• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BICYCLIC GRAPHS WITH UNICYCLIC OR BICYCLIC INVERSES??

    2020-09-14 10:51:08XiaWangHongBian
    Annals of Applied Mathematics 2020年3期

    Xia Wang,Hong Bian

    (School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830054,Xinjiang,PR China)

    Haizheng Yu

    (College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,Xinjiang,PR China)

    Abstract

    Keywords inverse graph;unicyclic graph;bicyclic graph;perfect matching

    1 Introduction

    LetGbe a simple,undirected graph onnvertices.We denote its vertex set byV(G)and its edge set byE(G).We usePnto denote the path onnvertices.And we use[i,j]to denote an edge between the verticesiandj.The adjacency matrixA(G)ofGis a square symmetric matrix of sizenwhose(i,j)th entryaijis 1 if[i,j]∈E(G)and 0 otherwise.

    A graphGis nonsingular if its adjacency matrixA(G)is nonsingular.LetGbe an unweighted graph andGWbe the positive weighted graph obtained fromGby giving weights to its edges using the positive weight functionW:E(G)→(0,∞).The unweighted graphGmay be viewed as a weighted graph where each edge has weight 1.A perfect matching in a graphGis a collection of vertex disjoint edges that covers every vertex.If a graphGhas a unique perfect matching,then we denote it byM.In addition,whenuis a vertex,we shall always useu′to denote the matching mate foru,where the edge[u,u′]∈M.IfGis a bipartite graph with a unique perfect matching then it is nonsingular(see[2]).

    A unicyclic graphGis a connected simple graph which satisfies|E(G)|=|V(G)|.A bicyclic graphGis a connected simple graph which satisfies|E(G)|=|V(G)|+1.There are two type of basic bicyclic graphs:∞-graphs andθ-graphs.More concisely,an∞-graph,denoted by∞(p,q,l),is obtained from two vertex-disjoint cyclesCpandCqby connected one vertex ofCpand one ofCqwith a pathPlof lengthl?1(in the case ofl=1,identifying the above two vertices);and aθ-graph,denoted byθ(p,q,l),is a union of three internally disjoint pathsPp+1,Pq+1,Pl+1of lengthp,q,lrespectively with common end vertices,wherep,q,l≥1 and at most one of them is 1.Observe that any bicyclic graphGis obtained from an∞-graph or aθ-graph by attaching trees to some of its vertices(see[15]).

    One motivation for considering a connected bipartite graph with a unique perfect matching is that in some cases in quantum chemistry,an H¨uckel graph can be considered as a connected bipartite graph with a unique perfect matching.

    We sayλis an eigenvalue ofGifλis an eigenvalue ofA(G).We useσ(G)to denote the spectrum ofG.

    In 1976,the notion of an inverse graph was introduced by Harary and Minc(see[5]).A nonsingular graphGis invertible ifA(G)?1is a matrix with entries from{0,1},and the graphHwith adjacency matrixA(G)?1is called the inverse graph ofG.However,in the same article,when only one connected graph is invertible,the author proved that a connected graphGis invertible if and only ifG=P2.In 1985,another notion of an inverse graph was supplied by Godsil(see[2]).This concept generalizes the definition given by Harary and Minc.

    LetHdenote the class of connected bipartite graphs with unique perfect matchings.LetG∈H,thenA(G)?1is signature similar to a nonnegative matrix,that is,there exists a diagonal matrixSwith diagonal entries from{1,?1}such thatSA(G)?1S≥0.The weighted graph associated to the matrixSA(G)?1S≥0 is called the inverse ofGand is denoted byG+.A invertible graphGis said to be a self-inverse graph ifGis isomorphic to its inverse graph.LetHgdenote the class of connected bipartite graph with unique perfect matchingMsuch thatG/Mis bipartite.

    Definition 1[7]LetG∈H,thenGhas at least two pendant(degree one)vertices.An edge of a graph is said to be pendant if one of its vertices is a pendant vertex.

    A corona graphG?K1is a graph which is obtained from a graphGby adding a new pendant vertex to every vertex ofG.

    Some other notions about inverse graphs are introduced in the following literatures.In 1978,Cvetkovi?,Gutman and Simi? introduced the pseudo-inverse of a graph.LetGbe a graph.The pseudo-inverse graphPI(G)ofGis the graph,defined on the same vertex set asG,in which the verticesxandyare adjacent if and only ifG?x?yhas a perfect matching(see[3]).In 1988,Buckley,Doty and Harary introduced the signed inverse of a graph(see[11]).A signed graph is a graph in which each edge has a positive or negative sign(see[4]).An adjacency matrix of a signed graph is symmetric and entries from{0,1,?1}.A nonsingular graphGhas a signed inverse ifA(G)?1is the adjacency matrix of some signed graphH.In 1990,Pavlíkovand Jediny introduced another notion of inverse graphs.The inverse of a nonsingular graph with the spectrumλ1,λ2,···,λnis a graph with the spectrum(see[14]).This type of inverse of a graph should not be unique.In this article,we follow the notion of inverse graph given by Godsil.

