• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    2013-06-01 12:29:57LIANGXiaoyu梁曉瑜
    水動力學研究與進展 B輯 2013年2期

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    (Received June 27, 2012, Revised September 9, 2012)

    Fiber suspensions flow through a tube containing a sphere in the dilute and concentrated regimes is simulated numerically with the Lattice Boltzmann Method (LBM). The numerical results of fiber orientation distribution based on a statistical scheme are obtained and agree qualitatively with the experimental ones for the flow through a parallel plate channel containing a cylinder. The results show that the sphere in the tube results in a change in the fiber orientation distribution downstream of the sphere along the flow and transverse directions. The influences of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The effect of the initial fiber orientations on the fiber orientation distribution is significant upstream of the sphere but small downstream of the sphere.

    fiber suspension, laminar flow, tube containing a sphere, orientation distribution, Lattice Boltzmann Method (LBM)

    Introduction

    Fiber suspension occurs in a wide variety of natural and man-made materials. The orientation behavior of fibers is a major concern in many industrial processes, such as extrusion, injection, and compression molding. The fiber orientation distribution determines the mechanical, thermal and electrical properties of the fiber suspensions. In order to design and control manufacturing processes that generate favorable fiber orientation states, the description of the orientation pattern and the ways to control it must be well understood.

    Over the past twenty years the fiber orientation distribution in the flow has been studied[1-4]. The main numerical methods for simulating the fiber orientation distribution include the Lttice Boltzmann Method (LBM)[5], the method of combining the slender body theory and the spectral method[6], and the Lagrangian method[7]. The LBM used in this study is a particletracing scheme. Application of the discrete Boltzmann method to analyze particles suspended in fluid was first proposed by Ladd et al.[8]. Ladd’s model requires fluid to cross the boundary of the suspended solid particle and occupy the entire domain. Aidun et al.[9]developed a method which does not require transfer of fluid into the solid particle and, therefore, applied to real suspension. Ding and Aidun[10]added“virtual nodes” to the solid boundaries and extended the LBM for direct simulation of suspended particles near con- tact. They also proposed a local link-by-link impleme- ntation of the lubrication force when the gapbetween spherical particles becomes very small. In the present study, the equations for fiber suspension in a Newtonian solvent are solved numerically by coupling flow field with fiber orientation. In the computation, the interactions between fibers, between fiber and cylinder in the channel, and between fiber and channel wall are taken into account.

    Fiber orientation in a suspension flow through a tube is of scientific interest and is of importance in the actual application[11,12]. However, there are few studies[13,14]on the fiber orientation in flows through complex geometries. In the present study, we present a more complete model for the simulation of fiber orientation, and apply it to the computation of fiber orientation distributions in a flow through a tube containing a sphere. Such flow offers the possibilities of studying the behavior of the fibers in a variety of flows varying from simple shear or pure elongational flows, to more complex flows especially around the obstacle. Analyzing the flow in such geometry will beneficially contribute to reach a better understanding of flow properties in many important manufacturing processes of producing composites.

    1. Numerical methods

    1.1 Lattice Boltzmann Method

    The original lattice Boltzmann equation in the discrete microscopic velocity space is given as

    in which fiis the density distribution function,eiis the streaming velocity in the ithdirection in the phase space,i =0,1,… ,N,τis the single relaxation time, and fieqis the local equilibrium distribution and, for the square or cubic lattice, is taken as[15]

    In the 9-bit LBGK model, two-dimensional velocity in the phase space is discretized in the following nine directions:

    The kinematic viscosity for the nine-speed model is ν = c2Δt(τ -0.5)/3, and c =Δx /Δtis the lattice speed. In Eq.(2),wiis equal to 4/9 for i =0, 1/9 for i =1-4, and 1/36 for i=5-8.

