• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NEW OSCILLATION CRITERIA FOR THIRD-ORDER HALF-LINEAR ADVANCED DIFFERENTIAL EQUATIONS??

    2020-09-14 10:51:16JianliYaoXiaopingZhangJiangboYu
    Annals of Applied Mathematics 2020年3期

    Jianli Yao,Xiaoping Zhang,Jiangbo Yu

    (School of Science,Shandong Jianzhu University,Ji’nan 250101,Shandong,PR China)

    Abstract

    Keywords third-order differential equation;advanced argument;oscillation;asymptotic behavior;noncanonical operators

    1 Introduction

    In 2019,Chatzarakis([1])o ff ered sufficient conditions for the oscillation and asymptotic behavior of second-order half-linear differential equations with advanced argument of the form

    In 2018,D?urina([2])presented new oscillation criteria for third-order delay differential equations with noncanonical operators of the form

    In this paper,we consider the oscillatory and asymptotic behavior of solutions to the third-order half-linear advanced differential equations of the form

    Throughout the whole paper,we assume that

    (H1)α,βandγare quotients of odd positive integers;

    (H2)the functionsr1,r2∈C([t0,∞),(0,∞))are of noncanonical type(see Trench[2]),that is,

    (H3)q∈C([t0,∞),[0,∞))does not vanish eventually;

    (H4)σ∈C1([t0,∞),(0,∞)),σ(t)≥t,σ′(t)≥0 for allt≥t0.

    By a solution of equation(1.1),we mean a nontrivial real valued functiony∈C([Tx,∞),R),Tx≥t0,which has the property thaty,are continuous and differentiable for allt∈[Tx,∞),and satisfy(1.1)on[Tx,∞).We only need to consider those solutions of(1.1)which exist on some half-line[Tx,∞)and satisfy the condition

    for anyT≥Tx.In the sequel,we assume that(1.1)possesses such solutions.

    As is customary,a solutiony(t)of(1.1)is called oscillatory if it has arbitrary large zeros on[Tx,∞).Otherwise,it is called nonoscillatory.Equation(1.1)is said to be oscillatory if all its solutions oscillate.

    Following classical results of Kiguradze and Kondrat’ev[3],we say that(1.1)has property A if any solutionyof(1.1)is either oscillatory or satisfieswhich is also called that equation(1.1)is almost oscillatory.

    For brevity,we define operators

    Also,we use the symbols↑and↓to indicate whether the function is nondecreasing and nonincreasing,respectively.

    2 Main Results

    As usual,all functional inequalities considered in this paper are supposed to hold eventually,that is,they are satisfied for alltlarge enough.

    Without loss of generality,we need only to consider eventually positive solutions of(1.1),since ifysatisfies(1.1),so does?y.

    The following lemma on the structure of possible nonoscillatory solutions of(1.1)plays a crucial role in the proofs of the main results.

    Lemma 2.1Assume(H1)-(H4),and that y is an eventually positive solution of equation(1.1).Then there exists a t1∈[t0,∞)such that y eventually belongs to one of the following classes:

    for t≥t1.

    The proof is straightforward and hence is omitted.

    Now,we will establish one-condition criteria of property A of(1.1).

    Theorem 2.1Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofFirst of all,it is important to note that if(H2)and(2.1)hold,then

    that is,

    Now,suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Using Lemma 2.1,we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Then fromL1y<0,that is,r1(y′)α<0,we see thaty′<0 andyis decreasing.On the other words,there exists a finite constant?≥0 such thatObviously,,too.

    We claim that?=0.Assume on the contrary that?>0.Then there exists at2≥t1such thaty(t)≥y(σ(t))≥?fort≥t2.Thus,

    fort≥t2.Integrating(2.4)fromt2tot,we have

    Therefore,

    Integrating(2.5)again fromt2tot,we have

    that is,

    Integrating(2.6)fromt2tot,and taking account of(2.1),we have

    ast→ ∞,which contradicts the positivity ofy.Thus,

    Assumey∈S2.Proceeding the same steps as above,we arrive at(2.4).Integrating(2.4)fromt2tot,we have

    where we used(2.3).This contradicts the positivity ofL2yand thus.