    In[2],Godsil introduced the notion of a graph inverse and supplied a classHgofHwhich posses inverses.He posed the problem of characterizing the graphs inHwhich possess inverses.In[9],utilizing constructions derived from the graph itself,Tifenbach and Kirkland supplied necessary and sufficient conditions for graphs inHto possess inverses.In[1],Akbari and Kirkland provided a complete characterization of a unicyclic graph inHwhich possesses inverses.In[6],Panda and Pati supplied a large class of graph inHfor whichG+exists.The characterization of finding a graph with an inverse inHis still open.

    Consider the problem of characterizing a graph which is isomorphic to its inverses inH.In[8],Simion and Cao showed that for anyG∈Hg,we have+if and only ifGis a corona graph.In[10],Tifenbach supplied necessary and sufficient conditions for graph satisfying+via a particular isomorphism inH.In[9],Tifenbach and Kirkland obtained necessary and sufficient conditions for an invertible unicyclic graph inHto be self-inverse.

    In[9],Tifenbach and Kirkland supplied necessary and sufficient conditions for an invertible unicyclic graph inHsatisfying thatG+is unicyclic.In[13],Panda and Delhi supplied necessary and sufficient conditions for an invertible unicyclic graph inHsatisfying thatG+is bicyclic.Considering this result,we can naturally ask the following question.Can we characterize the bicyclic graphsGinHsuch thatG+is unicyclic or bicyclic?In this article,we supply such characterizations.

    2 Preliminaries

    In order to study inverse graphs better,the concepts of odd type and even type nonmatching edges were proposed by Panda and Pati(see[6]).

    Definition 2[6]LetG∈H,a pathP=[u1,u2,···,u2k]is called an alternating path if and only if the edges[ui,ui+1]∈Mfor eachi=1,3,···,2k?1,and the other edges are nonmatching edges.We sayPis an mm-alternating path if[u1,u2],[u2k?1,u2k]∈M.We sayPis an nn-alternating path if[u1,u2],[u2k?1,u2k]∈E(G)M.

    Definition 3[6,12](a)LetG∈Hand[u,v]∈E(G)M.An extension at[u,v]is called even type(resp.odd type)if the number of nonmatching edges on that extension is even(resp.odd).

    (b)Let[u,v]∈E(G)M.We say[u,v]is an even type edge,if each extension at[u,v]is even type.We say[u,v]is an odd type edge,if either each extension at[u,v]is odd type or there are no extensions at[u,v].We say[u,v]is a mixed type edge,if it has an even type and an odd type extensions.

    Example 1Consider the graphGshown in Figure 1.LetG∈H.is an even type edge,becauseare two even type extensions atEvery other nonmatching edge is an odd type edge.

    Figure 1:The solid edges are matching edges

    3 Bicyclic Graphs with Possess Unicyclic or Bicyclic Inverses

    The inverse graphG+of an unweighted graphGmay be weighted.In this section,we characterize the bicyclic graphGinHsuch thatG+is unicyclic or bicyclic,that is,G+is an unweighted connected unicyclic or bicyclic graph.

    3.1 Bicyclic graphs in Hg

    Remark 1[6]LetG∈Hg,then the following points are true.

    (1)Each nonmatching edge is odd inG.

    (2)Let[i,j]∈E(G+),the inverse graphG+ofGis an unweighted if and only if the number of mm-alternatingi?j-paths is at most one.

    Next we present the inverse of the adjacency matrix of a graph inHgiven in[1].We follow the convention that sum over an empty set is zero.

    Lemma 1[1]Let G∈H,and B=[bij],

    where P(i,j)is the set of mm-alternating i?j-paths in G and∥P∥is the number of edges in P.Then B=A(G)?1.

    Theorem 1[12]Let G∈Hg.Then the following are equivalent.

    (1)+.

    (2)|PG|=|E(G+)|,where PGis the set of mm-alternating paths in G.

    (3)G=G1?K1,for some connected bipartite graph G1.

    The following is a description of a unicyclic or bicyclic graph as the inverse of a bicyclic graph.

    Theorem 2Let G∈Hgbe bicyclic.There is no G+which is unicyclic.

    ProofSinceG∈Hg,G+exists.First we considerG∈HgandGis a bicyclic graph onnvertices,so the number of matching edges isand the number of nonmatching edges is.SinceG+is unweighted,Remark 1 yields that there is at most one mm-alternating path inGfrom one vertex to another vertex.By Lemma 1,we havefor each nonmatching edge[u,v]inG.for each matching edge[u,u′]inG.Hence,G+has at leastn+1 edges,so there is noG+which is unicyclic.The proof is completed.

    Theorem 3Let G∈Hgbe bicyclic.Then G+is bicyclic if and only if GG+.

    ProofSinceG∈Hg,G+exists.First we assume thatG+is a bicyclic graph onnvertices,Remark 1 yields that there is at most one mm-alternating path inGfrom one vertex to another vertex.Ghas no mm-alternating path of length 5,otherwise by Lemma 1 and Theorem 1G+has at leastn+2 edges,which is not possible.Then the length of each mm-alternating path inGis either 1 or 3.Using this fact one can easily show that each matching edge inGis a pendant edge.HenceGis a corona graph,by Theorem 1,+.

