• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BIFURCATION ANALYSIS OF A CLASS OF PLANAR PIECEWISE SMOOTH LINEAR-QUADRATIC SYSTEM??

    2020-09-14 10:51:10QiwenXiuDinghengPi
    Annals of Applied Mathematics 2020年3期

    Qiwen Xiu,Dingheng Pi

    (Fujian Province University Key Laboratory of Computational Science,School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,Fujian,PR China)

    Abstract

    Keywords piecewise smooth systems;limit cycle;sliding cycle;pseudohomoclinic bifurcation;critical crossing bifurcation CC

    1 Introduction

    The bifurcation theory of planar smooth differential systems has developed very fast since D.Hilbert put up the famous Hilbert’s 16th problem(see e.g.[19]and[23]).In recent years,piecewise smooth(PWS for short)dynamical systems with some parameters have been widely applied in many fields,such as mechanics,electronics,control theory,biology,economy and so on.They are also used to explain some phenomena such as pest control or model some mechanical systems exhibiting dry friction and electrical circuits having switches and so on.These wide applications and study of Hilbert’s 16th problem are important sources of motivation of bifurcation analysis in PWS systems(see e.g.[7,16,20,30-32]).

    Filippov established some systematic methods to study qualitative theory of PWS systems in his book[9].Kuznetsov et al.studied one-parameter bifurcations in planar Filippov systems.They gave an overview of all codimension one bifurcations including some novel bifurcation phenomena that can only appear in planar PWS systems in[21].Guardia et al.studied local and global bifurcation in PWS systems in[14].Many novel bifurcation phenomena that will not be seen in smooth systems have been hot issues of bifurcation problems of PWS systems such as sliding bifurcation,critical crossing cycle bifurcation and so on.Freire et al.studied critical crossing cycle bifurcation and pointed out that critical crossing cycle bifurcationCCcan occur in co-dimension one bifurcation,but critical crossing cycle bifurcationCC2cannot occur in co-dimension one bifurcation problems(see[12]).

    When subsystems of planar PWS systems have the same type of singularities and different types of singularities,their bifurcation problems have been widely studied in the past few years.Even for planar PWS linear systems defined in two zones,their bifurcation problems are not easy to be studied.People have found many novel bifurcation phenomena that will not appear in smooth linear systems(see[13,15]).It is not easy for people to discuss bifurcation phenomena of planar piecewise linear systems with many parameters.Luckily,Freire et al.gave a Linard-like canonical form for a class of piecewise linear systems with two zones.When each subsystem has no equilibrium point in its own zone and if each subsystem has a focus,they showed that two limit cycles can exist(see e.g.[10]).PWS linear systems with node-node dynamics and saddle-saddle types were considered in[17]and[18],respectively.

    Recently,bifurcation phenomena of planar PWS systems that are constituted by linear system and quadratic Hamiltonian system have been studied by some authors(see e.g.[22,27-29]).

    Li and Huang[22]considered the following PWS system

    Under their assumptions,the linear system has a saddle.They got the following system which is topologically equivalent to system(1)

    The unperturbed system of(2)is the following system(3).See equation(7)in[22].

    This PWS system is made up of a quadratic Hamiltonian system and a linear system

    with

    and

    wherel(0),m,nare 3 real parameters.

    When the subsystem of PWS systems has a fold,many bifurcation phenomena will occur.PWS systems with 3 parameters were discussed by Buzzi et al.in[4].They discussed a special unfolding for PWS systems having a fold-cusp singularity.System(4)also has some folds(that is tangency points of second order).The definition of fold and cusp can be found in[14](see Definition 2.1).

    Li and Huang[22]assumed that these parameters satisfy some conditions,then the linear system has a saddle and its quadratic system has some folds.They discussed the homoclinic bifurcation of system(3).Moreover,they discussed Hopf bifurcation for a perturbed system of system(3).For more general scenarios,the stability and perturbations of generalized loops of planar PWS systems have been studied by applying Melnikov function.The loop has a saddle and a tangency point(see Figure 1 of[5]).Limit cycles bifurcating from generalized homoclinic loops having a tangent points were studied by analyzing Poincarmap and the authors found at most two limit cycles can appear in the related planar PWS systems(see[24]).Under the assumption that there exists a family of periodic orbits on the inner(resp.,outer)side of the homoclinic loop,Liang and his collaborators studied homoclinic bifurcations of planar PWS systems with a generalized homoclinic loop having a saddle-fold point by analyzing the asymptotic expansion of the first order Melnikov function corresponding to the period annulus in[25].

    As the parameters vary,the linear system of(1)will have a focus or a node.We can still have similar form as given by system(2).To our knowledge,when one subsystem has a fold and the other subsystem has a focus or a node,we still know little on their bifurcation phenomena.However,Li did not consider these scenarios in[22].A natural question is:Does system(2)have other bifurcation phenomena when its linear subsystem has a node or a focus?This problem deserves to be further studied.Indeed,we find some interesting bifurcation phenomena in this paper.

    In this paper we shall first investigate bifurcation phenomena of the unperturbed system(3).In the sequel,we study bifurcation phenomena of system(2).At this moment,the linear system(5)has a focus or a node.Let Σ ={(x,0)|x∈R}.In what follows we call equation(3)with(4)the upper system of(3)and equation(3)with(5)the lower system of(3).We denote upper system and lower system of(3)byf+(x,y)andf?(x,y),respectively.Our results will show that when the linear system(5)has a focus or a node,system(3)has a sliding cycle and undergoes pseudo-homoclinic bifurcation and critical crossing bifurcationCC.These novel bifurcation phenomena will not appear in smooth planar differential systems.

    From[21](see P2171),we know that one can construct a local transversal section to a stable sliding cycle and define Poincarmap in the usual way forward in time.Note that all nearby points will be mapped into the fixed point of Poincarmap,the derivative of Poincarmap at the fixed point corresponding to the sliding cycle will be zero.This is referred to as superstability.In this case Poincarmap is not invertible.However,a generic crossing cycle has a smooth invertible Poincarmap.We often use the derivative of Poincarmap to discuss the stability of a crossing cycle.If the derivativeμof Poincarmap satisfiesμ<1,the crossing cycle is exponentially stable.If the derivativeμof Poincarmap satisfiesμ>1,the crossing cycle is exponentially unstable.A crossing critical cycle is a crossing cycle passing through the boundary of a sliding segment.The crossing critical cycle is the intermediate situation between a sliding cycle and a crossing cycle.