    Assumey∈S3.We define a function

    Obviously,w(t)is positive fort≥t2.Using(1.1),we obtain

    Integrating the above inequality fromt2tot,and taking(2.3)into account,we have

    This contradicts the positivity ofw.Hence,S3=?.

    Assumey∈S4.Considering thatyis increasing,and integrating(1.1)fromt2tot,we obtain

    that is,

    wherek:=yγ(σ(t2)).Integrating(2.8)fromt2totand using(2.2),we have

    This contradicts the positivity ofL1y.Thus,S4=?.The proof is complete.

    Remark 2.1It is clear that any nonoscillatory solution in Theorem 2.1 eventually belongs to eitherS1orS2in Lemma 2.1,that is,S3=S4=?.

    Next,we formulate some additional information about the monotonicity of solutions inS2orS1.

    Lemma 2.2Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and define a function

    If

    then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S2in Lemma 2.1 on[t1,∞)for somet1≥t0.First,we prove that(2.11)implies

    Using I’Hospital rule,we obtain

    Taking the decrease ofL2y(t)into account,there exists a finite constant?≥0 such thatWe claim that?=0.If not,thenL2y(t)≥?>0,andeventually,fort≥t2andt2∈[t1,∞).Using this relation in(1.1),we obtain

    Integrating the above inequality fromt2tot,we have

    which is a contradiction.Thus(2.13)holds and consequently,also

    due to the decreasing properties ofπ(t)andπ2(t),respectively.Considering the monotonicity ofL2ytogether with(2.14)yields

    hence,there exists at3≥t2such that

    Therefore,there exists at4≥t3such that

    and we conclude thaty/πis decreasing on[t4,∞).Hence,(2.12)holds.The proof is complete.

    Corollary 2.1Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and a function π(t)be defined by(2.10).If(2.11)holds,then there exists a t2≥t1such that

    for every constant k>0and t≥t2.

    Lemma 2.3Assume(H1)-(H4).Let y∈S1in Lemma2.1on[t1,∞)for some t1≥t0.If(2.11)holds,then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S1in Lemma 2.1 on[t1,∞)for somet1≥t0.It follows from the monotonicity ofL1ythat,for?≥t,

    Letting?to∞,we have

    From(2.17),we conclude thaty/π1is nondecreasing,since

    The proof is complete.

    Theorem 2.2Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofSuppose on the contrary and assume thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Note that(2.3)and(2.11)are necessary for(2.19)to be valid.In fact,since the functiondsis unbounded due to(H2)andπ′<0,(2.3)and(2.11)must hold.Furthermore,by(2.19),we see that(2.1)holds,and we also obtain

    Then using Lemma 2.3,it follows from(2.16)that there existc>0 andt2≥t1such thaty(t)≥cπ1(t)fort≥t2.Substituting this inequality into(1.1),we obtain

    Integrating(2.21)fromt2tot,we have

    that is,

    Integrating the above inequality fromt2tot,we have

    that is,

    Integrating(2.22)fromt2tot,and taking(2.20)into account,we have

    which contradicts the positivity ofy.Thus,S1=?.

    Assumey∈S2.Noting(2.1)is necessary for the validity of(2.20),we have.

    Finally,noting(2.3)and(2.2)are necessary for the validity of(2.19),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    Theorem 2.3Assume(H1)-(H4).If

    for any t1≥t0,and γ=αβ,then(1.1)has property A.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    First,note that(2.23)along with(H2)implies(2.3)and(2.2).Then,using Theorem 2.1,we getS3=S4=?.Moreover,ify∈S2,then.

    Next,we consider the classS1.Assumey∈S1.Integrating(1.1)fromt1totand using the decrease ofy,we have

    that is,

    Integrating the above inequality fromt1tot,we have

    Similar to the proof of Lemma 2.3,we obtain(2.17),which along with(2.26)leads to

    Takingγ=αβinto account,the above inequality becomes

    which results in a contradiction

    Thus,S1=?.The proof is complete.

    Theorem 2.4Assume(H1)-(H4)and suppose that(2.1)holds.If

    and γ=αβ,then(1.1)has property A.

    ProofUsing Theorem 2.1,we haveS3=S4=?,and ify∈S2,then.

    Now,we only need to consider the classS1.Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at

    fort≥t2.Thus,fort≥t2,we have

    Integrating the above inequality fromt2tot,we have

    There also exists at3>t2such that

    fort≥t3.Thus,fort≥t3,we obtain

    The rest of proof is similar and hence we omit it.Finally,we obtainS1=?.The proof is complete.

