姜少杰,宋海清,李云鵬**,潘學(xué)標(biāo),姜會(huì)飛
內(nèi)蒙古地區(qū)FY-3B/3C微波遙感土壤水分?jǐn)?shù)據(jù)產(chǎn)品的融合與評(píng)估*
姜少杰1,宋海清1,李云鵬1**,潘學(xué)標(biāo)2,姜會(huì)飛2
(1.內(nèi)蒙古自治區(qū)生態(tài)與農(nóng)業(yè)氣象中心,呼和浩特 010051;2.中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
土壤水分是陸?氣耦合系統(tǒng)的重要組成部分,土壤水分監(jiān)測(cè)在氣候、水文、農(nóng)業(yè)等領(lǐng)域具有重要意義。與站點(diǎn)資料相比,遙感數(shù)據(jù)能夠較好地反應(yīng)區(qū)域格點(diǎn)上土壤水分的變化?;?018年作物生長(zhǎng)季(5?10月)觀測(cè)站點(diǎn)表層(0?10cm)土壤水分逐日觀測(cè)資料,選用與觀測(cè)站點(diǎn)資料時(shí)空一致的FY-3B升軌/降軌、FY-3C升軌/降軌、AMSR2、SMOS衛(wèi)星土壤水分產(chǎn)品,對(duì)各遙感數(shù)據(jù)進(jìn)行檢驗(yàn)。首先利用加權(quán)平均法對(duì)FY-3B升軌/降軌、FY-3C升軌/降軌產(chǎn)品數(shù)據(jù)進(jìn)行融合,然后利用隨機(jī)森林方法融合形成FY-3B/3C數(shù)據(jù)集,對(duì)比評(píng)價(jià)AMSR2、SMOS、FY-3B/3C在內(nèi)蒙古地區(qū)的適用性。結(jié)果表明:FY-3B升軌/降軌、FY-3C升軌/降軌中日間的數(shù)據(jù)質(zhì)量好于夜間,通過(guò)加權(quán)平均融合后的FY-3B和FY-3C數(shù)據(jù)質(zhì)量無(wú)顯著改善,利用隨機(jī)森林模型融合形成的FY-3B/3C數(shù)據(jù)產(chǎn)品質(zhì)量得到顯著提升。在雨季和高植被覆蓋區(qū)(東北部),SMOS、AMSR2、FY-3B/3C三個(gè)數(shù)據(jù)產(chǎn)品中FY-3B/3C數(shù)據(jù)質(zhì)量均好于SMOS和AMSR2。整體來(lái)看,SMOS在內(nèi)蒙古中部和東南部地區(qū)適用性較好,AMSR2在全區(qū)適用性較差,F(xiàn)Y-3B/3C在全區(qū)適用性最好。
FY-3B/3C;土壤水分;數(shù)據(jù)融合;遙感監(jiān)測(cè);適用性
土壤水分是陸?氣耦合系統(tǒng)中能量和水分傳遞的重要參量,是水循壞中的重要指標(biāo)[1?4]。土壤水分與全球氣候相互反饋[5?7]、氣候變化引起土壤水分變化,直接影響陸面熱量和水分,從而導(dǎo)致大氣環(huán)流變化,大氣環(huán)流又影響全球氣候變化。土壤水分是植物生長(zhǎng)發(fā)育的主要水分來(lái)源,是直接反映作物生長(zhǎng)、土壤干旱、水資源存儲(chǔ)能力的關(guān)鍵要素[8?9]。因此,在水分缺乏的地區(qū),土壤水分的監(jiān)測(cè)和校正對(duì)該地區(qū)合理利用水資源具有重要的指導(dǎo)作用。
傳統(tǒng)水分觀測(cè)主要基于陸面站網(wǎng),可以有效觀測(cè)站點(diǎn)的土壤水分動(dòng)態(tài)變化,但對(duì)于獲取區(qū)域大尺度土壤水分的時(shí)空變化較為困難。從20世紀(jì)70年代開(kāi)始,微波反演的方法得到應(yīng)用,美國(guó)國(guó)家航空航天局(NASA)對(duì)地表亮溫和土壤水分之間的關(guān)系進(jìn)行了相關(guān)研究。微波遙感方法分為主動(dòng)微波方法和被動(dòng)微波方法,后者應(yīng)用較為廣泛,其遙感波長(zhǎng)更長(zhǎng),穿透力較強(qiáng)。同時(shí)微波輻射計(jì)方法能夠在更大的區(qū)域觀測(cè),具有觀測(cè)周期短、對(duì)土壤水分濕度監(jiān)測(cè)更加精確等優(yōu)勢(shì)。被動(dòng)微波遙感反演方法可以有效解決大尺度區(qū)域上格點(diǎn)土壤水分的時(shí)空變化問(wèn)題[10?11],但對(duì)于衛(wèi)星反演的數(shù)據(jù)需進(jìn)一步評(píng)估和檢驗(yàn)。目前已有較多微波方法進(jìn)行土壤水分反演,并獲得了相應(yīng)的土壤水分產(chǎn)品。