    In the limit of long wavelengths, the LBE recovers the following quasi-incompressible N-S equations by the Chapman-Enskog multi-scaling expa-nsion[15]:

    1.2 Force and torque exerted on fiber

    The LBM has been a promising numerical tool to effectively model complex physics in computational fluid dynamics. Ladd et al.[8]and Aidun et al.[9]used the momentum exchange method to propose a modified bounce-back rule which is for a moving wall. We place the boundary nodes on the links connecting the interior and exterior nodes, then

    where “t+” denotes the post-collision time,iis the incident direction,i′is the reflected direction,Bi= 3ρwi/ c2,ubis the velocity on the particle surface,ub=u0+Ω×xb, where u0is the translational velocity of the mass center of the particle,Ωis the angular velocity of the particle, and xb= x+ei/2-x0with x0being the position of the mass center. The force and torque exerted by the fluid at xbare

    1.3 Virtual fluid nodes

    When simulating the discrete fibers, the LBM isusually limited to the case where the gap between fibers is much larger than the size of lattice unit. As the fibers get close to each other and the gap between them becomes smaller than a unit lattice dimension as shown in Fig.1, there is no fluid node within the gap. Thus two nodes on the gap link are covered by fibers and the LBM can not accurately calculate the hydrodynamic interaction between the fibers. In order to overcome this difficulty, Ding et al.[10]added “virtual nodes” to the boundaries and extended the LBM to the direct simulation of suspended fibers near contact. There are two fibers,IandJ , as shown in Fig.2. The initial point of link eiis nodex , just inside the boundary of fiber I , while the final point of link eiis nodey , just inside the boundary of fiberJ . Both nodes x and y are considered to be virtual fluid nodes. They serve as the real fluid nodes when the interaction between fiber I( J )and fluid in the gap area is being considered. Taking fiberI for example, the distribution function at nodex at time t +1on link eiis given by

    wherei′always means the link with the direction opposite to that of linki,ubis the velocity of fiber I at x+ei/2, and Bi′=3ρwi′/c2. Consequently,the force and torque exerted on the fiberI by the node x are

    where xb=x+ei/2-x0with x0being the position of centroid of fiberI.

    Fig.1 Two fibers with very small distance

    Fig.2 Interaction between two fibers near contact

    The same rule is used to calculate the interaction between node y and fiberJ . When a fiber is very close to a wall, the interaction between the wall and the fiber is treated in a similar manner. Combining Eqs.(6) and (8), we have the total force and torque on the fiber during [t, t+1], excluding the lubrication force

    1.4 Lubrication forces

    To further represent the forces separating two fibers about to collide, the lubrication forces are included using links connecting two virtual boundary nodes from two surfaces near contact, defined as“bridge” links. The basic idea is to determine an element of force for each bridge link which accurately accounts for the lubrication force. The direction of the element of force is along the bridge link and given as d f =3ν ρU /2λ δ2, whereδis the surface separa

    rtion,νis the kinematic viscosity,U is the relative velocity of the linked surface elements, and λrdepends on the surface curvature and is given by λr=(1/ R1+1/R2)/2for two spheres, where R1and R2are the radii of curvature of the linked two surface elements. It can be seen thatdf has a significant contribution to the lubrication force only when δis very small.df can be neglected ifδis larger than the length of the link. For two-dimensional case,df is given by

    The force and the torque exerted on the particle along this link are given by

    where xb= x+ ei/2-x0(x0is the position of the centroid of particle). So the total lubrication force and its torque exerted on a particle is then given by

    If the fiber concentration is not too high, the end-toend or side-to-side proximity of two fibers rarely occurs. In most cases, the end of one fiber is close to the side of another one. Thus the lubrication approximation given above cannot be used if the fiber has a sharp edge. Therefore, we assume that the fibers have circular caps of diameterD (Dis the diameter of fiber) at their ends, and use the above lubrication approximation. When a fiber is very close to a wall, the fiber is treated in a similar manner.

    From above equations, the net force and torque exerted on a fiber fromtto t +1are given by

    The fiber velocity and angular velocity are updated based on Newton’s laws.

    Fig.3 Collision model

    2. Collision model

    2.1 Collision between fibers

    The collision of two fibers is assumed to be instantaneous and elastic. The contact point and its normal direction are determined by the relative positions of two fibers as shown in Fig.3. After collision, each fiber attains an impulse Ialong the normal direction. The translational and angular velocities of two fibers after collision depend on the impulse and are given as

    where m and vare the mass and velocity of fiber, respectively,pis unit vector along the normal direction, the Subscripts 1 and 2 are used to distinguish two fibers, and the superscript ‘ ' ’means “after collision”. Based on the law of elastic collision, we have

    where k is the elastic coefficient,v1Oand v2Oare the velocity components of two fibers along the normal direction at contact point before collision. The torques exerted on the two fibers arel1×Ipand -l2× Ip , respectively, where l1,l2are the vectors from mass centreO1and O2of two fibers to the contact pointO . Then the rotational equations of fibers are

    where ωis the angular velocity of the fiber, and J1and J2are the rotation inertia of the fiber. Then the impulseI can be written as