    Next,we will establish various oscillation criteria for(1.1).

    Theorem 2.5Assume(H1)-(H4).If

    and

    hold,and moreover,αβ=γ,then(1.1)is oscillatory.

    ProofSuppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.In following,we consider each of these classes separately.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Usingαβ=γ,the above inequality becomes

    However,it is well-known(see,e.g.,[5,Theorem 2.4.1])that condition(2.28)implies the oscillation of(2.30).Thus,it contradicts our initial assumption.ThenS1=?.

    Assumey∈S2.Integrating(1.1)fromttou(t

    that is,

    Integrating the above inequality fromttou,we have

    that is,

    Takingγ=αβinto account,we have

    Settingu=σ(t)in(2.31),we get

    that is,

    However,condition(2.29)implies the oscillation of(2.32),(see,e.g.,[5,Theorem 2.4.1]).It means that(1.1)cannot have a positive solutionyin the classS2,which is a contradiction.Thus,S2=?.

    Finally,noting that(2.1)is necessary for the validity of(2.28),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    The following results are simple consequences of the above theorem and Corollary 2.1.

    Theorem 2.6Assume(H1)-(H4).If γ=αβ,(2.11)and(2.28)hold,then all positive solutions of(1.1)satisfy(2.15)for any k>0and t large enough.

    Theorem 2.7Assume(H1)-(H4).If γ=αβ,(2.19)and(2.29)hold,then(1.1)is oscillatory.

    Remark 2.2If

    holds,we have the validity of(2.29).Thus,the conclusions of Theorems 2.5 and 2.7 remain valid if condition(2.29)is replaced by(2.33).

    Theorem 2.8Assume(H1)-(H4).If γ=αβ,(2.23)and(2.33)hold,then(1.1)is oscillatory.

    Theorem 2.9Assume(H1)-(H4).If γ=αβ,(2.1),(2.27)and(2.33)hold,then(1.1)is oscillatory.

    In order to prove the following conclusions,we recall an auxiliary result which is taken from Wu et al.[6,Lemma2.3].

    Lemma 2.4[6,Lemma2.3]Let,where B>0,A andC are constants,and α is a quotient of odd positive numbers.Then g attains itsmaximum value onRatand

    for t≥t2.

    Theorem 2.10Assume(H1)-(H4)and γ=αβ.If(2.3)and(2.33)hold,and also there exists a function ρ∈C1([t0,∞),(0,∞))such that

    for any T∈[t0,∞),then(1.1)is oscillatory.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Define the generalized Riccati substitution

    Taking(2.17)into account,we see thatw≥0 on[t1,∞).Differentiating(2.36),we arrive at

    Similar to the proof of Theorem 2.3,we arrive at(2.25).Using(2.16)in(2.25),we deduce that the inequality

    holds fort≥t2,wheret2∈[t1,∞)is large enough.Considering(2.37)and(2.38),it follows that

    Let

    Using(2.34)with the above inequality,we have

    Integrating(2.39)fromt2tot,we obtain

    Taking the definition ofwinto account,we get

    On the other hand,using(2.17),it follows that

    Substituting the above estimate into(2.40),we get

    Multiplying(2.41)byand taking the limsup on both sides of the resulting inequality,we obtain a contradiction with(2.35).Thus,S1=?.

    Assumey∈S2.Similar to the proof of Theorem 2.5,one arrives at a contradiction with(2.33).Thus,S2=?.

    In following,we showS3=S4=?.Since(2.3)holds due to(H2),then the function

    is unbounded,and so(2.2)holds.The rest of proof proceeds in the same manner as that of Theorem 2.1.The proof is complete.

    Depending on the appropriate choice of the functionρ,we can use Theorem 2.10 in a wide range of applications for studying the oscillation of(1.1).Thus,by choosing,ρ(t)=π1(t)andρ(t)=1,we obtain the following results,respectively.

    Corollary 2.2Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.3Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.4Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Remark 2.3The conclusions of Theorem 2.10 and Corollaries 2.2-2.4 remain valid if condition(2.3)is replaced by(2.1).

