi-GNSS/RNSS PPP model

    1.1 Multi-GNSS/RNSS PPP observation model

    In PPP, the first-order ionospheric delay is usually eliminated by the ionosphere-free (IF) pseudo-range and phase observation. The equation is as follows.

    (1)

    Considering the inter-system bias (ISB) of different systems, the observation model of multi-GNSS PPP can be obtained.

    (2)

    1.2 Data processing strategy

    In this contribution, the IF model, together with an extended Kalman filter, is applied to estimate parameters including receiver position, wet tropospheric delay, receiver clock error, ambiguities, and ISB. The phase center offset (PCO) and phase center variation (PCV) of GPS and GLONASS can refer to the ANTEX file released by IGS[22]. The satellite end PCO of BDS, Galileo, and QZSS is provided by the ANTEX file, while PCV at the satellite ends as well as PCO and PCV at the receiver ends can be found nowhere and thus not considered herein[23]. The observation, error correction, and estimation parameters are collected in Table 1.

    Table 1 Processing strategy of static and kinematic PPP for the multi-GNSS/RNSS

    2 Multi-GNSS/RNSS PPP performance analysis

    The GNSS observations are recorded in 30 s intervals from 6 MGEX reference stations using date of October 20, 2016. The information of 6 MGEX stations are presented in Table 2.Performance evaluation and comparison of the single-GNSS and multi-GNSS/RNSS static and kinematic PPP solutions are established on data processing performed in the following 9 different GNSS combinations: single-system GPS PPP, single-system GLONASS PPP, single-system BDS PPP, single-system Galileo PPP, dual-system GPS/GLONASS PPP, dual-system GPS/BDS PPP, dual-system GPS/Galileo PPP, dual-system GPS/QZSS PPP, and five-system GPS/GLONASS/BDS/Galileo/QZSS PPP.

    2.1 Availability of GNSS satellites

    Observation data from the GMSD station on October 20, 2016 are selected for availability analysis of the single-system GPS and multi-GNSS/RNSS. Fig.1 describes the visible satellite number, position dilution of precision (PDOP) values, horizontal dilution of precision (HDOP) values, and vertical dilution of precision (VDOP) values at elevation cutoff 10 °. The PDOP, HDOP, and VDOP values reflect the geometric distribution of satellites. Fig.1 points out the following characteristics of GNSS satellites at the present stage.

    1) For elevation cutoff of 10 °, the amount of visible satellites in GPS/GLONASS/BDS/Galileo/QZSS system is up to 30. Multiple constellations can provide abundant observation data, which improves the positioning accuracy consequently.

    2) Statistics suggest that at least 7 GPS satellites, 6 GLONASS satellites, 8 BDS satellites, and 4 Galileo satellites are present in each epoch at the GMSD station.

    3) The averages of PDOP, HDOP, and VDOP values are 1.90, 0.99, and 1.62, respectively, for the single-system GPS, while decrease to 1.01, 0.53, and 0.87, respectively, for the combined GPS/GLONASS/BDS/Galileo/QZSS system, i.e. improvements of 46.8%, 46.5%, and 46.3%, respectively. Thus, the geometric strength of the positioning model is significantly enhanced by multi-GNSS/RNSS.

    Table 2 Station information

    (a) The number of satellites

    (b) PDOP value

    (c) HDOP value

    (d) VDOP value

    2.2 Static PPP

    In this subsection, static PPP is processed with daily data of the 6 MGEX stations, followed by the analysis of positioning error and convergence time. Positioning error refers to the difference between positioning solution and IGS weekly solution. Subsequently, filtering convergence is defined when the positioning errors between the North and East components are less than 10 cm. Filtering is considered as converging at an epoch if the errors of positioning during the last 20 epochs remain within the limit. Fig.2 demonstrates the static PPP solutions of single-system models and a combined GPS/GLONASS/BDS/Galileo/QZSS model at GMSD station. To compare the convergence time of PPP in single systems and the combined system, only results during the first 2 h are presented. Fig.3 gives the positioning errors of the static PPP in the single-system and five-system models at different observation lengths (10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, and 12 h).