    Conversely,if+,it is clear thatGis bicyclic,thenG+is also bicyclic.The proof is completed.

    3.2 Bicyclic graphs in HHg

    In this subsection,we characterize the bicyclic graphsG∈HHgsuch thatG+is unicyclic or bicyclic.

    Corollary 1[1]Let G∈H,and A(G)be its adjacency matrix.Then A(G)?1is diagonally similar to a nonnegative matrix if and only if the product of the edge weights on any cycle in G+is1.

    In[6],a class is supplied for whichG+exists.It is the class inHin which each nonmatching edge is either even type or odd type and such that the extensions at two distinct even type edge never have an odd type edge in common.We shall denote this class byF.LetG∈Handεbe the set of all even type edges inG.The author proved that forG∈F,G+exists if and only if(G?ε)/Mis bipartite.

    LetG∈HHgbe a bicyclic graph.It is clear thatGhas either one even type extension,or two even type extensions.

    (a)IfGhas exactly one even type extension,it is clear thatG∈Fsuch that(G?ε)/Mis bipartite,thenG+exists.

    (b)IfGhas exactly two even type extensions,it is clear thatG∈Fsuch that(G?ε)/Mis bipartite,thenG+exists.

    (a)IfGhas exactly one even type extension.

    (1)There is no mixed type edge inG.We are not sure whether the inverse of this graph exists.But we can give two examples of such graphs as shown in Figure 2,where the inverse of Figure 2(a)exists,the inverse of Figure 2(b)does not exist.

    Figure 2:The solid edges are matching edges

    Example 2Consider the graph shown in Figure 2(a).The graphG∈Fand(G?ε)/Mis bipartite,thenG+exists.The graphGhas an inverse whereS=diag[1,?1,1,?1,1,1,?1,1,?1,1].In particular,this graph is aθ-graph with bicyclic inverse.

    Consider the graph shown in Fig 2(b).This graphG+does not exist.To see this putB=A(G)?1.IfG+exists,by Corollary 1,for cycle[1,2′,2,3′,4,5′,1],we must haveB(1,2′)B(2′,2)B(2,3′)B(3′,4)B(4,5′)B(5′,1)=1,which is not possible,becauseB(1,2′)=B(2,3′)=B(3′,4)=B(4,5′)=B(5′,1)=?1 andB(2′,2)=1.

    (2)There is a mixed type edge,which has an even type extension and an odd type extension.We are not sure whether the inverse of this graph exists.But we can give an example of such a graph as shown in Figure 3,whose inverse does not exist.

    Figure 3:The solid edges are matching edges

    Example 3Consider the graph shown in Figure 3.This graphG+does not exist.To see this putB=A(G)?1.Note thatB(1,1′)=1 andB(1′,5)=B(5,2′)=B(2′,1)=?1.By Corollary 1,we know that ifG+exists,for cycle[1,1′,5,2′,1],we haveB(1,1′)B(1′,5)B(5,2′)B(2′,1)=1,which is not the case here.

    (b)IfGhas exactly two even type extensions.

    (1)Ghas exactly one even type edge with two even type extensions,it is clear thatG∈Fsuch that(G?ε)/Mis bipartite,thenG+exists.

    (2)Ghas exactly two even type extensions on two distinct even type edges.We are not sure if the inverse of this graph exists.But we can give two examples of such graphs as shown in Figure 4,where the inverse of Figure 4(a)does not exist,the inverse of Figure 4(b)exists.

    Figure 4:The solid edges are matching edges

    Example 4Consider the graph shown in Figure 4(a).The graphG+does not exist.To see this putB=A(G)?1.IfG+exists,by Corollary 1,we must haveB(3,2′)B(2′,2)B(2,4′)B(4′,3)=1 for the cycle[3,2′,2,4′,3],which is not possible,becauseB(3,2′)=B(2,4′)=B(4′,3)=?1 andB(2,2′)=1.

    In the graph shown in Figure 4(b).The graphG∈Fand(G?ε)/Mis bipartite,thenG+exists.The graphGhas an inverse whereS=diag[1,1,?1,1,1,1,1,?1,1,1].In particular,this graph is aθ-graph with bicyclic inverse.

    (3)Ghas exactly two even type extensions on two distinct nonmatching edges which have a mixed type edge inG.We are not sure if the inverse of this graph exists.But we can give an example of such a graph as shown in Figure 5,whose inverse exists.

    Figure 5:The solid edges are matching edges

    Example 5Consider the graph shown in Figure 5.The edge[1′,4]is a mixed type edge,so.But the graphGhas an inverse whereS=diag[1,?1,1,?1,1,?1,1,?1].In particular,this graph is aθ-graph with bicyclic inverse.