國(guó)內(nèi)外對(duì)不同衛(wèi)星土壤水分產(chǎn)品的評(píng)估工作開(kāi)展較多,目前應(yīng)用較為廣泛的衛(wèi)星/傳感器有微波先進(jìn)散射儀(ASCTA)、先進(jìn)微波掃描輻射計(jì)地球觀測(cè)系統(tǒng)(AMSR?E)、先進(jìn)微波掃描輻射計(jì)2(AMSR2)[4, 12?15]、歐空局土壤濕度和海水鹽度SMOS[2, 15?17]、中國(guó)的風(fēng)云衛(wèi)星FY-3B和FY-3C[18?20]。Cui等[19]利用兩個(gè)土壤水分觀測(cè)網(wǎng)對(duì)青藏高原地區(qū)的FY-3B/MWRI反演數(shù)據(jù)進(jìn)行驗(yàn)證,同時(shí)與基本氣候變量(ECV)進(jìn)行對(duì)比檢驗(yàn),發(fā)現(xiàn)FY-3B升軌的數(shù)據(jù)質(zhì)量明顯優(yōu)于降軌的數(shù)據(jù)質(zhì)量,在凍土期和植被指數(shù)(NDVI)較低的地區(qū)FY-3B升軌數(shù)據(jù)要優(yōu)于ECV。Chen等[21]利用青藏高原2個(gè)地面觀測(cè)站網(wǎng)對(duì)SMAP、SMOS、AMSR-2反演的土壤水分產(chǎn)品進(jìn)行評(píng)價(jià),研究表明SMOS能夠較好地反應(yīng)青藏高原地區(qū)土壤水分的時(shí)空變化,MSOS在半濕潤(rùn)地區(qū)(那曲)表現(xiàn)較好,但在半干旱區(qū)域(帕里)表現(xiàn)較差,AMSR-2在青藏高原對(duì)時(shí)空變化的反應(yīng)較差。Liu等[22]對(duì)SMMR、SSM/I、TRMM和AMSR-E衛(wèi)星數(shù)據(jù)通過(guò)亮溫反演并對(duì)反演數(shù)據(jù)進(jìn)行融合,融合數(shù)據(jù)表明澳大利亞近地水文中有較強(qiáng)的厄爾尼諾?南方濤動(dòng)現(xiàn)象。萬(wàn)紅等[23]通過(guò)評(píng)估FY-3B土壤水分產(chǎn)品在青藏高原的適用性表明,F(xiàn)Y-3B的土壤水分產(chǎn)品與青藏高原地區(qū)的降水分布一致,土壤水分產(chǎn)品在各個(gè)季節(jié)都能夠較好地反應(yīng)青藏高原地區(qū)的土壤水分變化。徐作敏等[20]利用變分法對(duì)FY-3C土壤水分進(jìn)行研究,結(jié)果表明FY-3C土壤水分產(chǎn)品在時(shí)空分布上能夠較為準(zhǔn)確地反映實(shí)際情況,通過(guò)變分法訂正后的土壤水分產(chǎn)品的準(zhǔn)確性得到提高。目前,國(guó)內(nèi)外對(duì)FY-3B和FY-3C土壤水分產(chǎn)品評(píng)估和融合的研究報(bào)道仍較少。本研究利用內(nèi)蒙古生態(tài)與農(nóng)業(yè)氣象中心提供的2018年5月1日?10月31日的土壤水分實(shí)測(cè)數(shù)據(jù),對(duì)FY-3B、FY-3C產(chǎn)品進(jìn)行驗(yàn)證并融合形成FY-3B/3C土壤水分產(chǎn)品,將FY-3B/3C、SMOS和AMSR2土壤水分產(chǎn)品進(jìn)行對(duì)比驗(yàn)證分析,評(píng)價(jià)FY-3B/3C融合在內(nèi)蒙古不同區(qū)域的適用性,為基于風(fēng)云衛(wèi)星土壤水分產(chǎn)品的相關(guān)研究和應(yīng)用提供支持。