    According to Fig.2, the timespan needed for convergence in the single-system GPS and GLONASS is 6.5 min and 9.5 min, respectively, which is shorter than the single-system BDS and Galileo at GMSD station. The convergence speed of the combined five-system GPS/GLONASS/BDS/Galileo/QZSS is the fastest, only 5.5 min, and the stability of the positioning solutions is improved. As shown in Fig.3, higher positioning accuracy can be obtained by combined PPP with shorter time. For example, the positioning errors of static PPP reach 0.022 m, 0.026 m, 0.062 m with observation length of 10 min in the combined five-system GPS/GLONASS/BDS/Galileo/QZSS mode. Furthermore, the positioning error can converge to 1 cm in horizontal component and 5 cm in Up component within approximate 30 min, which is better than the results in single-systems. Since there is only one QZSS satellite, the positioning result is not given here.

    Fig.2 Static PPP solutions of single-system and five-system models at GMSD station

    Fig.3 Positioning errors of static PPP solutions with varied observation spans in single-system and five-system models

    To further evaluate the positioning error and convergence speed of the multi-GNSS/RNSS, daily solutions of 6 stations are statistically analyzed. Table 3 gathers the static PPP convergence time for the single and combined systems in each station, and Table 4 lists the corresponding positioning accuracy after daily data processing.

    Table 3 indicates that PPP of single-system GPS and GLONASS shares equal average convergence time of about 18 min. At present, the clock and orbit products of BDS satellite hold relatively low precision, along with uncorrectable errors in PCO and PCV, which results in longer convergence time of BDS PPP, about 56 min. Single-system Galileo PPP gives convergence time of 62.5 min due to its poor geometric distribution. In comparison, the combined five-system GPS/GLONASS/BDS/Galileo/QZSS PPP wins out with the shortest average convergence time at about 10.5 min.The multi-GNSS/RNSS can provide users with plenty of available satellites and has a specific contribution to the improvement of single-GNSS positioning.

    Table 3 Static PPP convergence time of each station

    Table 4 Static PPP positioning accuracy of each station (cm)

    According to Table 4, the single-system GPS and GLONASS PPP solutions exhibit positioning errors better than 1.5 cm for horizontal components and better than 4 cm in the Up components.However, PPP solution in BDS gives inferior accuracy of positioning owing to less MEO satellites and lower precision of orbit and clock products. The positioning errors of the single-system BDS PPP solution are better than 4 cm for horizontal components and 5 cm in the Up component. Single-system Galileo PPP solution possesses the same positioning errors for horizontal components as BDS but errors better than 8 cm in the Up component due to its limited amount of available satellites at this stage. The average positioning errors of 0.4 cm, 0.6 cm, and 2.5 cm in North, East, and Up components are obtained by the combined five-system GPS/GLONASS/BDS/Galileo/QZSS PPP, respectively.

    2.3 Kinematic PPP

    The data processing strategy described in Section 2.2 is adopted to investigate kinematic PPP at every station, the calculated root mean square (RMS) values of kinematic PPP solutions in various models are plotted in Fig.4.

    According to Fig.4, RMS of kinematic PPP solutions in the combined system are superior to those in the single-system GPS. As for combined dual-system, GPS/GLONASS shows better RMS values than GPS/BDS does mainly attributed to the inferior accuracy in BDS precise products to that in GLONASS precise products plus the uncorrectable PCO and PCV. However, GPS/BDS exhibits superior RMS values compared with GPS/Galileo and GPS/QZSS because there are fewer satellites in Galileo and QZSS systems. PPP results of the combined system can improve the positioning accuracy, especially for the five-system combination. Since single-system GNSS has already achieved high positioning accuracy (elevation cutoff of 10 °), the improvement of horizontal direction is limited, but accuracy at vertical direction can be enhanced significantly by combined systems.

    Furthermore, the single-system GPS and multi-GNSS/RNSS PPP at different elevation cutoffs are processed for the purpose of simulating the challenging environments like urban areas. Kinematic PPP solutions obtained from single-system model and five-system model at GMSD station are compared at 2 different elevation cutoffs, as shown in Fig.5.

    Fig.5 suggests that the influence of elevation cutoff on single-system GPS positioning is larger than on multi-GNSS, for the combined five-system GPS/GLONASS/BDS/Galileo/QZSS can still obtain high-accuracy positioning at elevation cutoff of 40 °. Moreover, the combined system owns higher stability than the single system does. Fig.6 and Fig.1(a) point out a dramatic decrease in the number of visible satellites for single system with increased elevation cutoff but more than 10 satellites in combined five-system GPS/GLONASS/BDS/Galileo/QZSS remained in every epoch under elevation cutoff from 10 °to 40 °. This is the reason why the reliability, availability, and accuracy of the multi-GNSS/RNSS positioning are better than those of the single system.