    Definition 4LetG∈H.A minimal path inGfrom a vertexuto a vertexvis a mm-alternatingu?v-path which does not contain an even type extension(at some nonmatching edge inG).A simple minimal path is a minimal path which does not contain an even type edge.

    Example 6In the graphGshown in Figure 1,is an mm-alternating path fromi1toandis an mm-alternatingi1?i′4-path which is not a minimal path.

    Lemma 2Let G∈HHgbe∞-graph.Assume that ε is the set of all even type edges in G.Then|E(G?ε)|≤|E(G+)|.

    ProofLet[u,v]/∈εbe any nonmatching edge inG.By Lemma 1,there are mm-alternatingu′?v′-paths inGsuch thatA(G+)u′,v′0.For each matching edge[u,u′],by Lemma 1,we haveA(G+)u,u′0.Hence,for each edge[u,v]/∈εinG,there is an edge inG+.Thus|E(G?ε)|≤|E(G+)|.The proof is completed.

    Lemma 3[13]Let G∈HHgbe an invertible bicyclic graph.Assume that ε is the set of all even type edges in G.Then G+has a nonmatching[u,v][u′,v′]is not in G if and only if G has a simple minimal u?v-path of length at least5.

    Lemma 4Let G∈B be θ-graph,where B containsCase 2(b)(1),Then G+exists.Assume that G has exactly one even type edge with two even type extensions,and assume that[x,y]is an even type edge.Then|E(G)|≤|E(G+)|.

    ProofLet[u,v][x,y]be any nonmatching edge inG.By Lemma 1,there is exactly one mm-alternatingu′?v′-path inGsuch thatA(G+)u′,v′?0.For each matching edge[u,u′],by Lemma 1,we haveA(G+)u,u′?0.Furthermore,by Lemma 1,we haveA(G+)x,y?0 for the even type edge[x,y].Hence,for each edge[u,v]inG,there is an edge inG+.Thus|E(G)|≤|E(G+)|.The proof is completed.

    Theorem 4Let G∈HHgbe∞-graph.Then G+is unicyclic if and only if:

    (1)G has no simple minimal path of length5,when G has exactly one even type extension;

    (2)G has exactly one simple minimal path of length5,when G has exactly two even type extensions.

    ProofSinceG∈HHgis∞-graph,it contains two circles,at least one of which is composed of even type extension and even type edge,andG+exists.

    (1)First we assume thatG+is unicyclic.We now show that whenGhas exactly one even type extension,Ghas no simple minimal path of length 5.Assume thatGhas one simple minimal path of length 5.Then by virtue of Lemmas 2 and 3,G+hasn+1 edges,which contradicts to the fact thatG+is unicyclic.ThenGhas no simple minimal path of length 5,whenGhas exactly one even type extension.

    Conversely,whenGhas exactly one even type extension,Ghas no simple minimal path of length 5.By Lemmas 2 and 3,G+has exactlynedges.Hence,G+is unicyclic.

    (2)Now we show that whenGhas exactly two even type extensions,Ghas exactly one simple minimal path of length 5.Assume thatGhas no simple minimal path of length 5.By Lemmas 2 and 3,G+hasn?1 edges,which contradicts to the fact thatG+is unicyclic.Suppose thatGhas two simple minimal paths of length 5,sayP1andP2,the set of end vertices ofP1is not equal to the set of end vertices ofP2.Using Lemmas 2 and 3,G+has at leastn+1 edges,which is not possible.ThenGhas exactly one simple minimal path of length 5,whenGhas exactly two even type extensions.

    We now show the converse,whenGhas exactly two even type extensions,Ghas exactly one simple minimal path of length 5.By Lemmas 2 and 3,G+has exactlynedges.Hence,G+is unicyclic.The proof is completed.

    Theorem 5Let G∈HHgbe∞-graph.Then G+is bicyclic if and only if:

    (1)G has exactly one simple minimal path of length5,when G has exactly one even type extension;

    (2)G has exactly two simple minimal paths of length5,when G has exactly two even type extensions.

    ProofSinceG∈HHgis∞-graph,it contains two circles,at least one of which is composed of even type extension and even type edge,andG+exists.

    (1)First we assume thatG+is bicyclic.We now show thatGhas exactly one simple minimal path of length 5,whenGhas exactly one even type extension.Assume thatGhas no simple minimal path of length 5.By Lemmas 2 and 3,G+hasnedges,which contradicts to the fact thatG+is bicyclic.HenceGhas at least one simple minimal path of length 5.Assume thatGhas two simple minimal path of length 5 sayP1andP2,the set of end vertices ofP1is not equal to the set of end vertices ofP2.By Lemmas 2 and 3,G+has at leastn+2 edges,which is not possible.ThenGhas exactly one simple minimal path of length 5,whenGhas exactly one even type extension.

    Conversely,whenGhas exactly one even type extension,Ghas exactly one simple minimal path of length 5.By Lemmas 2 and 3,G+hasn+1 edges.Hence,G+is bicyclic.