    We recall definitions of critical crossing cycle bifurcationsCCandCC2for the sake of completeness(see[12]and[21]).When planar PWS systems with parameterαundergo critical crossing bifurcationCC,there is a sliding cycle with a single sliding segment ending at a tangency point when the parameterα<0.This sliding segment shrinks forα→0.The sliding cycle becomes a crossing critical cycle whenα=0.Then the critical crossing cycle disappears forα>0 forming an exponentially stable crossing limit cycle.SeeCCof Figure 17 in[21].

    When planar PWS systems with the parameterαundergocritical crossing bifurcation CC2,a superstable sliding cycle coexists with an exponentially unstable crossing cycle for sufficiently small parameterα<0.The two cycles collide atα=0 forming a critical crossing cycle and then disappear forα>0.This bifurcation implies the catastrophic disappearance of a stable sliding cycle.

    This paper is organized as follows.In Section 2 we will state our main results.Their proofs will be given in Section 3.Some examples will be given to apply our results in Section 4.We give our conclusions in Section 5.

    2 Statement of the Main Results

    Before we state our main results,we need some basic facts on the upper and lower systems of(3).The orbits of upper system(4)are some cubic curves

    The upper half system of(3)has two folds on Σ,that is,the originO(0,0)and point.Moreover,the pointBis visible and the pointOis invisible.Its orbit passing through the pointBwill have another intersection point with Σ,denoted by.We substitute the coordinates of the pointBinto equation(6),we get that.So the expression of the orbit that goes through the pointBis

    If system(3)has a closed cycle(except sliding closed cycle),it must intersect Σ and is located betweenBand.The following lemma will be used in the proof of our main results(see[9]).

    Lemma 1Consider the equation

    where G is of class C4at the origin satisfying

    for(x,y)near the origin.Let y=Y(x)be the solution of(10)satisfying

    then for small enough r>0

    where

    Proposition 10,then the following statements hold.

    (1)Define P+(0)=0,then P+is continuous at the point x0=0.In addition,the first four derivatives of P+at the point x0=0are

    (2)P+is decreasing with respect to x0,and concave from below(above)if l<0(l>0).

    Proof(1)The upper system(4)can be rewritten as the

    We get from Lemma 1 that

    for small enough?x0>0,where

    By equation(12),we have

    Moreover,we obtain first four derivatives ofP+at the pointx0=0.Thus the statement(1)of Proposition 1 follows.

    (2)We only need to prove the statement whenl<0.Whenl>0,the statement can be proved similarly.By(9),ifl<0,we have

    It is clear thatx11>0 andx12<0 whenl<0.Since,x12should be discarded.The useful root ofh(x1)=0 is

    Sincex1=P+(x0),we have

    Since 3lx0?1<1 andfor all,we know thatandP+(x0)is decreasing with respect tox0.

    Easy calculation shows that

    Figure 1:Graphs of the Poincar map P+with different l

    System(5)has a unique singularity.In what follows we will discuss the scenarios whenSis a focus of the lower linear system and thenSis a node of the linear system.For each scenario,we will provide a bifurcation analysis for the planar PWS system.

    2.1 The lower system with focus dynamic

    In this case,the singularityof lower system is a focus.We need the assumption.Let,the eigenvalues ofare the following

    The solution of the lower system with initial value(x0,0)att=0 is

    wheret>0.The orbits of lower system surrounding originOrotate clockwise.Then the orbit of lower system starting at(x0,0)withx0>0,will arrive at Σ at the point(x1,0)withx1<0 after a certain timet1>0.We define a lower PoincarmapP?asx1=P?(x0)withP?(0)=0.Then we have

    Here,we ask thet1>0 to be minimum time such that(17)holds.Since the singularitySis not in the lower half plane,βt1∈(0,π).It means that sinβt1>0 forβt1∈(0,π).Therefore,we obtain the parametric representations of lower PoincarmapP?from equations(16)and(17)

    For brevity,sets=βt1and,the above two equations can be written as

    wheres∈(0,π),φmγ(s)=1?emγs(coss?mγsins).This function has been introduced in[1]and[10].It has the following symmetry properties

    Figure 2 gives the graph ofφmγ(s).For the lower PoincarmapP?,we have the following proposition.

    Figure 2:The graph of φmγ(·)for a positive value of m

    Proposition 2Suppose that system(5)satisfies the assumption,m∈R,s=βt1and,then the following statements hold.

    (1)x0is increasing with respect to s and x1is decreasing with respect to s,with

    (2)When m=0,P?(x0)=?x0for all x0>0.

    (3)0,for all x0>0,we have P?′(x0)<0and

    ProofIt follows from(19)that

    Figure 2 and the symmetry properties ofφmγ(s)imply thatφmγ(s)andφ?mγ(s)are always positive whens∈( 0,π).Using the factn>0,β>0,,we havefors∈( 0,π).Moreover,easy calculation shows that

    We get from(20)that

    Whenm=0,.By(21),P?(x0)=?x0,for allx0>0.When0,it is clear thatfor allx0>0.P?is decreasing with respect tox0.Furthermore,

    From(21),we have

    whereθ(s)=sinhmγs?mγsins.We get from signθ(s)=signmthat sign.The proof is complete.

    2.2 Sliding dynamics

    In this part,we shall discuss the sliding dynamics of PWS system(3).Whenl<0,system(3)has an attracting sliding region.Whenl>0,system(3)has a repulsive sliding region.LetM(x,0)∈Σ,then the vector fields of upper and lower systems at pointMare as follows

    and

    In fact,since the points in the sliding region must satisfy

    It follows that the sliding regionsare aforementioned.Now we establish the sliding vector field onby Filippov convex method.The sliding vector field

    should be tangent to Σ,it follows that

    In the following proposition,we will find that the sliding vector fieldYsmay have a pseudo-saddle.The definition of pseudo-saddle was given in Definition 2.8 of[14].