地面觀測(cè)資料為內(nèi)蒙古自治區(qū)(97°12′? 126°04′E,37°24′?53°23′N(xiāo),海拔1000m以上)地面自動(dòng)站2018年作物生長(zhǎng)季(5?10月)0?10cm土壤體積含水量逐日觀測(cè)數(shù)據(jù)。數(shù)據(jù)經(jīng)過(guò)篩選和質(zhì)量控制,將土壤水分大于0.5cm3·cm?3的數(shù)據(jù)進(jìn)行剔除,并將不合理站點(diǎn)去除,為了減少灌溉等不確定因素的影響,最終篩選出37個(gè)固定地段自動(dòng)站有效觀測(cè)數(shù)據(jù)。由于區(qū)域內(nèi)氣候差異大,將整個(gè)研究區(qū)分為東北(NE)、東南(SE)、中部(M)、西部(W)4個(gè)分區(qū),不同區(qū)域站點(diǎn)分布見(jiàn)圖1。
圖1 內(nèi)蒙古自治區(qū)氣象站點(diǎn)分布及研究分區(qū)
FY-3B和FY-3C衛(wèi)星由中國(guó)發(fā)射,搭載的為微波輻射成像儀(MWRI),MWRI有5個(gè)頻率,每個(gè)頻率有兩個(gè)極化模式。MWRI能夠測(cè)量10.65GHz-89GHz的水平和垂直偏振亮度溫度。通過(guò)亮溫反演分別獲得FY-3B升軌(13:30)/降軌(1:30)和FY-3C升軌(22:30)/降軌(10:30)的土壤水分產(chǎn)品。選用FY-3B升軌/降軌和FY-3C升軌/降軌土壤水分日值產(chǎn)品,其空間分辨率為25km×25km,數(shù)據(jù)下載于中國(guó)國(guó)家氣象衛(wèi)星中心(http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx)。歐空局發(fā)射的SMOS主要用來(lái)觀測(cè)地表水和海鹽度,SMOS搭載的為合成孔徑微波成像輻射計(jì)(MIRAS),該衛(wèi)星的中心頻率為1.143GHz,能夠有效避免人為輻射噪音和環(huán)境的干擾,保證監(jiān)測(cè)的精度[24]。選用SMOS的日值土壤水分產(chǎn)品,其空間分辨率為0.25°×0.25°,數(shù)據(jù)下載于歐空局(https:// smos-diss.eo.esa.int/oads/access)。日本宇宙航空開(kāi)發(fā)機(jī)構(gòu)(JAXA)發(fā)射的地球水環(huán)境變化監(jiān)測(cè)衛(wèi)星“GCOM-W1”上搭載AMSR2傳感器,提供地球水和能量循環(huán)的長(zhǎng)期監(jiān)測(cè)數(shù)據(jù)[10]。選用AMSR2日值土壤水分產(chǎn)品,其空間分辨率為0.25°×0.25°,數(shù)據(jù)下載于美國(guó)國(guó)家航空航天局(https://search.earthdata. nasa.gov/search)。
采用6套土壤水分日產(chǎn)品數(shù)據(jù)集,即FY-3B升軌/降軌、FY-3C升軌/降軌、SOMS和AMSR2,數(shù)據(jù)覆蓋時(shí)間為2018年5月1日?10月31日。土壤水分產(chǎn)品取值范圍為0~0.5m3·m?3,其中?999為空值。以?xún)?nèi)蒙古自治區(qū)地面土壤水分觀測(cè)站網(wǎng)同期實(shí)測(cè)數(shù)據(jù)為參照,對(duì)比評(píng)價(jià)SMOS、AMSR2以及融合產(chǎn)品FY-3B/3C在內(nèi)蒙古地區(qū)的適應(yīng)性。
1.2.1 融合方法