    (2)We now show thatGhas exactly two simple minimal paths of length 5,whenGhas exactly two even type extensions.Assume thatGhas no simple minimal path of length 5.Then by virtue of Lemmas 2 and 3,G+hasn?1 edges,which contradicts to the fact thatG+is bicyclic.Suppose thatGhas three simple minimal paths of length 5,sayPifori=1,2,3,the set of end vertices ofPiis not equal to the set of end vertices ofPjfori,j=1,2 andi?=j.Using Lemmas 2 and 3,we getG+hasn+2 edges,which is not possible.IfGhas exactly one simple minimal path of length 5,by Lemmas 2 and 3,G+hasnedges,which is not possible.HenceGhas exactly two simple minimal paths of length 5,whenGhas exactly two even type extensions.

    Conversely,whenGhas exactly two even type extensions,Ghas exactly two simple minimal paths of length 5.By Lemmas 2 and 3,G+hasn+1 edges.Hence,G+is bicyclic.The proof is completed.

    Theorem 6Let G∈B be θ-graph,where B contains Case2(b)(1).There is no G+which is unicyclic.

    ProofSinceG∈B,thenG+exists.Ghas exactly two even type extensions.That is,Ghas exactly one even type edge with two even type extensions.By Lemma 4,G+has at leastn+1 edges.Hence there is noG+which is unicyclic.The proof is completed.

    Theorem 7Let G∈B be θ-graph,where B contains Case2(b)(1).Then G+is bicyclic if and only if G has no simple minimal path of length5.

    ProofSinceG∈B,thenG+exists.First we assume thatG+is bicyclic.We now show thatGhas no simple minimal paths of length 5,whenGhas exactly two even type extensions,that is,Ghas exactly one even type edge with two even type extensions.Assume thatGhas one simple minimal path of length 5.Then by virtue of Lemmas 3 and 4,G+has at leastn+2 edges,which is not possible.HenceGhas no simple minimal paths of length 5.

    Conversely,ifG∈BandGhas no simple minimal path of length 5,by Lemmas 3 and 4,G+has exactlyn+1 edges.HenceG+is bicyclic.The proof is completed.

    4 Conclusion

    In[2],Godsil introduced the notion of a graph inverse and supplied a class of graphs inHwhich possess inverses.In[1],the authors provided a complete characterization of unicyclic graphs inHwhich possess inverses.In[9],the authors presented a characterization of unicyclic inHwhich possesses a unicyclic inverse.In[6],the authors supplied a lager class of invertible graph inHwhich properly contains those in Godsil[2].Here we presented a characterization of bicyclic graphs inHwhich possess unicyclic or bicyclic inverses.We divided the bicyclic graphs inHinto two subclasses which areHgandHHg.We characterized bicyclic graphs with unicyclic or bicyclic inverses inHg,and supplied a necessary and sufficient conditions for∞-graph inHHgto have unicyclic or bicyclic inverse.However,forθ-graph inHHg,we only give partial characterization.