    Proposition 3For the sliding vector field Yswith l<0,m>0,there exists aunique singularitywhich is a pseudo-saddle.

    ProofSetg(x)=3lmx2?(3l+2m)x+3.Whenl<0 andm>0,the root of discriminant ofg(x)satisfies?=(3l+2m)2?36lm>0.Two roots ofg(x)=0 are the following

    wherexBis the abscissa of pointB.Since 3lx?1>0 for allis always on the left of pointB.Moreover,Yshas a unique singularityin the regionwhenl<0,m>0.M?is a pseudo-saddle.The proof is complete.

    Analogously,we have the following results whenl>0 andm<0.

    Proposition 4For the sliding vector field Yswith l>0and m<0,there existsa unique singularity,which is a pseudo-saddle.

    In what follows we present two main results when the lower linear system has a focus.

    Theorem 1Suppose that system(3)satisfies the basic assumptionandl<0.Then the following statements hold.

    (1)If m≤0,system(3)has no periodic orbit.

    (2)If m>0and,there exist l1,l2satisfyingsuchthat the following statements hold.

    (a)If,system(3)has a stable limit cycle(crossing periodic orbit).

    (b)If l=l1,system(3)has a stable crossing critical cycle.

    (c)If l1

    (d)If l=l2,system(3)has a sliding homoclinic cycle,which is stable.

    (e)If l2

    (3)If m>0andthere are no corresponding l1,l2that satisfySo system(3)has no periodic orbit.

    Theorem 2Suppose that system(3)satisfies the basic assumptionandl>0.Then the following statements hold.

    (1)If m≥0,system(3)has no periodic orbit.

    (2)If m<0andthen there exist l1,l2satisfyingsuch that the following statements hold.

    (a)If,system(3)has an unstable limit cycle(crossing periodicorbit).

    (b)If l=l1,system(3)has an unstable crossing critical cycle.

    (c)If l1>l>l2,system(3)has an unstable sliding cycle.

    (d)If l=l2,system(3)has a sliding homoclinic cycle,which is unstable.

    (e)If0

    (3)If m<0and,then there are no corresponding l1,l2that satisfy.So system(3)has no periodic orbit.

    2.3 The lower linear system with node dynamics

    In this section,we assume thatm2>4n>0.Sis a node of the lower linear system.Direct computation shows that

    whereλ1,λ2are the eigenvalues ofand Ψλ1,λ2(t)=λ1? λ2+λ2eλ1t?λ1eλ2t.Letl1andl2be the invariant manifolds of lower system,then we have

    l1andl2intersect Σ at points,respectively.

    Proposition 5Suppose that system(5)satisfies the assumption m2>4n>0and λ1>λ2,then the following statements hold.

    (1)x0(t)is increasing with respect to t and x1(t)is decreasing with respect to t.

    (2)When λ1>λ2>0(that is,m>0),P?given in(24)is defined onand

    (a)P?is decreasing and convex with respect to x0.

    (b)P?hasas an asymptote.

    (3)When0>λ1>λ2(that is,m<0),P?is defined on(0,+∞)and

    (a)P?is decreasing and concave with respect to x0.

    (b)P?hasas an asymptote.

    (4)Define P?(0)=0,then P?is continuous at the point x0=0.In additiontothis,the first four derivatives of the P?at the point x0=0are

    Graphs ofP?for differentmare shown in Figure 3.

    Figure 3:Graphs of the lower Poincar map P? for different m

    Proof(1)We get from(24)that fort>0

    Sincen>0,λ1λ2>0,λ1>λ2,we have Ψλ1,λ2(t)>0, Ψλ1,λ2(?t)>0.ThenThis implies thatx0(t)is increasing with respect totandx1(t)is decreasing with respect tot.

    (2)Whenλ1>λ2>0,we obtain

    Moreover,by(25)we have

    ThusP?is decreasing with respect tox0with a domain given byand hasas an asymptote.Direct calculation from(25)gives

    (3)When 0>λ1>λ2,by(24),we know that

    Thus,the domain ofP?is(0,+∞)and the asymptote is.Sincem<0,similarly we haveis decreasing and concave with respect tox0.

    (4)According to the analysis given in proving statement(2),the continuity ofP?at the pointx0=0 is obvious.Using an approach similar to that in[18],we obtain Finally we have the first four derivatives ofP?at this point.0>λ1>λ2,respectively.The domain ofP?isand the range of

    Figure 4 shows phase portraits of the lower system of(3)whenλ1>λ2>0 andP?iswhenλ1>λ2>0(0>λ1>λ2).

    Theorem 3Suppose that system(3)satisfies m2>4n>0and l<0.Thenthe following statements hold.

    (1)If m<0,system(3)has no periodic orbit.

    (2)If m>0(that is,λ1>λ2>0),,system(3)has no periodic orbit.

    (3)If m>0(that is,λ1>λ2>0),there exist l1,l2satisfyingsuch that the following statements hold.

    (a)If?23m

    (b)If l=l1,system(3)has a stable crossing critical cycle.

    Figure 4:Phase portraits of lower system of(3)

    (c)If l1

    (d)If l=l2,system(3)has a sliding homoclinic cycle,which is stable.

    (e)If,system(3)has no periodic orbit.

    (4)If m>0(that is,λ1>λ2>0),,there are no corresponding l1,l2that satisfy.So system(3)has no periodic orbit.

    Theorem 4Suppose that system(3)satisfies m2>4n>0,l>0.Then the following statements hold.

    (1)If m>0,system(3)has no periodic orbit.

    (2)If m<0(that is,0>λ1>λ2),,system(3)has no periodic orbit.

    (3)If m<0(that is,0>λ1>λ2),,then there exist l1,l2satisfyingsuch that the following statements hold:

    (a)If,system(3)has an unstable limit cycle(crossing periodicorbit).

    (b)If l=l1,system(3)has an unstable crossing critical cycle.

    (c)If l2

    (d)If l=l2,system(3)has a sliding homoclinic cycle,which is unstable.

    (e)If,system(3)has no periodic orbit.

    (4)If m<0(that is,0>λ1>λ2),,then there are no correspondingl1,l2that satisfy.So system(3)has no periodic orbit.