    Fig.4 Daily RMS values of single-system, dual-system, four-system, and five-system kinematic PPP solutions

    Fig.5 Comparisons of PPP results in single-system and multi-GNSS/RNSS modes under elevation cutoff at GMSD station

    Fig.6 The number of satellites under the 40 °elevation cutoff

    3 Conclusions

    Multi-GNSS/RNSS not only enriches the humdrum observation, but also enhances the geometrical strength of satellites, which is conducive to improving the positioning performance. The single system and combined GNSS static PPP experiments are carried out referring to the data obtained from MGEX reference stations, with primary focuses on the accuracy of positioning and the timespan needed for convergence. It is known that reliability,availability, and stability of GPS positioning drop sharply in complicated or bleak situations such as urban areas and valleys, as fewer satellites remain visible in these areas. Thus, the five-system PPP solutions under different elevation cutoffs are analyzed to demonstrate comprehensively the performance of multi-GNSS/RNSS positioning.Acquired experimental results are summarized below.

    In comparison to the single-system GPS, PDOP, HDOP, and VDOP values obtained for the multi-GNSS/RNSS are improved by 46.8%, 46.5%, and 46.3%, respectively. In view of the obtained results, and convergence time and positioning accuracy of static PPP as well as kinematic PPP will be greatly improved when the single system holds a poor geometric configuration. At the GMSD station, it takes single-system GPS about 6.5 min to achieve the horizontal positioning accuracy of 10 cm, while the multi-GNSS/RNSS only spends 5.5 min. The positioning performance is associated closely with the elevation cutoff of the satellite, the single-system GPS of which deteriorates rapidly with increasing elevation cutoff. Differently, multi-GNSS/RNSS kinematic PPP is able to keep a centimeter-level positioning even at elevation cutoff of 40 ° with more stable solutions. This is of great practical significance for applications in mountainous areas or extremely sheltered areas.