    Lemma 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,assume that(2.1)holds.Suppose that(1.1)has a positive solution y∈S1on[t1,∞)?[t0,∞)and that λ andμare constants satisfying

    and

    Then there exists a t?∈[t1,∞)such that

    and

    on[t?,∞).

    ProofAssumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.25).Considering(1.1),(2.17)and(2.37),we see that

    It is easy to verify that

    and thus,we get

    Therefore,

    Next,we will prove the last monotonicity.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using(2.16)with the above inequality,we have

    that is,

    fort≥t2,wheret2≥t1.Using the above relation in the equality

    and taking the condition(2.47)into account,we get

    Theorem 2.11Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.33)holds and λ andμare constants satisfying(2.45)-(2.47).If

    for any t1≥t0,then(1.1)is oscillatory.

    Proof Suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Before proceeding further,note that(2.11)and

    are necessary for(2.19)to be valid.To verify this,it suffices to see that(H2)implies

    From the above inequality,we conclude that the function

    and consequently

    must be unbounded.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using the conclusions of Lemma 2.5 thatis nonincreasing andis nondecreasing,we obtain

    Using(2.52)in the above inequality,we have

    that is,

    Taking the limsup on both sides of the above inequality,we reach a contradiction with(2.53).Thus,S1=?.

    Accounting to Remark 2.2 with(2.33),we haveS2=?.Also,using Theorem 2.1,we arrive atS3=S4=?.The proof is complete.

    Theorem 2.12Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold,and λ∈[0,α)is a constant satisfying(2.46).If there exists a function ρ∈C1([t0,∞),(0,∞))and T∈[t0,∞)such that

    then(1.1)is oscillatory.

    ProofFor the proof of this theorem,it suffices to use(2.48)instead of(2.16)in(2.25)in the proof of Theorem 2.10.

    Corollary 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold and λ∈[0,α)is a constant satisfying(2.46).If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    3 Examples

    In this section,we illustrate the strength of our results using two Euler-type differential equations,as two examples.

    Example 3.1Consider the third-order advanced differential equation

    It is easy to verify that condition(2.1)is satisfied.Using Theorem 2.1,we obtain that equation(3.1)has property A.

    Example 3.2Consider the third-order advanced differential equation

    wherem>1,,q0>0 andδ≥1 .

    Clearly,r1(t)=tm,r2(t)=tn,α=1,,σ(t)=δt,and

    From Theorem 2.1(On the asymptotic properties of nonoscillatory solutions),it is easy to verify that condition(2.1)holds.Thus,any nonoscillatory,say positive solution of equation(3.2)converges to zero ast→∞,without any additional requirement.

    In following,we consider the oscillation of equation(3.2).

    After some computations,we note that conditions(2.23),(2.28)and(2.33)reduce to

    and

    respectively.

    Theorem 2.5 and Remark 2.2 imply if both(3.4)and(3.5)hold,then equation(3.2)is oscillatory.

    Since condition(2.19)is not satisfied,the related result from Theorem 2.7 can not be applied.

    Theorems 2.8 and 2.9 can deduce that oscillation of equation(3.2)is guaranteed by conditions(3.3)and(3.5).

    4 Summary

    In this paper,we studied the third-order differential equation(1.1)with noncanonical operators.First,we established one-condition criteria for property A of(1.1).Next,we presented various two-condition criteria ensuring oscillation of all solutions of(1.1).Finally,our results are applicable on Euler-type equations of the forms(3.1)and(3.2).It remains open how to generalize these results for higher-order noncanonical equations with deviating arguments.

    Acknowledgements The authors would like to express their highly appreciation to the editors and the referees for their valuable comments.