    2.4 Hopf bifurcation

    From[6,15,22]we know planar piecewise smooth system will undergo Hopf bifurcation near singular points of focus-focus(F-F)type,focus-parabolic(F-P)type,parabolic-parabolic(P-P)type.When the linear system has a focus,the origin of system(1)is a pseudo-focus of P-P type.We have the following results.

    Theorem 5Assume that,l<0,the following statements hold.

    (i)Ifandhold,then for0

    (ii)If,the origin of system(3)is an asymptotically stable pseudo-focusof order4.

    (iii)Ifhold,then for0

    Theorem 6Assume thatand l>0,the following statements hold.

    (i)Ifhold,then for0

    (ii)If,the origin of system(3)is an unstable pseudo-focus of order4.

    (iii)Ifhold,then for0

    From the above two theorems,we find that Hopf Bifurcation and critical crossing bifurcation occur.Ifl>0,we shall have similar results.When the linear system has a node,the origin of system(1)is a pseudo-focus of P-P type.We have similar bifurcation phenomena.

    3 Proof of the Main Results

    In this section,we will prove our main results.

    We recall some results in[22].The equilibrium point of linear system is a saddle.The eigenvalues ofare the followingλ1andλ2.Other notations in the following proposition have similar meanings with Proposition 5.

    Proposition 6Suppose that system(5)satisfies the assumptions n<0,m∈Rand λ1>0>λ2,then the following statements hold.

    (1)x0(t)is increasing with respect to t and x1(t)is decreasing with respect to t,

    (2)P?is decreasing with respect to x0,P?is concave(convex)when m<0(m>0).

    (3)When m=0,P?(x0)=?x0,where.

    (4)Define P?(0)=0,then P?is continuous at the point x0=0.In addition to this,the first four derivatives of the P?at the point x0=0are

    Remark 1Easy calculation shows that the process of obtainingP?(x0)has nothing to do with the sign ofnand the fact that whetherλ1,λ2are real roots or not,it follows thatP?(x0)still has the above expression in the case of focus.Moreover,direct calculation shows that the inverse ofP?(x0)has the following expression

    The graph ofP?(x0)is similar to that of.

    3.1 Proof of Theorem 1

    (1)By Proposition 1,P+(x0)is convex and decreasing with respect tox0whenl<0.Since,P+(x0)

    (2)By Proposition 2,x0is increasing with respect tosfors∈( 0,π)

    For a givenl<0,there exists a uniques0∈( 0,π)such that

    System(3)has a critical crossing cycle which is equivalent to there exists ans0∈(0,π)such thatthat is 2x0(s0,m)+x1(s0,m)=0.Note thatlis unknown,we should determines0.By(19),we have

    It follows that

    Actually,in this cases0is independent ofl.We will give a graph to show that for suitable values ofk=mγ>0,indeed there exists ans0∈(0,π)such that equation(29)holds.With the help of computer,we know there exists ans0∈(0,π)such that the equation holds for suitable values ofk>0.See Figure 5.

    Figure 5:The graph of the function in equation(29)

    Set

    Ifl=l1,thenthus system(3)exists a critical crossing cycle.

    If there exists ans1∈(0,π)such thatand,then system(3)will have a sliding homoclinic cycle.Therefore,we need the following equations

    We eliminatelfrom the above two equations and note thatl<0,we have the following equation

    whereT=(emγs1?e?mγs1?2mγsins1)2?(e?mγs1?coss1+mγsins1)2.Analogously,s1is independent ofl.There are suitable valuesk=mγ>0,indeed there exists ans1such that equation(31)holds.Since it is not easy to solve equation(31),in what follows we will give another graph to show there exists ans1∈( 0,π)such that equation(31)holds.Letk=mγ>0,then we have the following equation

    With the help of Matlab,we have Figure 6.It shows that there exists ans1∈(0,π)such that the equation holds for suitable values ofk>0.

    Figure 6:The graph of the function in equation(31)

    Set

    Ifl=l2,thenthus system(3)exists a sliding homoclinic cycle.

    From Proposition 1 and the above remark,we have

    where?x0>0 is small enough.

    This means thatCis always on the right ofB.Moreover,Using the monotonicity and concave properties ofP+,,there exists a uniquesuch that,and

    Hence system(3)has a stable limit cycle(crossing periodic orbit),see Figure 7(a).

    Ifl=l1,then This means thatCcoincides withB.System(3)has a stable crossing critical cycle,see Figure 7(b).

    Ifl1

    Ifl=l2,then

    This means thatCcoincides withM?.The sliding homoclinic cycle is stable,see Figure 7(d).

    Ifl2

    Figure 7:The topological structures of trajectories in(3)of Theorem 1

    (3)We prove this part by contradiction.If there arel1,l2that satisfy.That is,whenm>0,,the orbit of the lower system will coincide with the orbit of upper system that starts from the pointBto the pointM?on Σ.So system(3)has a periodic orbit in this case.Moreover,system(3)will undergo critical crossing bifurcationCC2.However,according to the result in[12],critical crossing bifurcationCC2will not occur.We reach a contradiction.

    Remark 2In this case,whenl=l1,system(3)will undergo critical crossing bifurcationCC.Whenl=l2,system(3)will undergo pseudo-homoclinic bifurcation.The homoclinic loop will pass through the pseudo-saddleM?.

    Remark 3Notice that if we letx→?x,y→y,t→?t,m→?m,l→?landn→n,system(3)is invariant.So Theorem 2 is a direct consequence of Theorem 1.

    Remark 4In Theorem 2 it should be noted that ifl>0,thenxM+>xB>0.x1is decreasing with respect tos,sis increasing with respect tol,sos1

    3.2 Proof of Theorem 3

    (1).Suppose thatl<0,by Proposition 1,we haveP+(x0)

    (2)Suppose thatm>0 andIt follows that

    This isxA1≤xB.In this case,In fact,It is not difficult to check thatSo.By(32),when?x0>0 is small enough.The monotonicity and concave properties ofimply that

    Then the graphs ofP+andhave no intersection point and system(3)has no periodic orbit.