    91在线精品国自产拍蜜月 | 99久久久亚洲精品蜜臀av| 中文在线观看免费www的网站| 免费观看的影片在线观看| 国产黄色小视频在线观看| 18禁国产床啪视频网站| 日韩人妻高清精品专区| 不卡av一区二区三区| 精品一区二区三区av网在线观看| 两人在一起打扑克的视频| 桃红色精品国产亚洲av| 久久久久久久午夜电影| 午夜影院日韩av| 亚洲 欧美 日韩 在线 免费| 国产伦在线观看视频一区| 国产激情久久老熟女| 欧美色欧美亚洲另类二区| 这个男人来自地球电影免费观看| 成人午夜高清在线视频| 日韩三级视频一区二区三区| 1024香蕉在线观看| 亚洲片人在线观看| 亚洲自拍偷在线| 午夜两性在线视频| 一卡2卡三卡四卡精品乱码亚洲| 露出奶头的视频| 亚洲美女视频黄频| 国产真人三级小视频在线观看| 日韩欧美国产一区二区入口| 人人妻,人人澡人人爽秒播| 一区二区三区激情视频| 激情在线观看视频在线高清| 757午夜福利合集在线观看| 亚洲午夜精品一区,二区,三区| 日韩国内少妇激情av| 啦啦啦观看免费观看视频高清| 精品久久久久久久久久久久久| 亚洲第一欧美日韩一区二区三区| 欧美日韩一级在线毛片| 午夜福利视频1000在线观看| 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 久久中文看片网| 久久这里只有精品中国| 国产亚洲精品av在线| 亚洲欧美激情综合另类| 一级作爱视频免费观看| 欧美乱妇无乱码| 国产真实乱freesex| 给我免费播放毛片高清在线观看| 日日干狠狠操夜夜爽| 黄频高清免费视频| 露出奶头的视频| 久久精品综合一区二区三区| 丰满人妻一区二区三区视频av | 天堂网av新在线| 熟女少妇亚洲综合色aaa.| 99久久国产精品久久久| 国产亚洲精品久久久com| 国产精品爽爽va在线观看网站| 国产免费av片在线观看野外av| 亚洲精品一区av在线观看| 精品电影一区二区在线| 亚洲成人久久性| 九九在线视频观看精品| 天天一区二区日本电影三级| 国产av麻豆久久久久久久| 久久精品国产99精品国产亚洲性色| 亚洲人成电影免费在线| 18美女黄网站色大片免费观看| 国产高清有码在线观看视频| 久久久国产精品麻豆| 99精品欧美一区二区三区四区| 国产精品,欧美在线| 精品国产美女av久久久久小说| 热99在线观看视频| av欧美777| 色在线成人网| 国产精品综合久久久久久久免费| 免费在线观看影片大全网站| 又紧又爽又黄一区二区| 久久国产精品影院| 亚洲国产高清在线一区二区三| 九九在线视频观看精品| 在线a可以看的网站| 99久久99久久久精品蜜桃| 成人欧美大片| 午夜福利成人在线免费观看| 欧美极品一区二区三区四区| 成年免费大片在线观看| 人妻久久中文字幕网| 成人亚洲精品av一区二区| 成人鲁丝片一二三区免费| 性欧美人与动物交配| 婷婷丁香在线五月| 午夜福利成人在线免费观看| 欧美另类亚洲清纯唯美| 级片在线观看| 天堂网av新在线| 精品久久久久久久人妻蜜臀av| 黑人操中国人逼视频| 午夜日韩欧美国产| 99国产精品99久久久久| 韩国av一区二区三区四区| 无限看片的www在线观看| 好看av亚洲va欧美ⅴa在| 好看av亚洲va欧美ⅴa在| 成人永久免费在线观看视频| 中文字幕av在线有码专区| 看片在线看免费视频| 国产亚洲精品av在线| 不卡av一区二区三区| 久久精品亚洲精品国产色婷小说| 欧美日韩精品网址| av福利片在线观看| 无限看片的www在线观看| 夜夜躁狠狠躁天天躁| www.精华液| 女人被狂操c到高潮| 国产97色在线日韩免费| 99热这里只有精品一区 | 一级毛片高清免费大全| 中文字幕av在线有码专区| 欧美绝顶高潮抽搐喷水| 久久久久免费精品人妻一区二区| 亚洲一区二区三区不卡视频| 日本熟妇午夜| 国产亚洲精品av在线| 国产乱人伦免费视频| 在线观看66精品国产| 一级黄色大片毛片| 一区二区三区激情视频| 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 国产三级中文精品| 美女免费视频网站| 国产高清激情床上av| 久久婷婷人人爽人人干人人爱| 97超视频在线观看视频| 嫩草影院精品99| 噜噜噜噜噜久久久久久91| 舔av片在线| 亚洲七黄色美女视频| 18美女黄网站色大片免费观看| 麻豆av在线久日| 欧美日韩福利视频一区二区| 国产成人aa在线观看| 欧美丝袜亚洲另类 | 国产成人一区二区三区免费视频网站| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 亚洲 欧美一区二区三区| 欧美乱色亚洲激情| 天天一区二区日本电影三级| 日本成人三级电影网站| 国内精品美女久久久久久| 午夜免费成人在线视频| 国产不卡一卡二| 国产私拍福利视频在线观看| 色综合站精品国产| 久久中文字幕一级| 精品久久久久久久末码| 99久久国产精品久久久| 亚洲人成伊人成综合网2020| 蜜桃久久精品国产亚洲av| 天堂av国产一区二区熟女人妻| 欧美乱码精品一区二区三区| 曰老女人黄片| 网址你懂的国产日韩在线| 国产黄片美女视频| 在线观看免费视频日本深夜| 欧美日韩黄片免| 日本与韩国留学比较| 精品国产三级普通话版| 国产午夜精品久久久久久| 国产成人精品无人区| 国产真实乱freesex| 午夜成年电影在线免费观看| 脱女人内裤的视频| 99久久99久久久精品蜜桃| 亚洲 欧美 日韩 在线 免费| 久久人人精品亚洲av| 岛国视频午夜一区免费看| 国产精品自产拍在线观看55亚洲| 18美女黄网站色大片免费观看| tocl精华| 国产69精品久久久久777片 | 日本与韩国留学比较| 97超视频在线观看视频| 国产成人福利小说| 黄色视频,在线免费观看| 国产成人精品无人区| 国产美女午夜福利| 亚洲欧美激情综合另类| 熟女少妇亚洲综合色aaa.