    伦理电影免费视频| 亚洲性夜色夜夜综合| 在线a可以看的网站| 中文在线观看免费www的网站| 日韩av在线大香蕉| 美女黄网站色视频| 午夜福利在线观看免费完整高清在 | www.精华液| 久久香蕉国产精品| 国产三级在线视频| 欧美乱色亚洲激情| 1024香蕉在线观看| 中文资源天堂在线| 亚洲国产中文字幕在线视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕日韩| 老司机福利观看| 久久九九热精品免费| 欧美在线黄色| 国产在线精品亚洲第一网站| 久久久国产成人免费| 岛国在线免费视频观看| 91av网一区二区| 国产一级毛片七仙女欲春2| 超碰成人久久| 99国产精品99久久久久| 人妻久久中文字幕网| 在线观看免费午夜福利视频| 99国产精品一区二区蜜桃av| 中文字幕熟女人妻在线| 成人三级黄色视频| 全区人妻精品视频| www.熟女人妻精品国产| 欧美中文日本在线观看视频| 久9热在线精品视频| 亚洲五月天丁香| а√天堂www在线а√下载| 男女做爰动态图高潮gif福利片| 嫩草影视91久久| 又紧又爽又黄一区二区| 免费看光身美女| 亚洲av成人一区二区三| 国产v大片淫在线免费观看| 一进一出抽搐动态| 两个人视频免费观看高清| 综合色av麻豆| 男女做爰动态图高潮gif福利片| 精品人妻1区二区| 亚洲人成网站在线播放欧美日韩| 亚洲自偷自拍图片 自拍| 99久久99久久久精品蜜桃| 日韩大尺度精品在线看网址| 操出白浆在线播放| 亚洲aⅴ乱码一区二区在线播放| 一个人免费在线观看的高清视频| 亚洲激情在线av| 又粗又爽又猛毛片免费看| www日本在线高清视频| 日韩国内少妇激情av| 成人欧美大片| 在线播放国产精品三级| 毛片女人毛片| 99riav亚洲国产免费| 免费大片18禁| 亚洲片人在线观看| 人人妻人人澡欧美一区二区| 免费在线观看影片大全网站| 麻豆久久精品国产亚洲av| 又黄又爽又免费观看的视频| 少妇的逼水好多| 国内精品久久久久精免费| 最新美女视频免费是黄的| 国产av一区在线观看免费| 性欧美人与动物交配| 亚洲人成伊人成综合网2020| 精品欧美国产一区二区三| 99国产精品一区二区蜜桃av| 俄罗斯特黄特色一大片| 长腿黑丝高跟| 丰满的人妻完整版| 国产精品影院久久| 国产高清视频在线播放一区| 亚洲精品在线美女| 黄色日韩在线| 成人欧美大片| 亚洲人成网站高清观看| 伦理电影免费视频| 亚洲第一电影网av| 国内精品久久久久久久电影| x7x7x7水蜜桃| 老司机午夜十八禁免费视频| 三级毛片av免费| 99国产精品一区二区蜜桃av| 亚洲七黄色美女视频| 久久久水蜜桃国产精品网| 国产又色又爽无遮挡免费看| 999久久久国产精品视频| 老司机在亚洲福利影院| 国产成人啪精品午夜网站| 精品久久久久久久末码| 久久天躁狠狠躁夜夜2o2o| 亚洲性夜色夜夜综合| 男女做爰动态图高潮gif福利片| av欧美777| 亚洲电影在线观看av| 亚洲人成网站在线播放欧美日韩| 国产精品国产高清国产av| 香蕉久久夜色| 国产熟女xx| 国产伦精品一区二区三区四那| 亚洲欧美激情综合另类| av视频在线观看入口| 国产精华一区二区三区| 精品国产乱码久久久久久男人| 亚洲精品色激情综合| 97超视频在线观看视频| 日韩 欧美 亚洲 中文字幕| 2021天堂中文幕一二区在线观| 伊人久久大香线蕉亚洲五| 999精品在线视频| 不卡一级毛片| 午夜两性在线视频| 亚洲色图av天堂| 黑人操中国人逼视频| 国产高清三级在线| 丰满人妻熟妇乱又伦精品不卡| 欧美成人免费av一区二区三区| 亚洲一区高清亚洲精品| 99热6这里只有精品| 亚洲国产中文字幕在线视频| 午夜福利成人在线免费观看| 国产成人精品无人区| 国产高清有码在线观看视频| 少妇裸体淫交视频免费看高清| 成在线人永久免费视频| 91av网站免费观看| 国产精品自产拍在线观看55亚洲| 99国产综合亚洲精品| 国产精品一及| 国产高清激情床上av| 亚洲精品一区av在线观看| 国产视频一区二区在线看| 男女那种视频在线观看| 1024手机看黄色片| 90打野战视频偷拍视频| 亚洲成人中文字幕在线播放| 日韩欧美 国产精品| 欧美乱色亚洲激情| 级片在线观看| 亚洲国产精品久久男人天堂| 精品一区二区三区四区五区乱码| 听说在线观看完整版免费高清| 欧美性猛交黑人性爽| 久久精品国产清高在天天线| 黄片小视频在线播放| 国产精品一及| 草草在线视频免费看| 一级a爱片免费观看的视频| 两个人的视频大全免费| 国产精品99久久99久久久不卡| 亚洲国产日韩欧美精品在线观看 | 精品国产超薄肉色丝袜足j| 黄色日韩在线| 日韩精品中文字幕看吧| 国产精品一区二区精品视频观看| 