    (3)Suppose thatm>0 and.We conclude thatandis in the domain ofx0.Using the monotonicity ofx0(t),there exists a uniquet∈(0,+∞)such that

    System(3)has a critical crossing cycle which is equivalent to there exist at0>0 and a constantl1<0 such that.That is

    This implies thatt0is independent ofl.In the next section,we will give some examples to show that for suitable values ofm,n,there exists at0such thatequation(33)holds.Set

    Ifl=l1,thensystem(3)has a critical crossing cycle.

    Moreover,by Proposition 5,it is easy to know thatx1(t)is decreasing with respect tol,

    So there exist a uniquet=t0and a constantl1satisfyingsuch that

    System(3)will have a slidinghomoclinic cycle if there exist at1>0 and a constantl2such that.Analogously,we eliminatelfrom the above two equations,we have

    Thent1is independent ofl.There are suitable valuesmandnsuch that the above equation holds.The monotonicity ofx1(t)with respect tolverifies our results.Set

    Ifl=l2,thensystem(3)exists a sliding homoclinic cycle.Using the mon otonicity,we know thatThe remaining proof of each condition forlcan be discussed similarly as the statement ofTheorem 1.Here we omit it.

    (4)The proof is similar to that of case(3)in Theorem 1.Notice

    we take the objective function

    Under the constraint of equation(33),whent0=λ1=λ2=0,the objective functionf(t0,λ1,λ2)gets the maximum value of 0 with the help of Matlab.Therefore,whent0>0,λ1>λ2>0,the value off(t0,λ1,λ2)is less than 0.That is

    Forl2,if we take the same objective function,we will get the same result under the constraint of equation(36)as in the case ofl1.That is,whent1=λ1=λ2=0,the objective functionf(t1,λ1,λ2)gets the maximum value of 0.Similarly,it is always true that

    To sum up,there is no correspondingl1,l2that satisfyThat is,whenm>0,,system(3)has no periodic orbit.

    Remark 5Similarly,if we letx→?x,y→y,t→?t,m→?m,l→?landn→n,system(3)is invariant.This shows that system(3)has the symmetry property,so Theorem 4 is a direct consequence of Theorem 3.In what follows we give main topological structures of trajectories in(3)of Theorem 4.We need to notice that there exists a pseudo-saddleM+in the repulsive sliding regionsee Proposition 4.

    Figure 8:The topological structures of trajectories in(3)of Theorem 4

    3.3 Proof of Theorem 5

    In this part,we shall discuss the existence of Hopf bifurcation.We shall prove Theorem 5.The main ideas are from[22].

    (iii)Under the assumptions,Hopf bifurcation occurs similarly to[22].Hence we shall get a limit cycle from Hopf bifurcation.For the unperturbed system(3),there exists a limit cycle due to critical crossing bifurcation.Since this limit cycle is stable or unstable,it is hyperbolic.Hence it will persist under small perturbation.Finally,system(2)has two limit cycles with different stability in total.Theorem 6 can be proved similarly.

    4 Some Examples

    In this section,we will give some examples to show that the conditions in Theorems 1 and 3 hold.

    Example 1Let.(29)is rewritten as

    There is a unique roots0≈1.84 for equation(41).It follows thatl1≈ ?0.35.Therefore,we have.

    Using Matlab,we get a unique roots1≈2.09∈( 0,π)of equation(42).Moreover,s1>s0≈1.84.Now

    It follows that 0>l2>l1.

    Example 2Letm=2,n=2,then,k=mγ=1.Similarly,there is a unique roots0≈1.00∈(0,π)of equation(29).We havel1≈?0.84.Equation(31)is

    With the help of computer,we get a unique roots1≈1.19 for the above equation.Note thatl2≈?0.72,this means thatl1

    Example 3Letm=5,n=6,m2>4n>0.Thenλ1=3,λ2=2,λ1>λ2>0,andThen(33)is

    With the help of computer,we obtain a unique roott0≈0.41>0 for the above equation.Substitutingt0into(34),we havel1≈?2.23.(36)is

    With the help of computer,we obtain a unique roott1≈0.51>0 for the above equation(44).Substitutingt1into(37),we havel2≈?1.92.Indeed,we have 0

    Example 4Letm=8,n=15,m2>4n>0.Thenλ1=5,λ2=3,λ1>λ2>0,and.Then(33)is

    With the help of computer,we obtain a unique roott0≈0.26>0 for the above equation.Substitutingt0into(34),we havel1≈?3.54.(36)is

    With the help of computer,we obtain a unique roott1≈0.32>0 for the above equation(46).Substitutingt1into(37),we havel2≈?3.08.Indeed,we have 0

    5 Conclusions

    In this paper we provide a bifurcation analysis for a planar PWS system which consists of a quadratic Hamiltonian system and a linear system.If its linear system has a focus,we prove that PWS system(3)has a periodic orbit and a sliding cycle.Moreover,PWS system(2)will have two limit cycles and undergo pseudo-homoclinic bifurcation and critical crossing bifurcationCC.

    If the linear system has a node,we also find that this PWS system will have a sliding cycle and undergo pseudo-homoclinic bifurcation and critical crossing bifurcationCC.Although we have some similar bifurcation phenomena when the linear system has a focus or a node.As far as we know,the results that we see a sliding cycle in a PWS system with a node are new.

    Compared with some existing works,although pseudo-homoclinic bifurcation and sliding cycle were mentioned in[14]and[21],we have only seen them in a PWS system whose subsystem has a focus(see e.g.[10,13,28,29]).We don’t see them in a piecewise smooth system whose subsystem has a node(see e.g.[18]and[27]).The first reason for there do not exist sliding phenomena in paper[18]is that the trajectories are controlled by the invariant straight lines of the two linear subsystems.Moreover,there does not exist a tangency point.A tangency point is usually an exit point for a sliding cycle.This implies that even if the trajectories slide on the discontinuity line,we cannot get a sliding cycle.

    In[18],the authors did not find a sliding cycle.However,when the PWS system has a node,we have a sliding cycle.On one hand,our sliding set is an infinite interval.Our trajectories have more freedom.On the other hand,the upper quadratic system has a visible tangency point on the discontinuity line,which ensures that the orbits sliding on the discontinuity line can exit from there.Finally,our PWS system has a pseudo-saddle which is independent of the parametern.These reasons improve the possibility of sliding phenomena,pseudo-homoclinic bifurcation and critical crossing cycle bifurcationCC.