通過(guò)編程處理對(duì)遙感數(shù)據(jù)和觀測(cè)站點(diǎn)的數(shù)據(jù)進(jìn)行空間匹配。由于衛(wèi)星空間分辨率與站點(diǎn)不完全匹配,需要利用遙感像元內(nèi)土壤水分值與像元內(nèi)站點(diǎn)的土壤水分進(jìn)行位置臨近匹配,以減少空間誤差。同時(shí),需要利用遙感過(guò)境日數(shù)據(jù)與該日站點(diǎn)土壤水分進(jìn)行時(shí)間匹配。根據(jù)FY-3B升軌/降軌和FY-3C升軌/降軌數(shù)據(jù)分別通過(guò)加權(quán)平均法進(jìn)行數(shù)據(jù)融合形成FY-3B、FY-3C數(shù)據(jù)集,加權(quán)平均要求衛(wèi)星觀測(cè)傳感器相一致,觀測(cè)物體要一致。兩星升軌和降軌土壤水分?jǐn)?shù)據(jù)融合方程分別為
式中,y1和y2分別為FY-3B升軌和降軌數(shù)據(jù),y3和y4分別為FY-3C升軌和降軌數(shù)據(jù),z1和z2分別為融合后FY-3B和FY-3C土壤水分?jǐn)?shù)據(jù)。
根據(jù)站點(diǎn)觀測(cè)數(shù)據(jù),利用隨機(jī)森林(RF)模型對(duì)FY-3B、FY3C數(shù)據(jù)集進(jìn)行二次融合,獲得FY-3B/3C數(shù)據(jù)集。隨機(jī)森林模型是一種由多個(gè)決策樹(shù)模型組成的集成機(jī)器學(xué)習(xí)方法。該模型的基礎(chǔ)模型為決策樹(shù)模型,決策樹(shù)模型是通過(guò)遞歸將訓(xùn)練樣本劃分成為較小的子集構(gòu)建樹(shù)。隨機(jī)森林從原始訓(xùn)練集中使用Bootstraping方法隨機(jī)放回采樣取出m個(gè)樣本,共進(jìn)行n次采樣。生成n個(gè)訓(xùn)練集并構(gòu)建n個(gè)決策樹(shù)進(jìn)行訓(xùn)練,根據(jù)每個(gè)決策樹(shù)最好的特征進(jìn)行分裂,由生成的多個(gè)決策樹(shù)構(gòu)建成隨機(jī)森林,最終根據(jù)多顆決策樹(shù)的均值決定預(yù)測(cè)結(jié)果。
式中,x1、x2作為遙感融合數(shù)據(jù)的特征值,分別為FY-3B、FY-3C的土壤水分產(chǎn)品,y為模型的輸出值,即土壤水分預(yù)測(cè)值FY-3B/C。
1.2.2 評(píng)估方法
根據(jù)地面觀測(cè)站網(wǎng)數(shù)據(jù),利用Python Linear Model中Linear Regularization Model方法對(duì)FY-3B升軌/降軌、FY-3C升軌/降軌,以及升軌/降軌融合后的FY-3B、FY-3C土壤水分產(chǎn)品進(jìn)行評(píng)估和驗(yàn)證。利用Python的Linear Regularization Model方法分別評(píng)估比較FY3B/3C、SMOS、AMSR2的結(jié)果,分析FY-3B/3C數(shù)據(jù)產(chǎn)品在內(nèi)蒙古地區(qū)的適應(yīng)性,利用最小二乘法,獲得線性回歸方程,分別計(jì)算偏差(Bias)、相關(guān)系數(shù)(r)、均方根誤差(RMSE)等指標(biāo)。
2.1.1 各星升軌/降軌數(shù)據(jù)的融合
2018年作物生長(zhǎng)季(5?10月)整個(gè)研究區(qū)域內(nèi)FY-3B衛(wèi)星升軌/降軌和FY-3C衛(wèi)星升軌/降軌的樣本數(shù)量分別為4270、3315個(gè)和3853、4150個(gè)。按照“鄰近”原則,選取與站點(diǎn)匹配的格點(diǎn)數(shù)據(jù)進(jìn)行相關(guān)分析,結(jié)果見(jiàn)圖2。由圖中可見(jiàn),F(xiàn)Y-3B衛(wèi)星升軌、降軌以及兩者以等權(quán)重融合(式3)后的FY-3B數(shù)據(jù)與鄰近站點(diǎn)土壤含水量間的相關(guān)系數(shù)(R)分別為0.41、0.36和0.40,偏差(Bias)分別為0.026cm3·cm?3、0.045cm3·cm?3和0.033cm3·cm?3,均方根誤差(RMSE)分別為0.098cm3·cm?3、0.108cm3·cm?3和0.100cm3·cm?3。