    久久久国产精品麻豆| 老汉色∧v一级毛片| av网站在线播放免费| 欧美成人午夜精品| 在线观看免费日韩欧美大片| 无遮挡黄片免费观看| 国产人伦9x9x在线观看| 亚洲国产精品国产精品| 一级a爱视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看| 在线 av 中文字幕| 成人免费观看视频高清| 久久精品久久精品一区二区三区| 成在线人永久免费视频| 欧美日韩国产mv在线观看视频| 99精品久久久久人妻精品| 国产日韩欧美在线精品| 9色porny在线观看| 天堂中文最新版在线下载| av线在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| netflix在线观看网站| 狠狠婷婷综合久久久久久88av| 女人爽到高潮嗷嗷叫在线视频| 满18在线观看网站| 成人国产一区最新在线观看 | 国产视频首页在线观看| 精品少妇黑人巨大在线播放| 亚洲一区中文字幕在线| 精品久久久久久电影网| 岛国毛片在线播放| 亚洲欧美精品综合一区二区三区| 各种免费的搞黄视频| 尾随美女入室| 久久精品国产综合久久久| 后天国语完整版免费观看| 日本五十路高清| 男女国产视频网站| 欧美日韩成人在线一区二区| 精品亚洲成国产av| 久久久久久久久免费视频了| 午夜福利免费观看在线| 一边亲一边摸免费视频| 久久精品久久久久久久性| 亚洲,欧美精品.| 女警被强在线播放| 国产精品久久久久成人av| 在线观看免费视频网站a站| 国产色视频综合| 欧美日韩av久久| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 欧美日韩一级在线毛片| 精品福利永久在线观看| 在线天堂中文资源库| 巨乳人妻的诱惑在线观看| 国产黄色视频一区二区在线观看| 国产av国产精品国产| 亚洲国产欧美在线一区| 美女主播在线视频| 亚洲成色77777| 欧美在线黄色| 国产爽快片一区二区三区| 久久久久国产精品人妻一区二区| 欧美性长视频在线观看| 国产免费视频播放在线视频| 国产高清国产精品国产三级| 可以免费在线观看a视频的电影网站| 亚洲欧洲国产日韩| 日韩一卡2卡3卡4卡2021年| bbb黄色大片| 亚洲人成电影免费在线| 91国产中文字幕| 天天躁夜夜躁狠狠久久av| 天堂中文最新版在线下载| 欧美日韩综合久久久久久| 国产欧美亚洲国产| 成人亚洲欧美一区二区av| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 国产成人91sexporn| 精品国产乱码久久久久久小说| 在线观看免费日韩欧美大片| 久久精品国产亚洲av高清一级| 一级毛片黄色毛片免费观看视频| 成人亚洲欧美一区二区av| 老司机影院毛片| videosex国产| 国产成人一区二区在线| 免费在线观看完整版高清| 久久天堂一区二区三区四区| 久久狼人影院| 亚洲第一av免费看| 亚洲第一av免费看| 国产淫语在线视频| 黑人巨大精品欧美一区二区蜜桃| 99久久人妻综合| 涩涩av久久男人的天堂| 在线观看人妻少妇| 日本欧美视频一区| 久久国产精品男人的天堂亚洲| 国产成人欧美| 激情视频va一区二区三区| 97人妻天天添夜夜摸| 老司机亚洲免费影院| 丰满人妻熟妇乱又伦精品不卡| 日本午夜av视频| 欧美激情高清一区二区三区| 国产成人精品在线电影| 19禁男女啪啪无遮挡网站| 无遮挡黄片免费观看| 成年人午夜在线观看视频| 老司机亚洲免费影院| 欧美精品一区二区大全| 日本91视频免费播放| 久久99热这里只频精品6学生| 99香蕉大伊视频| 国产黄频视频在线观看| 久久人妻福利社区极品人妻图片 | 一边摸一边做爽爽视频免费| 国产高清videossex| 日本vs欧美在线观看视频| tube8黄色片| 国精品久久久久久国模美| 一边亲一边摸免费视频| 精品久久久久久电影网| 日韩一卡2卡3卡4卡2021年| 天天躁夜夜躁狠狠久久av| 免费女性裸体啪啪无遮挡网站| 欧美激情高清一区二区三区| 精品亚洲乱码少妇综合久久| 五月天丁香电影| 国产成人啪精品午夜网站| 欧美黄色淫秽网站| 九草在线视频观看| 国产精品麻豆人妻色哟哟久久| 丝袜在线中文字幕| 亚洲欧美一区二区三区国产| 91精品国产国语对白视频| 在线观看免费高清a一片| 免费在线观看日本一区| 国产成人免费无遮挡视频| 男女国产视频网站| 久久ye,这里只有精品| 看免费av毛片| 午夜日韩欧美国产| 久久精品国产综合久久久| 国产人伦9x9x在线观看| av在线播放精品| 最近手机中文字幕大全| 老司机亚洲免费影院| 久热爱精品视频在线9| 亚洲精品一卡2卡三卡4卡5卡 | 十八禁人妻一区二区| 欧美在线一区亚洲| 欧美在线一区亚洲| 亚洲视频免费观看视频| 免费少妇av软件| 国产又爽黄色视频| 极品少妇高潮喷水抽搐| 亚洲专区中文字幕在线| 97在线人人人人妻| 新久久久久国产一级毛片| 亚洲伊人色综图| 婷婷色av中文字幕| 在现免费观看毛片| 中文字幕高清在线视频| 精品久久久精品久久久| 最近手机中文字幕大全| 欧美 亚洲 国产 日韩一| 男人添女人高潮全过程视频| 国产亚洲一区二区精品| 亚洲欧美精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 老司机靠b影院| 国产精品麻豆人妻色哟哟久久| 国产xxxxx性猛交| 欧美精品亚洲一区二区| a级毛片黄视频| 一级毛片我不卡| 美国免费a级毛片| 国产免费福利视频在线观看| 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 国产一区二区激情短视频 | 丁香六月天网| 精品人妻在线不人妻| 亚洲第一青青草原| 赤兔流量卡办理| 黄色视频在线播放观看不卡| 欧美精品亚洲一区二区| 久久国产亚洲av麻豆专区| 精品卡一卡二卡四卡免费| 丝袜美足系列| 2021少妇久久久久久久久久久| 久久久久久久久久久久大奶| 亚洲国产欧美一区二区综合| 日本一区二区免费在线视频| 91麻豆av在线| 丰满迷人的少妇在线观看| 9191精品国产免费久久| 国产精品一二三区在线看| 国产日韩欧美亚洲二区| 宅男免费午夜| 欧美xxⅹ黑人| 中文欧美无线码| 日本vs欧美在线观看视频| 777米奇影视久久| 高清不卡的av网站| www日本在线高清视频| 亚洲av综合色区一区| 国产在线观看jvid| 久久毛片免费看一区二区三区| 午夜福利一区二区在线看| 国产男女超爽视频在线观看| 这个男人来自地球电影免费观看| 国产成人av教育| 