    2.2 Collision with wall or sphere

    When fibers collide with wall or sphere, the model of collision between fibers is also used as long as taking m2as infinite and v2Oas 0. Then the transient impulse formula is obtained by reducing Eq.(17) to

    3. Simulation details

    3.1 Computational parameters

    Fig.4 Schematic illustration of tube containing a sphere

    3.2 Evolution of the orientation ellipses

    In order to analyze the fiber orientation quantitatively, the flow region is divided into many small statistical cells (2L×1L). Then the second-order orientation tensorais calculated in each statistical cell from the orientation anglesθof fibers.θis defined as the angle between fiber axis and x-axis. The components of the tensora are given by

    whereN and θnare the total number of fibers in each statistical cell and the orientation angle of each fiber, respectively. Whena12is equal to zero, the fiber axis coincides with the coordinate axis, and if furthermore,a11(or a22) is zero, the fibers are perfectly aligned with ther(orx) axis.

    The preferred angleαof the fibers for each statistical cell is given by

    Fig.5 Illustration of the relation between the orientation state and the orientation parameters

    Fig.6 Distributions of preferred angle at x/ R =–2

    4. Results and discussions

    4.1 Orientation distributions of fibers along the radial direction

    Fig.7 Distributions of orientation order parameter at x/ R=–2

    Fig.8 Distributions of preferred angle at x/ R =–2

    Fig.9 Distributions of orientation order parameter at x/ R =–2

    Fig.10 Preferred angles in the flow direction for the fibers with completely aligned orientation initially at inlet (a11=1, a12=0) (nL2=0.125)

    4.2 Fiber orientation distributions along the flow direction

    The numerical results of the preferred anglesα along the flow direction at r/ R=0, 0.5 and 0.88 are shown in Figs.10 and 11 for the dilute and concentrated regimes. The region of-1 < x/ R <1is the location of the sphere. On the centerline(r/ R =0),α for the dilute case suddenly decreases from α=0oto–50° in the region immediately upstream of the sphere, andαis zero in the downstream region of the sphere. In contrast, for concentrated caseαabruptly increases from α=0oto 88oin front of the sphere, furthermore in the immediately downstream region it increases from -75oto 10o. In the regions between the centerline and the side wall (r/ R =0.5)and near the side wall(r/ R =0.88),αrapidly returns to zero in a short distance behind the sphere(x/ R ≈2.0)for the dilute case, and in the further downstream region, αshows very little change. However, for the concentrated one,αgrows more slowly compared with those for the dilute one, and gradually returns to the flow direction in the far downstream region(x/ R≥4.0) for r/ R =0.88, whereasαreaches a plateau at x/ R ≈4.0and keeps the value around -10ofor r/ R =0.5. It demonstrates that the obstacle such as the sphere in the flow strongly disturbs the fiber orientation state in the concentrated suspension, while it gives relatively small effect on the orientation state in the dilute one.

    Fig.11 Preferred angles in the flow direction for the fibers with moderately orientation initially at inlet (nL2=2.0)

    Fiber orientation distribution depends on the flow field and the fiber interactions including the mechanical and hydrodynamic effects. In the present study, the initial flows in all the cases are the same. Therefore, the difference of fiber orientation for the dilute and concentrated regimes is resulted from the fiber interaction. For the dilute one, the mechanical interactions between fibers are insignificant, and the centroid of fiber is generally expected to move on the streamline. In this case, the hydrodynamic interaction plays an important role on the fiber orientation distribution. However, in the concentrated one, the mechanical interactions between fibers are significant. In the region where the flow suddenly changes, e.g., immediately downstream of sphere, the fibers quickly rotate and even the slight mechanical interactions between fibers play a significant role in the fiber orientation distribution.

    4.3 Effect of initial orientations at inlet

    The fiber orientation distributions with different initial orientations at inlet are studied in order to explore the effect of initial conditions on the fiber orie-ntation. Here the completely aligned fibers at inlet are introduced andλis defined as the angle between the fiber axis and thex -axis.