    Another thing we need mention is that as we can see from[11],when a subsystem of PWS system has a focus on the discontinuity line,three limit cycles can bifurcate from this PWS system,even if the subsystem is a linear system.Hence if we choose other perturbation such that the perturbed system has a focus on the discontinuity line,it is possible for this PWS to have three limit cycles.

    AcknowledgementsWe would like to thank the referee for their valuable suggestions which improve the presentation of the paper.

    久久国产乱子伦精品免费另类| 欧美日韩av久久| 午夜福利在线观看吧| 精品国产美女av久久久久小说| 精品少妇一区二区三区视频日本电影| 丁香六月欧美| 18禁黄网站禁片午夜丰满| 亚洲熟妇中文字幕五十中出 | 国产一区二区三区在线臀色熟女 | 真人一进一出gif抽搐免费| 一级a爱片免费观看的视频| 在线观看免费高清a一片| 在线av久久热| 久久天躁狠狠躁夜夜2o2o| 欧美黑人欧美精品刺激| 国产精品二区激情视频| av欧美777| 国产精品98久久久久久宅男小说| 欧美日韩国产mv在线观看视频| 国产精品电影一区二区三区| 亚洲欧洲精品一区二区精品久久久| 久久精品国产99精品国产亚洲性色 | 国产精品 欧美亚洲| 男人的好看免费观看在线视频 | 亚洲av日韩精品久久久久久密| 波多野结衣av一区二区av| 久久香蕉精品热| 国产免费男女视频| 人人妻人人添人人爽欧美一区卜| x7x7x7水蜜桃| 色精品久久人妻99蜜桃| 久久精品影院6| 久久狼人影院| 老汉色∧v一级毛片| 91老司机精品| 欧美日韩亚洲综合一区二区三区_| 在线视频色国产色| 一级黄色大片毛片| 可以在线观看毛片的网站| 熟女少妇亚洲综合色aaa.| 国产精品亚洲av一区麻豆| 中文字幕人妻熟女乱码| 久久午夜亚洲精品久久| 久久久久国内视频| 国产精品久久久久久人妻精品电影| 国产伦人伦偷精品视频| 日韩视频一区二区在线观看| 午夜福利,免费看| 国产亚洲精品第一综合不卡| 天堂俺去俺来也www色官网| 欧美日韩瑟瑟在线播放| 日日夜夜操网爽| √禁漫天堂资源中文www| 18禁黄网站禁片午夜丰满| 国产精品久久视频播放| 91成年电影在线观看| 亚洲熟妇熟女久久| 精品一品国产午夜福利视频| 成人特级黄色片久久久久久久| 午夜福利影视在线免费观看| 久久国产精品人妻蜜桃| 女人被狂操c到高潮| 国产黄色免费在线视频| 亚洲性夜色夜夜综合| 90打野战视频偷拍视频| 亚洲第一青青草原| 新久久久久国产一级毛片| 激情视频va一区二区三区| 久热爱精品视频在线9| 中文字幕高清在线视频| 日韩欧美在线二视频| 热99re8久久精品国产| 亚洲av第一区精品v没综合| 99热只有精品国产| 日本欧美视频一区| 欧美日韩黄片免| www日本在线高清视频| 欧美日韩国产mv在线观看视频| 亚洲精品国产色婷婷电影| 国产av一区在线观看免费| 黄色丝袜av网址大全| 国产人伦9x9x在线观看| 欧美久久黑人一区二区| 黄色怎么调成土黄色| 伦理电影免费视频| 欧美另类亚洲清纯唯美| 久久精品国产99精品国产亚洲性色 | 法律面前人人平等表现在哪些方面| 久久精品国产99精品国产亚洲性色 | 激情在线观看视频在线高清| 免费在线观看日本一区| 夫妻午夜视频| 中文字幕人妻熟女乱码| 电影成人av| 午夜亚洲福利在线播放| 国产精品一区二区三区四区久久 | 亚洲国产精品999在线| 99久久久亚洲精品蜜臀av| 国产精品1区2区在线观看.| 亚洲一区二区三区不卡视频| 亚洲精品久久午夜乱码| 久久伊人香网站| 久久伊人香网站| 热99re8久久精品国产| 首页视频小说图片口味搜索| 两人在一起打扑克的视频| 首页视频小说图片口味搜索| www.精华液| 国产亚洲欧美精品永久| 久久精品国产99精品国产亚洲性色 | 午夜免费鲁丝| 亚洲在线自拍视频| 国产精品一区二区免费欧美| 97超级碰碰碰精品色视频在线观看| 免费高清视频大片| 99re在线观看精品视频| 女人高潮潮喷娇喘18禁视频| 美女国产高潮福利片在线看| 国产成人av激情在线播放| 中出人妻视频一区二区| www.熟女人妻精品国产| 91大片在线观看| 我的亚洲天堂| 一级毛片高清免费大全| 日韩免费高清中文字幕av| 亚洲午夜精品一区,二区,三区| 亚洲精品在线美女| 精品一区二区三区视频在线观看免费 | 黑人猛操日本美女一级片| 精品久久久久久成人av| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合久久99| 夫妻午夜视频| 成人18禁在线播放| 国产在线精品亚洲第一网站| 高潮久久久久久久久久久不卡| 高潮久久久久久久久久久不卡| 久久影院123| 国产高清videossex| 欧美成人免费av一区二区三区| 亚洲精品国产色婷婷电影| 亚洲成国产人片在线观看| 真人一进一出gif抽搐免费| a在线观看视频网站| 1024视频免费在线观看| 久久精品91无色码中文字幕| 亚洲av熟女| 亚洲一码二码三码区别大吗| 亚洲人成电影观看| 日韩av在线大香蕉| 两性夫妻黄色片| 三级毛片av免费| 狂野欧美激情性xxxx| www.熟女人妻精品国产| 丝袜美足系列| 咕卡用的链子| 老司机深夜福利视频在线观看| 无限看片的www在线观看| 久热爱精品视频在线9| 亚洲欧美激情在线| 夜夜看夜夜爽夜夜摸 | 午夜91福利影院| 午夜日韩欧美国产| 国产日韩一区二区三区精品不卡| 男女高潮啪啪啪动态图| 国内久久婷婷六月综合欲色啪| 午夜成年电影在线免费观看| 午夜成年电影在线免费观看| 日本三级黄在线观看| 国产片内射在线| 久久热在线av| 中文字幕高清在线视频| 国产精品免费视频内射| 亚洲 国产 在线| 欧美在线黄色| 国产一区二区激情短视频| 黄色视频,在线免费观看| 日韩欧美免费精品| 高清黄色对白视频在线免费看| 中亚洲国语对白在线视频| 成人手机av| 久久久国产成人精品二区 | 麻豆成人av在线观看| 亚洲欧美激情在线| 18禁观看日本| 老熟妇仑乱视频hdxx| 久久人人97超碰香蕉20202| 丝袜在线中文字幕| 韩国精品一区二区三区| 国产野战对白在线观看| av中文乱码字幕在线| 精品人妻在线不人妻| 日本免费a在线| 国产成人一区二区三区免费视频网站| 