一级毛片电影观看| 日本av手机在线免费观看| 9191精品国产免费久久| 欧美乱码精品一区二区三区| 国产三级黄色录像| 亚洲精品在线美女| 国产精品久久久人人做人人爽| 国产欧美亚洲国产| 欧美老熟妇乱子伦牲交| 日本色播在线视频| 亚洲色图综合在线观看| 国产高清视频在线播放一区 | 777久久人妻少妇嫩草av网站| 欧美成人精品欧美一级黄| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站 | 一级毛片 在线播放| 免费日韩欧美在线观看| 国产又色又爽无遮挡免| 国产精品国产三级专区第一集| 精品久久蜜臀av无| 国产视频一区二区在线看| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 99热全是精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 丝袜脚勾引网站| 看免费成人av毛片| 一本色道久久久久久精品综合| 亚洲欧美一区二区三区黑人| 99国产精品一区二区蜜桃av | 丝袜喷水一区| a级毛片在线看网站| 校园人妻丝袜中文字幕| 国产野战对白在线观看| 一区在线观看完整版| 精品久久久精品久久久| 精品人妻在线不人妻| 亚洲一区二区三区欧美精品| 欧美国产精品一级二级三级| 无遮挡黄片免费观看| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 中文字幕亚洲精品专区| 男女下面插进去视频免费观看| 亚洲国产精品一区三区| 丁香六月天网| 久久久亚洲精品成人影院| 婷婷丁香在线五月| 超碰97精品在线观看| 大陆偷拍与自拍| 国产男人的电影天堂91| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看 | 午夜免费成人在线视频| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区久久| 熟女av电影| 日韩中文字幕视频在线看片| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 啦啦啦在线免费观看视频4| 极品少妇高潮喷水抽搐| 久9热在线精品视频| 亚洲欧美清纯卡通| 国语对白做爰xxxⅹ性视频网站| 欧美成狂野欧美在线观看| av网站免费在线观看视频| 大陆偷拍与自拍| 欧美日韩视频精品一区| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 五月天丁香电影| 尾随美女入室| 免费av中文字幕在线| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 亚洲精品av麻豆狂野| 国产又爽黄色视频| 精品熟女少妇八av免费久了| 久久国产精品影院| 精品福利永久在线观看| 亚洲精品av麻豆狂野| 宅男免费午夜| 一本色道久久久久久精品综合| 亚洲精品第二区| 国产有黄有色有爽视频| 我的亚洲天堂| 人妻 亚洲 视频| 最黄视频免费看| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 精品一区二区三区av网在线观看 | svipshipincom国产片| 老汉色∧v一级毛片| a级毛片在线看网站| 99国产精品99久久久久| 在线观看人妻少妇| 久久久久久久国产电影| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 亚洲精品中文字幕在线视频| 日韩av在线免费看完整版不卡| 久久 成人 亚洲| 免费黄频网站在线观看国产| 日韩制服骚丝袜av| 欧美日韩黄片免| 18禁国产床啪视频网站| 久久性视频一级片| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 国产成人影院久久av| 中国国产av一级| 波多野结衣av一区二区av| 婷婷色麻豆天堂久久| 91精品国产国语对白视频| 熟女av电影| av又黄又爽大尺度在线免费看| 国产视频一区二区在线看| 欧美精品一区二区大全| 大片免费播放器 马上看| 黄色视频不卡| 国产人伦9x9x在线观看| 一区福利在线观看| 最新在线观看一区二区三区 | 免费高清在线观看日韩| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 少妇人妻 视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲av国产av综合av卡| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 热re99久久国产66热| 蜜桃在线观看..| 婷婷色综合大香蕉| 亚洲成人免费电影在线观看 | 国产精品一区二区精品视频观看| 午夜福利免费观看在线| 中文字幕高清在线视频| 久久亚洲国产成人精品v| 欧美国产精品一级二级三级| 国产又爽黄色视频| 久久久国产一区二区| 亚洲av成人不卡在线观看播放网 | av网站在线播放免费| 好男人电影高清在线观看| 成人黄色视频免费在线看| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 天天躁狠狠躁夜夜躁狠狠躁| 日本一区二区免费在线视频| 男人舔女人的私密视频| 久久九九热精品免费| 欧美 亚洲 国产 日韩一| 亚洲av电影在线进入| 亚洲成国产人片在线观看| 久久人人爽人人片av| 国产伦人伦偷精品视频| 国产精品免费大片| 亚洲人成网站在线观看播放| 久久久久国产一级毛片高清牌| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 日本欧美视频一区| 婷婷丁香在线五月| 丝袜喷水一区| 一本色道久久久久久精品综合| 亚洲专区中文字幕在线| 在线观看免费午夜福利视频| 久久精品久久久久久久性| 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 婷婷色麻豆天堂久久| 成年人午夜在线观看视频| cao死你这个sao货| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 欧美亚洲日本最大视频资源| 中文欧美无线码| 老司机在亚洲福利影院| 一级片免费观看大全| 最近手机中文字幕大全| 中文字幕另类日韩欧美亚洲嫩草| 99九九在线精品视频| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 成人亚洲精品一区在线观看| 高清不卡的av网站| 国产精品.