| 制服人妻中文乱码| 亚洲午夜理论影院| 变态另类成人亚洲欧美熟女| 日韩免费av在线播放| 亚洲片人在线观看| 舔av片在线| a在线观看视频网站| 99热6这里只有精品| 狂野欧美激情性xxxx| 亚洲成av人片在线播放无| 精品一区二区三区视频在线观看免费| 人人妻人人澡欧美一区二区| 国产精品av视频在线免费观看| 久久久国产精品麻豆| 午夜福利在线观看吧| xxxwww97欧美| 午夜久久久久精精品| 国产成+人综合+亚洲专区| 精品国产亚洲在线| 久久精品aⅴ一区二区三区四区| АⅤ资源中文在线天堂| 两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av高清不卡| 男人舔女人的私密视频| 88av欧美| 亚洲欧美日韩卡通动漫| 国产成人av教育| 亚洲av成人精品一区久久| 欧美激情久久久久久爽电影| 欧美三级亚洲精品| 亚洲专区中文字幕在线| 久久天堂一区二区三区四区| 嫩草影院精品99| 1024手机看黄色片| 黄色丝袜av网址大全| 变态另类成人亚洲欧美熟女| 日本与韩国留学比较| 国产av不卡久久| 一本久久中文字幕| 国产成人啪精品午夜网站| 一本综合久久免费| 999久久久国产精品视频| 精华霜和精华液先用哪个| 久久香蕉国产精品| 亚洲国产欧美一区二区综合| 亚洲成av人片免费观看| 亚洲avbb在线观看| 亚洲 欧美一区二区三区| 一级毛片女人18水好多| 国产激情偷乱视频一区二区| 欧美日韩瑟瑟在线播放| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 免费一级毛片在线播放高清视频| 搞女人的毛片| h日本视频在线播放| 一级黄色大片毛片| 亚洲精品在线美女| avwww免费| 色综合站精品国产| 1024手机看黄色片| 亚洲欧美精品综合久久99| 一级毛片女人18水好多| 老司机在亚洲福利影院| 波多野结衣高清无吗| 亚洲,欧美精品.| 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 校园春色视频在线观看| 国产激情欧美一区二区| 欧美日韩综合久久久久久 | 法律面前人人平等表现在哪些方面| 国产精品电影一区二区三区| 欧美日韩黄片免| 久久久成人免费电影| 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 黑人欧美特级aaaaaa片| 成人欧美大片| 亚洲中文字幕日韩| 美女黄网站色视频| 男女视频在线观看网站免费| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 女同久久另类99精品国产91| 18禁黄网站禁片免费观看直播| 中文字幕熟女人妻在线| 麻豆成人午夜福利视频| 中文在线观看免费www的网站| 不卡av一区二区三区| 男女午夜视频在线观看| 欧美一区二区国产精品久久精品| 精品欧美国产一区二区三| 99精品在免费线老司机午夜| 午夜两性在线视频| 99久久精品热视频| 精品久久久久久久末码| 天堂影院成人在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 无人区码免费观看不卡| 一个人看视频在线观看www免费 | 99视频精品全部免费 在线 | 美女高潮的动态| 久久精品国产综合久久久| 神马国产精品三级电影在线观看| 99在线人妻在线中文字幕| 一本久久中文字幕| 欧美中文综合在线视频| 国产熟女xx| 午夜福利18| 日韩三级视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 国产一区二区在线观看日韩 | 一区二区三区激情视频| 欧美黄色片欧美黄色片| www.www免费av| av黄色大香蕉| 亚洲专区国产一区二区| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 岛国视频午夜一区免费看| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 国产黄片美女视频| 香蕉av资源在线| 国产亚洲精品久久久com| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| 精品国产美女av久久久久小说| 日本一二三区视频观看| 久久久久久久久免费视频了| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 琪琪午夜伦伦电影理论片6080| 美女高潮的动态| www日本在线高清视频| 久久国产乱子伦精品免费另类| 听说在线观看完整版免费高清| 欧美乱妇无乱码| 亚洲人成网站高清观看| 亚洲电影在线观看av| 色综合亚洲欧美另类图片| 嫩草影院入口| 国产av一区在线观看免费| 小说图片视频综合网站| 99热只有精品国产| 亚洲精华国产精华精| 亚洲男人的天堂狠狠| 一二三四在线观看免费中文在| 午夜免费观看网址| 精品欧美国产一区二区三| 国产亚洲精品综合一区在线观看| 一级a爱片免费观看的视频| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 亚洲人成伊人成综合网2020| 免费看光身美女| 成人无遮挡网站| 精品久久蜜臀av无| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 国产精品 欧美亚洲| 动漫黄色视频在线观看| 成年女人永久免费观看视频| 国产视频内射| 亚洲专区字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美日韩卡通动漫| 久久久久精品国产欧美久久久| 久久精品91蜜桃| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩东京热| 丰满的人妻完整版| 午夜福利视频1000在线观看| 国产欧美日韩精品一区二区| 色在线成人网| 在线观看午夜福利视频| 国产探花在线观看一区二区| 亚洲精品在线观看二区| 亚洲av熟女| 国产av一区在线观看免费| 日本免费一区二区三区高清不卡| 观看美女的网站| 精品久久久久久久久久久久久| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 亚洲天堂国产精品一区在线| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 午夜久久久久精精品| 我的老师免费观看完整版| 国产精品女同一区二区软件 | 国产高清videossex| 亚洲精品在线美女| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| www.