    Fig.12 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=0.125)

    Fig.13 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=2.0)

    Fig.14 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=0.125)

    Figures 12-15 show the transverse distributions of the preferred anglesα, in the upstream region (x/ R = -2)and the downstream region (x/ R =2) of the sphere, for the two concentration regimes with various initial orientations at inlet. As is shown in Figs.12 and 13, the fiber orientation is strongly dependent on the initial orientation at inlet in the upstream region of the sphere, and this is particularly true for the dilute suspension. Therefore, aligning the fibers at inlet along the flow direction has a beneficial effect on the fiber alignment with the flow direction in the upstream region of the sphere. However, the initial orientation angles have little effect on the fiber orientation in the downstream region(x/ R =2)of the sphere because the profiles of the preferred angles for differentλare nearly the same as shown in Figs.14 and 15.

    Fig.15 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=2.0)

    Based on the above discussion we can conclude that the fiber orientation in the upstream of the sphere is greatly influenced by the initial orientation at inlet, while downstream of the sphere is relatively insensitive to the initial orientation because the fibers with any initial orientation at inlet will align with the flow direction when they flow through the region between the sphere and wall.

    5. Conclusion

    For dilute and concentrated suspensions the fiber orientation distributions have been simulated numerically with the LBM in fiber suspensions flow through a tube containing a sphere. In the simulations the interactions between fibers, fiber and sphere, fiber and tube wall are taken into account. The numerical results of orientation distribution are in agreement with the experiment performed in a channel containing a cylinder qualitatively. The results show that the existence of sphere in the tube results in a change of the fiber orientation in the downstream region of the sphere along the flow and transverse directions because of the stretching and shearing effect caused by the sphere. The effects of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The fiber orientation distribution in the upstream of the sphere is greatly influenced by the initial orientation at inlet, whereas no apparent difference in the fiber orientation in the downstream of the sphere is observed.

    References

    [1] YASUDA K., MORI N. and NAKAMURA K. A new visualization technique for short fibers in a slit flow of fiber suspensions[J]. International Journal of Engi- neering Science, 2002, 40(9): 1037-1052.

    [2] LIN J., ZHANG W. and YU Z. Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows[J]. Journal of Aerosol Science, 2004, 35(1): 63-82.

    [3]SALAHUDDIN A., WU J. S. and AIDUN C. K. Numerical study of rotational diffusion in sheared semidilute fibre suspension[J]. Journal of Fluid Mechanics, 2012, 692: 153-182.

    [4]NISKANEN H.,ELORANTA H. and TUOMELA J. et al. On the orientation probability distribution of flexible fibres in a contracting channel flow[J]. International Journal of Multiphase Flow, 2011, 37(4): 336-345.

    [5] LIN J., SHI X. and YOU Z. Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids[J]. Journal of Aerosol Science, 2003, 34(7): 909-921.

    [6] LIN J., SHI X. and YU Z. The motion of fibers in an evolving mixing layer[J]. International Journal of Multiphase Flow, 2003, 29(8): 1355-1372.

    [7]YU Z.,PHAN-THIEN N. and TANNER R. I. Rotation of a spheroid in a couette flow at moderate Reynolds numbers[J]. Physical Review E, 2007, 76(2): 026310.

    [8] LADD A. J. C., COLVIN M. E. and FRENKEI D. Application of lattice-gas cellular automata to the Brownian motion of solids in suspension[J]. Physical Review Letters, 1988, 60(11): 975-978.

    [9] AIDUN C. K., LU Y. and DING E. Direct analysis of particulate suspension with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mecha- nics,1998, 373: 287-311.

    [10] DING E.-J., AIDUN C. K. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact[J]. Journal of Statistical Physics, 2003, 112(3-4): 685-708.

    [11]VENTURA C.,GARCIA F. and FERREIRA P. et al. Flow dynamics of pulp fiber suspensions[J]. TAPPI Journal, 2008, 7(8): 20-26.

    [12]WIKLUND J. A.,STADING M. andPETTERSSON A. J. et al. A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow[J]. AICHE Journal, 2006, 56(2): 484-495.

    [13] YASUDA K., KYUTO T. and MORI N. An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder[J]. Rheolo- gica Acta, 2004, 43(2): 137-145.