在线a可以看的网站| 老熟妇仑乱视频hdxx| 欧美一区二区精品小视频在线| 村上凉子中文字幕在线| 亚洲美女视频黄频| 丰满的人妻完整版| 19禁男女啪啪无遮挡网站| 久久精品综合一区二区三区| 十八禁网站免费在线| 色综合站精品国产| 极品教师在线免费播放| 51午夜福利影视在线观看| 99久久无色码亚洲精品果冻| 国产成人精品久久二区二区91| 国产精品av久久久久免费| 天天躁日日操中文字幕| 亚洲欧美激情综合另类| 高清在线国产一区| 一级毛片高清免费大全| 国产精品一区二区三区四区免费观看 | h日本视频在线播放| 欧美日韩综合久久久久久 | 国内精品久久久久精免费| 中国美女看黄片| 亚洲狠狠婷婷综合久久图片| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 18美女黄网站色大片免费观看| 亚洲欧美日韩高清专用| 亚洲一区高清亚洲精品| 伦理电影免费视频| 中文字幕高清在线视频| 老熟妇乱子伦视频在线观看| 两个人的视频大全免费| 国产真人三级小视频在线观看| 男女床上黄色一级片免费看| 国产精品av久久久久免费| 亚洲七黄色美女视频| 操出白浆在线播放| 国产高清videossex| 国产免费男女视频| 国产激情偷乱视频一区二区| 天堂av国产一区二区熟女人妻| 网址你懂的国产日韩在线| 男人舔奶头视频| 99久久精品热视频| 国产亚洲欧美在线一区二区| 欧美激情在线99| 狂野欧美白嫩少妇大欣赏| 成人18禁在线播放| 真人做人爱边吃奶动态| av天堂中文字幕网| 人人妻,人人澡人人爽秒播| 热99在线观看视频| 亚洲精品粉嫩美女一区| 亚洲精品中文字幕一二三四区| 1024手机看黄色片| 国产单亲对白刺激| 一本精品99久久精品77| 国产成人精品久久二区二区免费| 激情在线观看视频在线高清| 日韩欧美国产一区二区入口| 国产高清激情床上av| 国产成年人精品一区二区| 亚洲精品中文字幕一二三四区| 亚洲国产欧美一区二区综合| 桃色一区二区三区在线观看| 国产成人啪精品午夜网站| 成人精品一区二区免费| 日韩中文字幕欧美一区二区| 国产野战对白在线观看| 国产精品久久久人人做人人爽| 久久久国产精品麻豆| 99riav亚洲国产免费| 很黄的视频免费| 天堂网av新在线| 国产激情偷乱视频一区二区| 亚洲欧美日韩东京热| 12—13女人毛片做爰片一| 亚洲美女视频黄频| 51午夜福利影视在线观看| 日韩有码中文字幕| 亚洲第一电影网av| 成人永久免费在线观看视频| ponron亚洲| 久久人人精品亚洲av| 国产精品九九99| 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 国产精品永久免费网站| 国产免费男女视频| 18禁观看日本| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全免费视频| 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 搞女人的毛片| 国产三级在线视频| www.999成人在线观看| 精品久久久久久久末码| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 日韩欧美 国产精品| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| 久久久色成人| 日本一本二区三区精品| 国产精品98久久久久久宅男小说| 色在线成人网| 久久久久久国产a免费观看| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 午夜福利高清视频| 九色成人免费人妻av| 高清毛片免费观看视频网站| 欧美极品一区二区三区四区| 久久精品国产综合久久久| 1000部很黄的大片| 亚洲av免费在线观看| 最近最新免费中文字幕在线| 久久草成人影院| 无限看片的www在线观看| 欧美又色又爽又黄视频| 国产av不卡久久| www.www免费av| 亚洲国产精品久久男人天堂| 日韩国内少妇激情av| 国产主播在线观看一区二区| 欧美zozozo另类| 首页视频小说图片口味搜索| 国产av麻豆久久久久久久| 一区二区三区高清视频在线| 床上黄色一级片| 性色avwww在线观看| 国产综合懂色| 不卡一级毛片| 男女床上黄色一级片免费看| 午夜福利视频1000在线观看| 熟女少妇亚洲综合色aaa.| 亚洲最大成人中文| 午夜福利欧美成人| 国产精品综合久久久久久久免费| 亚洲美女黄片视频| 舔av片在线| 在线看三级毛片| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 免费观看人在逋| 国产精品亚洲av一区麻豆| 成人永久免费在线观看视频| 国产高清视频在线播放一区| 综合色av麻豆| 久久这里只有精品19| 久久久久久久久免费视频了| 国产亚洲精品久久久久久毛片| 亚洲,欧美精品.| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 亚洲精品一区av在线观看| 两个人视频免费观看高清| 日韩高清综合在线| 欧美丝袜亚洲另类 | 搡老妇女老女人老熟妇| 亚洲人与动物交配视频| 中文资源天堂在线| 波多野结衣高清无吗| 天堂√8在线中文| 国产成人av教育| 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 一本一本综合久久| 国产成人啪精品午夜网站| 欧美最黄视频在线播放免费| 校园春色视频在线观看| 国产黄色小视频在线观看| 日本 av在线| 老司机深夜福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 国产亚洲精品久久久com| 亚洲在线自拍视频| 97碰自拍视频| 极品教师在线免费播放| www国产在线视频色| 亚洲午夜精品一区,二区,三区| 国产伦精品一区二区三区视频9 | ponron亚洲| 最近视频中文字幕2019在线8| www国产在线视频色| 一个人看视频在线观看www免费 | 美女午夜性视频免费| 久久亚洲真实| 欧美国产日韩亚洲一区| 黄色成人免费大全| 美女黄网站色视频| 亚洲国产色片| 99国产精品99久久久久| av天堂在线播放| 免费大片18禁| 免费看日本二区| 免费av不卡在线播放| 深夜精品福利| 国产美女午夜福利| 中文资源天堂在线| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频| 99热精品在线国产| 男人舔女人的私密视频| 一夜夜www| 亚洲第一电影网av| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 哪里可以看免费的av片| 狂野欧美白嫩少妇大欣赏| 91九色精品人成在线观看| 丁香欧美五月| 国产精品 国内视频| 天堂av国产一区二区熟女人妻| 精品久久久久久,| 欧美成人一区二区免费高清观看 | 久久这里只有精品中国| 嫁个100分男人电影在线观看| 99热精品在线国产| 亚洲成人精品中文字幕电影| cao死你这个sao货| 制服人妻中文乱码| 国产野战对白在线观看| 亚洲五月天丁香| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩 | 国产高清激情床上av| 欧美成狂野欧美在线观看| 精品国产乱子伦一区二区三区| 午夜福利高清视频| 俄罗斯特黄特色一大片| 欧美黄色淫秽网站| 久久国产精品影院| 色综合站精品国产| 精品午夜福利视频在线观看一区| 亚洲中文字幕日韩| 国产精品女同一区二区软件 | 久久久精品大字幕| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| 天天添夜夜摸| 国产人伦9x9x在线观看| 一区二区三区高清视频在线| 久久中文字幕人妻熟女| 国产精品永久免费网站| 人人妻人人澡欧美一区二区| 男人和女人高潮做爰伦理| 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 男插女下体视频免费在线播放| 亚洲av成人一区二区三| 国产精品久久久久久精品电影| 在线观看免费午夜福利视频| 国产毛片a区久久久久| 91久久精品国产一区二区成人 | 我要搜黄色片| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 日韩中文字幕欧美一区二区| 免费观看人在逋| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区成人 | 亚洲成人久久爱视频| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 在线观看午夜福利视频| 天天一区二区日本电影三级| 麻豆国产97在线/欧美| svipshipincom国产片| 好男人电影高清在线观看| 欧美成人一区二区免费高清观看 | 在线免费观看的www视频| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 国产精品99久久久久久久久| 日韩欧美在线乱码| 在线播放国产精品三级| 欧美一级a爱片免费观看看| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 他把我摸到了高潮在线观看| 人妻久久中文字幕网| 亚洲真实伦在线观看| 