熟女人妻精品国产| 欧美一区二区精品小视频在线| 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| 两个人看的免费小视频| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 丁香六月欧美| 亚洲国产看品久久| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 操出白浆在线播放| 免费无遮挡裸体视频| 久久久水蜜桃国产精品网| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 国产高清激情床上av| 免费在线观看亚洲国产| 久久国产精品影院| 国产精品爽爽va在线观看网站| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 久久久久久久久中文| 午夜免费观看网址| 99久久国产精品久久久| 激情在线观看视频在线高清| 久久精品影院6| 欧洲精品卡2卡3卡4卡5卡区| 999久久久国产精品视频| 精品久久久久久久末码| 少妇的逼水好多| 午夜免费观看网址| 成年女人毛片免费观看观看9| 色哟哟哟哟哟哟| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 国产三级中文精品| 在线观看午夜福利视频| 亚洲专区字幕在线| 深夜精品福利| 欧美中文综合在线视频| 久久精品人妻少妇| 久久久久国内视频| 色综合婷婷激情| 丰满人妻一区二区三区视频av | 亚洲美女黄片视频| 丝袜人妻中文字幕| 国产精品永久免费网站| 一区二区三区高清视频在线| 亚洲欧美一区二区三区黑人| 小蜜桃在线观看免费完整版高清| 久久中文看片网| 欧美日韩亚洲国产一区二区在线观看| 两个人的视频大全免费| 又大又爽又粗| 不卡av一区二区三区| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品av一区二区| 免费看a级黄色片| 黄片大片在线免费观看| 免费看光身美女| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 91av网一区二区| 日韩有码中文字幕| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影| 黄色丝袜av网址大全| 97人妻精品一区二区三区麻豆| 色视频www国产| 日韩精品青青久久久久久| 久久久色成人| 一二三四在线观看免费中文在| 我要搜黄色片| 看免费av毛片| 久久婷婷人人爽人人干人人爱| 免费在线观看亚洲国产| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 亚洲av片天天在线观看| 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影 | 亚洲av美国av| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 久久草成人影院| 国产野战对白在线观看| 日韩有码中文字幕| 一级黄色大片毛片| 成人午夜高清在线视频| 激情在线观看视频在线高清| 偷拍熟女少妇极品色| 日日夜夜操网爽| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 99久久精品国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 小蜜桃在线观看免费完整版高清| 老汉色av国产亚洲站长工具| 精品久久久久久久久久久久久| 色噜噜av男人的天堂激情| 国产成人欧美在线观看| 国产av在哪里看| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| h日本视频在线播放| 亚洲五月天丁香| 欧美日韩瑟瑟在线播放| 91在线精品国自产拍蜜月 | 中文字幕高清在线视频| 久久精品综合一区二区三区| 天堂网av新在线| 亚洲激情在线av| 国产综合懂色| 久久精品国产清高在天天线| 国产激情久久老熟女| 午夜福利欧美成人| 亚洲avbb在线观看| 美女午夜性视频免费| 成人亚洲精品av一区二区| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看| 91av网一区二区| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 色综合欧美亚洲国产小说| 国产高清激情床上av| 三级毛片av免费| 国产极品精品免费视频能看的| 俺也久久电影网| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 亚洲电影在线观看av| 两性夫妻黄色片| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 亚洲国产高清在线一区二区三| 桃红色精品国产亚洲av| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| 欧美三级亚洲精品| 午夜福利视频1000在线观看| 欧美日韩黄片免| tocl精华| 亚洲成人久久性| 国产成人一区二区三区免费视频网站| 嫩草影视91久久| aaaaa片日本免费| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app | 久久久成人免费电影| 国产 一区 欧美 日韩| 99精品欧美一区二区三区四区| 亚洲在线自拍视频| 国产一区二区激情短视频| 波多野结衣巨乳人妻| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| 日本a在线网址| 白带黄色成豆腐渣| 午夜免费激情av| 日本黄大片高清| 日韩有码中文字幕| 亚洲精品一区av在线观看| 美女高潮的动态| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 久久午夜综合久久蜜桃| 深夜精品福利| 亚洲 欧美一区二区三区| 九九热线精品视视频播放| 日韩国内少妇激情av|