    [14] YASUDA K., HENMI S. and MORI N. Effects of abrupt expansion geometries on flow-induced fiber orientation and concentration distributions in slit channel flows of fiber suspensions[J]. Polymer Composi- tes, 2005, 26(5): 660-670.

    [15] CHEN S., DOOLEN G. D. Lattice Boltzmann method for fluid flows[J]. Annual Review Fluid Mechanics, 1998, 30: 329-364.

    [16] GUO Z., ZHAO T. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates[J]. Physical Review E, 2003, 67(6): 066709.

    10.1016/S1001-6058(13)60352-2

    * Project supported by the Doctoral Program of Higher Education in China (Grant No. 20120101110121).

    Biography: LIANG Xiao-yu (1975-), Male, Ph. D. Candidate, Associate Professor

    我的亚洲天堂| 男人操女人黄网站| 亚洲精品自拍成人| 只有这里有精品99| 波多野结衣一区麻豆| 亚洲国产av新网站| 亚洲精品乱久久久久久| 国产精品免费大片| 婷婷色综合大香蕉| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| 国产野战对白在线观看| 亚洲精品久久成人aⅴ小说| 亚洲成人国产一区在线观看 | 中文欧美无线码| 女警被强在线播放| 又大又黄又爽视频免费| 精品少妇黑人巨大在线播放| 欧美精品啪啪一区二区三区 | 精品一区在线观看国产| 精品少妇久久久久久888优播| 精品高清国产在线一区| 色婷婷久久久亚洲欧美| 韩国高清视频一区二区三区| 老熟女久久久| 青春草视频在线免费观看| 一本一本久久a久久精品综合妖精| 国产免费现黄频在线看| 亚洲黑人精品在线| 欧美人与性动交α欧美精品济南到| 国产成人免费观看mmmm| 国产片内射在线| 午夜免费鲁丝| 一级毛片我不卡| 一级黄片播放器| 亚洲专区中文字幕在线| 日韩 欧美 亚洲 中文字幕| 亚洲成人国产一区在线观看 | 亚洲国产欧美网| 狂野欧美激情性bbbbbb| 欧美国产精品va在线观看不卡| 中国国产av一级| 18禁国产床啪视频网站| 嫩草影视91久久| 国产99久久九九免费精品| av电影中文网址| 日韩一区二区三区影片| 天天躁夜夜躁狠狠躁躁| 免费黄频网站在线观看国产| 欧美日韩精品网址| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣av一区二区av| 国产91精品成人一区二区三区 | 久久精品久久久久久噜噜老黄| 精品少妇一区二区三区视频日本电影| 日韩免费高清中文字幕av| 欧美精品啪啪一区二区三区 | 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 老熟女久久久| 精品视频人人做人人爽| 在线精品无人区一区二区三| 肉色欧美久久久久久久蜜桃| 国产高清videossex| 亚洲精品久久午夜乱码| 免费在线观看视频国产中文字幕亚洲 | 国产欧美亚洲国产| 最近最新中文字幕大全免费视频 | 性色av一级| 巨乳人妻的诱惑在线观看| 1024香蕉在线观看| 女性生殖器流出的白浆| 狠狠婷婷综合久久久久久88av| 国产黄色免费在线视频| 久久这里只有精品19| www.熟女人妻精品国产| 免费在线观看日本一区| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 高清视频免费观看一区二区| 午夜av观看不卡| 日本av手机在线免费观看| 国产成人欧美| 90打野战视频偷拍视频| 亚洲综合色网址| 手机成人av网站| 赤兔流量卡办理| 欧美日韩成人在线一区二区| 99久久综合免费| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 欧美日韩精品网址| 九草在线视频观看| 日本vs欧美在线观看视频| 一本久久精品| av视频免费观看在线观看| 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 手机成人av网站| 国产无遮挡羞羞视频在线观看| 日韩中文字幕视频在线看片| av网站免费在线观看视频| 国产一区二区三区综合在线观看| 国产成人精品久久二区二区免费| 啦啦啦在线观看免费高清www| 午夜免费鲁丝| 男人爽女人下面视频在线观看| 欧美+亚洲+日韩+国产| 免费少妇av软件| 99re6热这里在线精品视频| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 伊人久久大香线蕉亚洲五| 日韩视频在线欧美| 久久性视频一级片| 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂| 