久久久久性生活片| 最好的美女福利视频网| 午夜激情欧美在线| 女人高潮潮喷娇喘18禁视频| 亚洲精品456在线播放app | 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 国产精品av久久久久免费| 韩国av一区二区三区四区| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 免费看十八禁软件| 人妻夜夜爽99麻豆av| 99久久国产精品久久久| 精品久久久久久,| 久久草成人影院| 国内揄拍国产精品人妻在线| 九色国产91popny在线| 哪里可以看免费的av片| 一级毛片精品| 91av网站免费观看| 国产精品99久久99久久久不卡| 十八禁人妻一区二区| 免费在线观看影片大全网站| 国内精品久久久久久久电影| 1000部很黄的大片| 日本撒尿小便嘘嘘汇集6| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看| 黄色女人牲交| 91老司机精品| 亚洲精品国产精品久久久不卡| 国产亚洲精品av在线| 日日干狠狠操夜夜爽| av福利片在线观看| 国产欧美日韩一区二区精品| av中文乱码字幕在线| 精品日产1卡2卡| 午夜免费观看网址| 99久久精品一区二区三区| 俄罗斯特黄特色一大片| 网址你懂的国产日韩在线| 禁无遮挡网站| 男人舔奶头视频| 国产v大片淫在线免费观看| 丁香欧美五月| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 欧美日韩国产亚洲二区| 天天躁日日操中文字幕| 三级国产精品欧美在线观看 | 国产不卡一卡二| 久久久久精品国产欧美久久久| 国产精品一及| 成人精品一区二区免费| 91av网站免费观看| 日韩中文字幕欧美一区二区| 美女 人体艺术 gogo| 欧美在线黄色| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| a在线观看视频网站| 18禁观看日本| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出| 91九色精品人成在线观看| 一个人观看的视频www高清免费观看 | 久久香蕉精品热| 亚洲国产欧洲综合997久久,| 久久精品aⅴ一区二区三区四区| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 校园春色视频在线观看| 在线a可以看的网站| 午夜福利高清视频| 中文字幕人妻丝袜一区二区| tocl精华| 精品久久久久久久人妻蜜臀av| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站 | 色播亚洲综合网| 999久久久精品免费观看国产| 两人在一起打扑克的视频| 国产精品av视频在线免费观看| 欧美一级a爱片免费观看看| 黄频高清免费视频| 亚洲国产高清在线一区二区三| 老司机午夜十八禁免费视频| 热99在线观看视频| 一级毛片精品| 嫩草影院入口| 大型黄色视频在线免费观看| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 国产成人精品久久二区二区免费| 中国美女看黄片| ponron亚洲| 亚洲精品乱码久久久v下载方式 | 午夜精品久久久久久毛片777| 美女大奶头视频| 日本一本二区三区精品| 18禁美女被吸乳视频| 在线观看免费视频日本深夜| 在线免费观看不下载黄p国产 | 在线观看免费午夜福利视频| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 亚洲七黄色美女视频| 国内精品美女久久久久久| 成人亚洲精品av一区二区| 国产亚洲欧美在线一区二区| 久久国产精品影院| 精品无人区乱码1区二区| 国产精品久久久人人做人人爽| 亚洲国产日韩欧美精品在线观看 | 真实男女啪啪啪动态图| 国产精品女同一区二区软件 | 国产视频内射| 99热只有精品国产| 超碰成人久久| 欧美色视频一区免费| 一a级毛片在线观看| 国产精品电影一区二区三区| 国产精品 国内视频| 99国产极品粉嫩在线观看| 亚洲在线观看片| 狠狠狠狠99中文字幕| 午夜福利高清视频| 久久午夜综合久久蜜桃| 观看美女的网站| 亚洲成人久久性| www.精华液| 国产黄a三级三级三级人| 国产精品99久久99久久久不卡| 色视频www国产| 亚洲精品美女久久久久99蜜臀| 色老头精品视频在线观看| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| 国内精品一区二区在线观看| 老司机午夜十八禁免费视频| 国产欧美日韩精品亚洲av|