FY-3C衛(wèi)星升軌、降軌以及兩者以等權(quán)重融合(式4)后的FY3C數(shù)據(jù)與鄰近站點(diǎn)土壤含水量間的相關(guān)系數(shù)(R)分別為0.37、0.39和0.38,偏差(Bias)分別為0.035cm3·cm?3、0.029cm3·cm?3和0.032cm3·cm?3,均方根誤差(RMSE)分別為0.105cm3·cm?3、0.099cm3·cm?3和0.101cm3·cm?3。可見(jiàn),F(xiàn)Y-3B升軌(13:00)數(shù)據(jù)要好于降軌(1:30)數(shù)據(jù),F(xiàn)Y-3C降軌(10:30)數(shù)據(jù)要好于升軌(22:30)數(shù)據(jù),對(duì)于同一衛(wèi)星而言,白天的數(shù)據(jù)質(zhì)量好于夜間的數(shù)據(jù)質(zhì)量。升軌與降軌土壤水分?jǐn)?shù)據(jù)融合后的FY-3B和FY-3C數(shù)據(jù)樣本分別為5609個(gè)和5652個(gè),數(shù)據(jù)集中程度更高,數(shù)據(jù)質(zhì)量?jī)?yōu)于夜間衛(wèi)星數(shù)據(jù)質(zhì)量,但差于白天數(shù)據(jù)。
圖2 內(nèi)蒙古區(qū)域2018年5?10月FY-3B(1)和FY-3C(2)衛(wèi)星的升軌(a)、降軌(b)及兩者等權(quán)重融合(c)土壤水分與鄰近觀測(cè)站點(diǎn)實(shí)測(cè)值的相關(guān)分析
2.1.2 兩星數(shù)據(jù)融合
圖3顯示,F(xiàn)Y-3B和FY-3C兩星融合后的數(shù)據(jù)FY-3B/3C的樣本數(shù)量為6176個(gè),將兩星所有數(shù)據(jù)按照隨機(jī)森林模型進(jìn)行融合,兩星融合后的數(shù)據(jù)FY-3B/3C與鄰近站點(diǎn)土壤含水量間的相關(guān)系數(shù)(R)為0.90,偏差(bias)為?0.0003cm3·cm?3,均方根誤差(RMSE)為0.037cm3·cm?3。由圖可見(jiàn),通過(guò)隨機(jī)森林模型對(duì)數(shù)據(jù)進(jìn)行融合后,與FY-3B和FY-3C相比,融合后的數(shù)據(jù)FY-3B/3C相關(guān)系數(shù)得到顯著提升,絕對(duì)誤差(bias)顯著減小,同時(shí)均方根誤差也顯著減小。
圖3 2018年5?10月FY-3B和FY3C兩星土壤水分?jǐn)?shù)據(jù)融合值與鄰近觀測(cè)站點(diǎn)土壤實(shí)測(cè)水分的相關(guān)分析
根據(jù)圖1中區(qū)域劃分方式,按區(qū)域計(jì)算FY-3B/3C系列、SMOS、AMSR2數(shù)據(jù),并與站點(diǎn)實(shí)測(cè)數(shù)據(jù)進(jìn)行比較,各區(qū)域遙感數(shù)據(jù)和實(shí)測(cè)數(shù)據(jù)為各區(qū)內(nèi)數(shù)據(jù)的平均值。由圖4可見(jiàn),在西部區(qū)域,與實(shí)測(cè)值相比,F(xiàn)Y-3B/3C變異程度最小,SMOS數(shù)據(jù)的變異程度最大,AMSR2的土壤水分偏干,其余數(shù)據(jù)集的土壤水分偏濕。中部區(qū)域上,與觀測(cè)值相比,F(xiàn)Y-3B/3C變異程度最小,AMSR2變異程度最大,SMOS、AMSR2偏干,其余數(shù)據(jù)集的土壤水分偏濕。東南區(qū)域上,與觀測(cè)值相比,F(xiàn)Y-3B/3C變異程度最小,AMSR2變異程度最大,F(xiàn)Y-3B/3C、SMOS、AMSR2土壤水分偏干,其余數(shù)據(jù)集的土壤水分偏濕。東北區(qū)域上,F(xiàn)Y-3B/3C變異程度最小,F(xiàn)Y-3C變異程度最大,F(xiàn)Y-3B/3C、SMOS土壤水分偏干,其余數(shù)據(jù)集的土壤水分偏濕。從月份上看,5?7月和9?10月各遙感數(shù)據(jù)值與站點(diǎn)實(shí)測(cè)值較為接近,7?9月各遙感數(shù)據(jù)值與站點(diǎn)實(shí)測(cè)值相差較大。