色婷婷av一区二区三区视频| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 高潮久久久久久久久久久不卡| 美国免费a级毛片| 亚洲人成网站在线播放欧美日韩| 91成人精品电影| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| x7x7x7水蜜桃| 日韩欧美在线二视频| 中文字幕高清在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 亚洲成人久久性| 亚洲专区中文字幕在线| 欧美+亚洲+日韩+国产| 丁香欧美五月| 黄色女人牲交| 日本精品一区二区三区蜜桃| 国产精品九九99| 日韩欧美免费精品| 别揉我奶头~嗯~啊~动态视频| 欧美黄色淫秽网站| 夜夜躁狠狠躁天天躁| 在线永久观看黄色视频| www.999成人在线观看| 欧美成人性av电影在线观看| 视频区图区小说| 亚洲在线自拍视频| 成人永久免费在线观看视频| 亚洲欧美激情在线| 人人妻,人人澡人人爽秒播| 欧美黑人精品巨大| 国产一区二区三区综合在线观看| 狠狠狠狠99中文字幕| 在线观看免费午夜福利视频| 91大片在线观看| 色老头精品视频在线观看| 一进一出抽搐gif免费好疼 | 18美女黄网站色大片免费观看| 精品无人区乱码1区二区| 国产精品一区二区免费欧美| a级毛片黄视频| 村上凉子中文字幕在线| 免费在线观看完整版高清| 黑丝袜美女国产一区| 亚洲国产欧美一区二区综合| 久久久国产成人免费| 最新在线观看一区二区三区| 亚洲精品国产色婷婷电影| 国产成人免费无遮挡视频| 欧美日韩瑟瑟在线播放| 妹子高潮喷水视频| 最好的美女福利视频网| 在线免费观看的www视频| 免费看十八禁软件| 日本wwww免费看| 午夜免费鲁丝| 又紧又爽又黄一区二区| 搡老岳熟女国产| 99精国产麻豆久久婷婷| 日本wwww免费看| 久久午夜综合久久蜜桃| 9191精品国产免费久久| 亚洲熟女毛片儿| 美女大奶头视频| 欧美日韩中文字幕国产精品一区二区三区 | 97超级碰碰碰精品色视频在线观看| 日本vs欧美在线观看视频| 婷婷丁香在线五月| 久久人人爽av亚洲精品天堂| 女同久久另类99精品国产91| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜美腿诱惑在线| 国产极品粉嫩免费观看在线| 高潮久久久久久久久久久不卡| 一级黄色大片毛片| 在线观看免费视频网站a站| 午夜亚洲福利在线播放| 91麻豆av在线| 国产伦一二天堂av在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩 欧美 亚洲 中文字幕| 成人免费观看视频高清| 这个男人来自地球电影免费观看| 亚洲免费av在线视频| 日韩大尺度精品在线看网址 | 色播在线永久视频| 午夜精品国产一区二区电影| 欧美黄色片欧美黄色片| 男女下面插进去视频免费观看| 热99re8久久精品国产| 亚洲精品av麻豆狂野| 欧美不卡视频在线免费观看 | 亚洲av五月六月丁香网| 久久人人97超碰香蕉20202| 亚洲av美国av| 精品福利永久在线观看| 99久久国产精品久久久| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 91麻豆精品激情在线观看国产 | 午夜日韩欧美国产| 老熟妇仑乱视频hdxx| 欧美黄色片欧美黄色片| 久久久久国内视频| 精品午夜福利视频在线观看一区| 中文字幕av电影在线播放| 一a级毛片在线观看| 一级作爱视频免费观看| 91精品国产国语对白视频| 国产亚洲精品第一综合不卡| 19禁男女啪啪无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| aaaaa片日本免费| 岛国在线观看网站| www.999成人在线观看| 久久久久国产一级毛片高清牌| 热re99久久精品国产66热6| 欧美激情极品国产一区二区三区| 亚洲国产欧美一区二区综合| 国产免费av片在线观看野外av| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看 | 男女做爰动态图高潮gif福利片 | 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 国产激情欧美一区二区| 亚洲一区二区三区色噜噜 | 两个人免费观看高清视频| 人人妻人人爽人人添夜夜欢视频| 一个人观看的视频www高清免费观看 | 久久精品亚洲av国产电影网| 丰满迷人的少妇在线观看| 999久久久精品免费观看国产| 成年人免费黄色播放视频| 黄片大片在线免费观看| 国产激情欧美一区二区| 91字幕亚洲| 黄色视频,在线免费观看| 两人在一起打扑克的视频| www日本在线高清视频| 亚洲精品一二三| 十八禁人妻一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 男人的好看免费观看在线视频 | 国产亚洲欧美精品永久| 黄片播放在线免费| 色老头精品视频在线观看| 亚洲国产精品999在线| 久久人妻福利社区极品人妻图片| 免费在线观看亚洲国产| 亚洲色图综合在线观看| 热re99久久精品国产66热6| 国产一卡二卡三卡精品| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| 老司机靠b影院| 国产一区二区激情短视频| 国产单亲对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜 | 国产成人欧美在线观看| 精品久久久精品久久久| 免费看a级黄色片| 国产成人精品在线电影| bbb黄色大片| 看片在线看免费视频| 精品一区二区三区视频在线观看免费 | 又黄又爽又免费观看的视频| 亚洲第一av免费看| 高清黄色对白视频在线免费看| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 乱人伦中国视频| 久久久久久大精品| 国产单亲对白刺激| 老熟妇乱子伦视频在线观看| 两个人免费观看高清视频| 午夜免费激情av| 夜夜躁狠狠躁天天躁| 国产av在哪里看| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 女人被躁到高潮嗷嗷叫费观| 久久久久久大精品| 国产成人欧美在线观看| 又黄又爽又免费观看的视频| 亚洲精品久久成人aⅴ小说| 久久精品成人免费网站| 91大片在线观看| 日本免费一区二区三区高清不卡 | 亚洲精品久久成人aⅴ小说| 久久精品成人免费网站| 久久青草综合色| 精品人妻1区二区| 国产成人精品无人区| 91老司机精品| 久久人人97超碰香蕉20202| 精品免费久久久久久久清纯| 国产片内射在线| 日韩欧美国产一区二区入口| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 