久久人妻熟女aⅴ| 国产激情久久老熟女| a级毛片黄视频| 久久国产精品影院| 久久九九热精品免费| 久久精品成人免费网站| 亚洲一码二码三码区别大吗| 国产成人精品无人区| 久久免费观看电影| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 9热在线视频观看99| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 国产成人一区二区三区免费视频网站 | 一本大道久久a久久精品| 国产在线观看jvid| 只有这里有精品99| 欧美乱码精品一区二区三区| 青春草视频在线免费观看| 色精品久久人妻99蜜桃| 久9热在线精品视频| 国产国语露脸激情在线看| 国产在线观看jvid| 国产精品国产三级国产专区5o| 国产xxxxx性猛交| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 大片电影免费在线观看免费| 9191精品国产免费久久| 蜜桃在线观看..| 久久精品亚洲av国产电影网| 免费不卡黄色视频| 亚洲国产毛片av蜜桃av| 丁香六月天网| 在线精品无人区一区二区三| 免费看不卡的av| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| 成人国产av品久久久| 亚洲第一青青草原| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 国产精品二区激情视频| 久久久久国产一级毛片高清牌| 亚洲欧美一区二区三区国产| 国产精品九九99| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 国产精品一区二区在线观看99| av在线老鸭窝| 如日韩欧美国产精品一区二区三区| netflix在线观看网站| 在线观看人妻少妇| 成年人黄色毛片网站| 亚洲 欧美一区二区三区| 2021少妇久久久久久久久久久| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 国产一级毛片在线| www.自偷自拍.com| 色94色欧美一区二区| 女人精品久久久久毛片| 一区二区三区乱码不卡18| 久久精品亚洲熟妇少妇任你| 国产精品国产三级专区第一集| 亚洲天堂av无毛| 亚洲精品国产一区二区精华液| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 国精品久久久久久国模美| 韩国高清视频一区二区三区| 免费av中文字幕在线| 国产片内射在线| 亚洲自偷自拍图片 自拍| 亚洲成人免费电影在线观看 | 亚洲激情五月婷婷啪啪| 国产精品三级大全| 欧美日韩av久久| 日韩精品免费视频一区二区三区| 狠狠婷婷综合久久久久久88av| 色综合欧美亚洲国产小说| 免费看av在线观看网站| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 91麻豆av在线| 亚洲精品国产av蜜桃| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 亚洲精品第二区| 久久久久久人人人人人| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 国产日韩欧美亚洲二区| 80岁老熟妇乱子伦牲交| 男人爽女人下面视频在线观看| 国产黄色视频一区二区在线观看| 国产亚洲一区二区精品| 黄网站色视频无遮挡免费观看| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩福利视频一区二区| 男女高潮啪啪啪动态图| 无限看片的www在线观看| 老司机靠b影院| www.999成人在线观看| 91精品三级在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 午夜老司机福利片| 国产成人免费无遮挡视频| 久久久久久久国产电影| 国产免费现黄频在线看| 国产一区二区在线观看av| 五月天丁香电影| 国产欧美亚洲国产| 男女国产视频网站| 精品一区二区三卡| 操美女的视频在线观看| 好男人电影高清在线观看| 免费看十八禁软件| 一本大道久久a久久精品| www.999成人在线观看| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 欧美成狂野欧美在线观看| 不卡av一区二区三区| 亚洲国产日韩一区二区| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 国产国语露脸激情在线看| 秋霞在线观看毛片| 大话2 男鬼变身卡| av电影中文网址| 看免费成人av毛片| 成人18禁高潮啪啪吃奶动态图| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 久久精品亚洲熟妇少妇任你| 亚洲精品一区蜜桃| 波多野结衣av一区二区av| 9191精品国产免费久久| 亚洲中文字幕日韩| 日韩视频在线欧美| 亚洲人成电影观看| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播 | 99精品久久久久人妻精品| 美国免费a级毛片| avwww免费| 1024视频免费在线观看| 精品欧美一区二区三区在线| 性色av乱码一区二区三区2| 