久久久| 人人澡人人妻人| 国产主播在线观看一区二区 | 国产欧美日韩一区二区三区在线| 亚洲国产av新网站| 婷婷色av中文字幕| 精品熟女少妇八av免费久了| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 天天躁日日躁夜夜躁夜夜| 99精国产麻豆久久婷婷| 丝袜美足系列| 视频区欧美日本亚洲| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 精品欧美一区二区三区在线| 少妇精品久久久久久久| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 亚洲国产精品999| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 免费久久久久久久精品成人欧美视频| 另类精品久久| 看十八女毛片水多多多| 美女扒开内裤让男人捅视频| 丝袜喷水一区| 久久久久久亚洲精品国产蜜桃av| 亚洲图色成人| 午夜激情久久久久久久| 久久精品aⅴ一区二区三区四区| 国产亚洲av片在线观看秒播厂| 国产色视频综合| 伊人久久大香线蕉亚洲五| 亚洲欧洲国产日韩| 久久久久久人人人人人| 国产精品秋霞免费鲁丝片| 巨乳人妻的诱惑在线观看| 亚洲精品乱久久久久久| avwww免费| 国产精品三级大全| av在线老鸭窝| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 在线观看国产h片| 搡老岳熟女国产| 国产精品一区二区在线不卡| 国产一卡二卡三卡精品| 免费一级毛片在线播放高清视频 | 一区二区三区四区激情视频| av有码第一页| 久久久久网色| 亚洲色图 男人天堂 中文字幕| 丝瓜视频免费看黄片| 国产精品人妻久久久影院| 久久国产精品男人的天堂亚洲| 又粗又硬又长又爽又黄的视频| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区免费欧美 | 久久人妻熟女aⅴ| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 激情视频va一区二区三区| 国产色视频综合| av在线app专区| 免费观看a级毛片全部| 老熟女久久久| 最新在线观看一区二区三区 | 性色av乱码一区二区三区2| 午夜福利视频精品| 国产成人精品在线电影| 色播在线永久视频| 纵有疾风起免费观看全集完整版| 久久久久久久久免费视频了| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 欧美亚洲 丝袜 人妻 在线| 亚洲中文字幕日韩| 精品一区二区三区四区五区乱码 | 国产日韩欧美在线精品| 黑人欧美特级aaaaaa片| 一本一本久久a久久精品综合妖精| 免费在线观看日本一区| videosex国产| 国产精品久久久久久精品电影小说| 国产精品 国内视频| 免费在线观看影片大全网站 | 久久国产精品影院| 一区二区三区精品91| 亚洲精品国产av蜜桃| 亚洲国产av影院在线观看| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 国产欧美亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 欧美在线一区亚洲| 亚洲五月色婷婷综合| 操出白浆在线播放| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 亚洲国产精品国产精品| 成人国语在线视频| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线观看播放| av在线播放精品| 欧美xxⅹ黑人| 黄网站色视频无遮挡免费观看| 婷婷色麻豆天堂久久| 亚洲国产欧美日韩在线播放| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 无限看片的www在线观看| 日韩一本色道免费dvd| 好男人电影高清在线观看| 午夜福利免费观看在线| 五月天丁香电影| 日本av免费视频播放| 国产成人系列免费观看| 国产精品一区二区在线不卡| 国产精品av久久久久免费| 精品少妇一区二区三区视频日本电影| 99热国产这里只有精品6| h视频一区二区三区| 天堂8中文在线网| 99国产综合亚洲精品| 秋霞在线观看毛片| 国产成人免费观看mmmm| 国产精品久久久人人做人人爽| 亚洲国产欧美网| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 日本av免费视频播放| 天天影视国产精品| 久久久久久久久免费视频了| 夫妻性生交免费视频一级片| 亚洲熟女毛片儿| 一级片免费观看大全| 老熟女久久久| 国产欧美亚洲国产| 在现免费观看毛片| 两性夫妻黄色片| 午夜精品国产一区二区电影| 亚洲国产av影院在线观看| av在线app专区| 国产亚洲午夜精品一区二区久久| 一二三四社区在线视频社区8| a级毛片黄视频| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 又大又黄又爽视频免费| 在线观看一区二区三区激情| 久久影院123| 大香蕉久久网| 女性被躁到高潮视频| 黄色片一级片一级黄色片| 亚洲第一av免费看| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 亚洲一区中文字幕在线| 亚洲国产精品一区二区三区在线| 晚上一个人看的免费电影| 亚洲av成人精品一二三区| 精品视频人人做人人爽| 色视频在线一区二区三区| 天天操日日干夜夜撸| 99国产精品99久久久久| 99国产综合亚洲精品| 高清欧美精品videossex| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃| 中文精品一卡2卡3卡4更新| 熟女av电影| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 老司机靠b影院| 亚洲精品乱久久久久久| 黄色一级大片看看| 天天躁日日躁夜夜躁夜夜| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 日韩av免费高清视频| 波野结衣二区三区在线| 丝袜脚勾引网站| 视频区图区小说| 亚洲国产看品久久| 亚洲成人手机|