亚洲中文字幕日韩| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 91九色精品人成在线观看| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 精品人妻在线不人妻| 69av精品久久久久久| 最新美女视频免费是黄的| 好男人电影高清在线观看| 国产av精品麻豆| 人妻久久中文字幕网| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| www.www免费av| 怎么达到女性高潮| 欧美日本亚洲视频在线播放| 在线观看舔阴道视频| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 久久天堂一区二区三区四区| 国产极品粉嫩免费观看在线| 免费日韩欧美在线观看| 女性生殖器流出的白浆| 91麻豆av在线| 亚洲精品在线美女| 久久99一区二区三区| 久久人妻av系列| 97碰自拍视频| 在线看a的网站| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 欧美乱妇无乱码| 在线国产一区二区在线| 亚洲美女黄片视频| 久久久久久久久久久久大奶| 中文字幕最新亚洲高清| 午夜视频精品福利| 性色av乱码一区二区三区2| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 99在线人妻在线中文字幕| 97超级碰碰碰精品色视频在线观看| 亚洲五月色婷婷综合| 一夜夜www| 国产激情欧美一区二区| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区| 中文字幕另类日韩欧美亚洲嫩草| 欧美最黄视频在线播放免费 | 婷婷六月久久综合丁香| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲熟妇少妇任你| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av高清不卡| 国产精品爽爽va在线观看网站 | 一级a爱视频在线免费观看| 色综合站精品国产| www.精华液| 日韩免费av在线播放| av网站免费在线观看视频| 看黄色毛片网站| 亚洲视频免费观看视频| 亚洲成国产人片在线观看| 亚洲成人久久性| 中国美女看黄片| 一区二区三区国产精品乱码| 国产精品国产av在线观看| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 丁香欧美五月| 久久香蕉激情| 757午夜福利合集在线观看| 国产精品一区二区三区四区久久 | 日韩大尺度精品在线看网址 | 久久人人97超碰香蕉20202| 欧美在线一区亚洲| 国产精品电影一区二区三区| 1024香蕉在线观看| 亚洲欧美精品综合久久99| 99久久人妻综合| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 啦啦啦 在线观看视频| 国产av一区在线观看免费| 日韩成人在线观看一区二区三区| 午夜精品久久久久久毛片777| 国产精品免费视频内射| 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 一二三四社区在线视频社区8| 校园春色视频在线观看| 神马国产精品三级电影在线观看 | 一级片免费观看大全| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 国产精品国产高清国产av| 国产精品九九99| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 成人精品一区二区免费| 丰满的人妻完整版| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 久99久视频精品免费| 黄色 视频免费看| 69精品国产乱码久久久| 麻豆成人av在线观看| 久久人妻福利社区极品人妻图片| xxxhd国产人妻xxx| 午夜福利一区二区在线看| 免费不卡黄色视频| 身体一侧抽搐| 国产精品久久视频播放| 好看av亚洲va欧美ⅴa在| 欧美日本中文国产一区发布| 成人18禁高潮啪啪吃奶动态图| 91麻豆精品激情在线观看国产 | 亚洲国产欧美日韩在线播放| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| av电影中文网址| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 国产 在线| 国产精品偷伦视频观看了| 欧美日韩精品网址| 91av网站免费观看| 色综合婷婷激情| 99在线人妻在线中文字幕| 国产日韩一区二区三区精品不卡| av欧美777| 久久草成人影院| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 身体一侧抽搐| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 中亚洲国语对白在线视频| 欧美性长视频在线观看| 99精国产麻豆久久婷婷| 丝袜美足系列| 国产成人精品在线电影| 日日夜夜操网爽| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 久久久久久久午夜电影 | 欧美+亚洲+日韩+国产| 麻豆av在线久日| 女性被躁到高潮视频| 91av网站免费观看| 国产亚洲精品综合一区在线观看 | 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 久久久久九九精品影院| 丰满饥渴人妻一区二区三| 久99久视频精品免费| 少妇粗大呻吟视频| 精品熟女少妇八av免费久了| 三上悠亚av全集在线观看| 视频区图区小说| 亚洲伊人色综图| 欧美丝袜亚洲另类 | 亚洲成av片中文字幕在线观看| 久久人妻av系列| 99热只有精品国产| 久久热在线av| 欧美黄色片欧美黄色片| 久久人妻av系列| 岛国视频午夜一区免费看| 淫妇啪啪啪对白视频| 亚洲成av片中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品二区激情视频| 日韩大尺度精品在线看网址 | 欧美黄色片欧美黄色片| xxx96com| 亚洲熟妇中文字幕五十中出 | 1024香蕉在线观看| 两个人看的免费小视频| 天堂动漫精品| 可以在线观看毛片的网站| 19禁男女啪啪无遮挡网站| 真人做人爱边吃奶动态| 久久久久久大精品| 欧美日韩国产mv在线观看视频| av在线天堂中文字幕 | 99国产极品粉嫩在线观看| 久久久久久亚洲精品国产蜜桃av| 国产xxxxx性猛交| 国产精品久久电影中文字幕| 丰满的人妻完整版| 日韩大尺度精品在线看网址 |