久9热在线精品视频| av国产精品久久久久影院| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 老司机深夜福利视频在线观看 | av线在线观看网站| 你懂的网址亚洲精品在线观看| 欧美少妇被猛烈插入视频| 超碰成人久久| 亚洲成色77777| 黄色怎么调成土黄色| 午夜免费观看性视频| 久久久久久亚洲精品国产蜜桃av| 午夜免费成人在线视频| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 夜夜骑夜夜射夜夜干| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 高清视频免费观看一区二区| 9色porny在线观看| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 亚洲免费av在线视频| 999久久久国产精品视频| 免费人妻精品一区二区三区视频| 亚洲午夜精品一区,二区,三区| 黄片小视频在线播放| 91麻豆av在线| 婷婷色av中文字幕| 亚洲精品美女久久av网站| 人人妻人人澡人人爽人人夜夜| 国产成人一区二区三区免费视频网站 | 一区在线观看完整版| 久热这里只有精品99| 日韩,欧美,国产一区二区三区| 嫁个100分男人电影在线观看 | 亚洲国产精品成人久久小说| 午夜福利乱码中文字幕| 狠狠婷婷综合久久久久久88av| 国产亚洲av片在线观看秒播厂| 人人妻人人爽人人添夜夜欢视频| av网站免费在线观看视频| 婷婷丁香在线五月| 亚洲欧美一区二区三区国产| 国产精品二区激情视频| 操美女的视频在线观看| 久久久精品区二区三区| 亚洲九九香蕉| 日本猛色少妇xxxxx猛交久久| 手机成人av网站| 亚洲,一卡二卡三卡| 一区二区三区激情视频| 黄色一级大片看看| 日韩制服骚丝袜av| 女人爽到高潮嗷嗷叫在线视频| 亚洲av在线观看美女高潮| 国产亚洲精品久久久久5区| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| 精品一区二区三区av网在线观看 | 大话2 男鬼变身卡| 在线av久久热| 久久性视频一级片| 亚洲av片天天在线观看| 欧美日韩黄片免| 在线精品无人区一区二区三| 桃花免费在线播放| 亚洲中文字幕日韩| 黑丝袜美女国产一区| 丰满人妻熟妇乱又伦精品不卡| www.自偷自拍.com| 老鸭窝网址在线观看| 亚洲精品日本国产第一区| 99精国产麻豆久久婷婷| 美国免费a级毛片| 色网站视频免费| netflix在线观看网站| 老司机影院毛片| 国产成人a∨麻豆精品| 日韩熟女老妇一区二区性免费视频| 日日爽夜夜爽网站| 波野结衣二区三区在线| 久久精品国产综合久久久| 亚洲成人国产一区在线观看 | 最新在线观看一区二区三区 | 日韩中文字幕视频在线看片| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区 | 我要看黄色一级片免费的| 人妻 亚洲 视频| 一边亲一边摸免费视频| 国产又色又爽无遮挡免| 黄色a级毛片大全视频| 一本一本久久a久久精品综合妖精| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 九草在线视频观看| 91精品国产国语对白视频| 久久久国产精品麻豆| 99久久99久久久精品蜜桃| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 男女之事视频高清在线观看 | 99国产综合亚洲精品| 日韩免费高清中文字幕av| 国产亚洲精品久久久久5区| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 人成视频在线观看免费观看| 侵犯人妻中文字幕一二三四区| 亚洲精品久久久久久婷婷小说| 丰满饥渴人妻一区二区三| 制服诱惑二区| 91字幕亚洲| 国产一区二区在线观看av| videos熟女内射| 久久久久国产一级毛片高清牌| 青春草视频在线免费观看| 可以免费在线观看a视频的电影网站| 国产亚洲一区二区精品| 亚洲国产看品久久| 美女视频免费永久观看网站| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 国产在视频线精品| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂| 亚洲国产看品久久| 亚洲国产av影院在线观看| 性色av一级| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 18禁裸乳无遮挡动漫免费视频| 老司机深夜福利视频在线观看 | 国产成人精品在线电影| 国产一区二区 视频在线| 日韩精品免费视频一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲欧美激情在线| 国产精品成人在线| 成人国产一区最新在线观看 | 国产亚洲欧美精品永久| 999精品在线视频| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 日韩中文字幕视频在线看片| 国产淫语在线视频| 亚洲情色 制服丝袜| 黄色视频不卡| 高清欧美精品videossex| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 亚洲色图 男人天堂 中文字幕| 成年av动漫网址| 日韩大片免费观看网站| 黑人巨大精品欧美一区二区蜜桃| 成人手机av| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 十八禁网站网址无遮挡| av天堂久久9| 午夜福利一区二区在线看| www.精华液| 美女中出高潮动态图| av一本久久久久| 捣出白浆h1v1| 国语对白做爰xxxⅹ性视频网站| 在线看a的网站| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到| 国产无遮挡羞羞视频在线观看| 嫁个100分男人电影在线观看 | 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 成人三级做爰电影| 黑人巨大精品欧美一区二区蜜桃| 香蕉国产在线看| 国产视频一区二区在线看| 大型av网站在线播放| 婷婷色综合www| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 天天影视国产精品| 久久久久精品国产欧美久久久 | 欧美精品人与动牲交sv欧美| 久久青草综合色| 国产成人一区二区在线| 国产片内射在线| 热re99久久精品国产66热6| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久男人| 精品一区在线观看国产| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 中文欧美无线码| 久久人人爽人人片av| 欧美激情高清一区二区三区| 婷婷色综合www| 国产精品二区激情视频| 免费一级毛片在线播放高清视频 | 后天国语完整版免费观看| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 亚洲成人免费电影在线观看 | 亚洲熟女毛片儿| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 久久久亚洲精品成人影院| 亚洲精品一卡2卡三卡4卡5卡 | 天天影视国产精品| 最新在线观看一区二区三区 | 亚洲七黄色美女视频| 五月天丁香电影| 国产亚洲欧美在线一区二区| www.精华液| 精品一品国产午夜福利视频| 777米奇影视久久| 午夜视频精品福利| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 一区二区三区精品91| 妹子高潮喷水视频| 亚洲天堂av无毛| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 精品久久久久久电影网| 国产亚洲精品第一综合不卡| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 国产日韩欧美亚洲二区| 丝袜喷水一区| 在线观看免费午夜福利视频| 国产日韩欧美视频二区| 这个男人来自地球电影免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区久久| 国产精品.久久久| 看免费av毛片| 18禁国产床啪视频网站| 一边亲一边摸免费视频| 青春草亚洲视频在线观看| 91成人精品电影| 国产成人一区二区三区免费视频网站 | 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 操美女的视频在线观看| 亚洲国产精品国产精品| 各种免费的搞黄视频| 热99久久久久精品小说推荐| netflix在线观看网站| 这个男人来自地球电影免费观看| 极品少妇高潮喷水抽搐| 欧美久久黑人一区二区| 狠狠婷婷综合久久久久久88av| 热re99久久精品国产66热6| 国产成人欧美在线观看 | 亚洲欧美日韩高清在线视频 | 成人亚洲欧美一区二区av| 秋霞在线观看毛片| 日韩大片免费观看网站| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区免费开放| 国产成人系列免费观看| 看免费av毛片| 电影成人av| 亚洲伊人色综图| 国产高清国产精品国产三级| 少妇裸体淫交视频免费看高清 | 国产成人91sexporn| 久久亚洲国产成人精品v| 又黄又粗又硬又大视频| 久9热在线精品视频| 国产精品麻豆人妻色哟哟久久| 午夜免费鲁丝| 伊人亚洲综合成人网| 丝瓜视频免费看黄片| 国产人伦9x9x在线观看| 人体艺术视频欧美日本| 亚洲精品国产区一区二| 成人三级做爰电影| 色94色欧美一区二区| 国产精品国产三级国产专区5o| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 操美女的视频在线观看| 99国产精品免费福利视频| 在线 av 中文字幕| 国产精品秋霞免费鲁丝片| 国产91精品成人一区二区三区 | 国产成人a∨麻豆精品| 又大又爽又粗| 国产成人系列免费观看| 国精品久久久久久国模美| 中国美女看黄片| 少妇精品久久久久久久| 啦啦啦视频在线资源免费观看| 免费看十八禁软件| 国产精品麻豆人妻色哟哟久久| 丁香六月欧美| 亚洲人成电影观看| 美女午夜性视频免费| 亚洲国产欧美网| 日本av免费视频播放| 欧美黑人精品巨大| 一本久久精品| 精品国产乱码久久久久久小说| 考比视频在线观看| 精品国产国语对白av| 久久精品亚洲av国产电影网| 日韩电影二区| 99九九在线精品视频| 嫁个100分男人电影在线观看 | 国产亚洲午夜精品一区二区久久| 一二三四社区在线视频社区8| 女人爽到高潮嗷嗷叫在线视频|