圖5顯示,各區(qū)域內(nèi)FY-3B/3C、AMSR2、SMOS數(shù)據(jù)與站點(diǎn)實(shí)測(cè)數(shù)據(jù)相關(guān)性比較中,以FY-3B/3C的相關(guān)性最好,SMOS次之,AMSR2最差。不同區(qū)域中,東北區(qū)域的相關(guān)性均較差,中部區(qū)域相關(guān)性均較好。由表1可知,東北區(qū)域內(nèi),F(xiàn)Y-3C升軌和SMOS數(shù)據(jù)集與實(shí)測(cè)數(shù)據(jù)間相關(guān)顯著(P<0.05),其余數(shù)據(jù)集與實(shí)測(cè)數(shù)據(jù)間均為極顯著相關(guān)(P<0.01);東南區(qū)域內(nèi),SMOS數(shù)據(jù)集與實(shí)測(cè)數(shù)據(jù)間均未通過(guò)顯著性檢驗(yàn),其余數(shù)據(jù)集與實(shí)測(cè)數(shù)據(jù)間均為極顯著相關(guān)(P<0.01);中部和西部區(qū)域上,遙感數(shù)據(jù)集與實(shí)測(cè)數(shù)據(jù)間均為極顯著相關(guān)(P<0.01)。在西部區(qū)域上,F(xiàn)Y-3B/3C數(shù)據(jù)的R、RMSE、Bias最好,SMOS最差,中部區(qū)域上,F(xiàn)Y-3B/3C的R、RMSE、Bias最好,SMOS和AMSR2的R、RMSE、Bias均較好,東南區(qū)域上,F(xiàn)Y-3B/3C的R、RMSE、Bias指標(biāo)最好,AMSR2的最差,東北區(qū)域上,F(xiàn)Y-3B/3C的R、RMSE、Bias最好,SMOS較差,AMSR2無(wú)法反演出有效數(shù)據(jù)。FY-3B和FY-3C經(jīng)過(guò)隨機(jī)森林模型融合后,數(shù)據(jù)質(zhì)量得到極大提升,但東北區(qū)域數(shù)據(jù)質(zhì)量較差,所以融合后與觀測(cè)數(shù)據(jù)的相關(guān)系數(shù)提升幅度最小,東南和中部區(qū)域上融合后的相關(guān)系數(shù)提升較大。
圖4 2018年5?10月4個(gè)區(qū)域0?10cm土壤濕度(FY衛(wèi)星和實(shí)測(cè))時(shí)間序列
圖5 2018年5?10月各站實(shí)測(cè)土壤水分與FY-3B/3C、SMOS、AMSR2土壤水分?jǐn)?shù)據(jù)的相關(guān)系數(shù)
表1 2018年5?10月內(nèi)蒙古不同區(qū)域0?10cm日平均土壤水分遙感數(shù)據(jù)與站點(diǎn)觀測(cè)值間關(guān)系分析
注:*、**分別表示相關(guān)系數(shù)通過(guò)0.05、0.01水平的顯著性檢驗(yàn)。?表示在東北區(qū)域上無(wú)相應(yīng)指標(biāo)。
Note:*is P<0.05,**is P<0.01. ? represents there are no correlation indicator in Northeast region. R is correlation coefficient, BIAS is deviation rate, RMSE is root mean square error.
利用2018年內(nèi)蒙古地區(qū)作物生長(zhǎng)季(5?10月)觀測(cè)站點(diǎn)日平均表層土壤水分(0?10cm)對(duì)9套遙感數(shù)據(jù)集進(jìn)行評(píng)估驗(yàn)證,將FY-3B和FY-3C進(jìn)行融合,比較FY-3B/3C、SMOS和AMSR2數(shù)據(jù)集在不同區(qū)域上的優(yōu)勢(shì)及劣勢(shì),評(píng)估FY-3B/3C在內(nèi)蒙古地區(qū)的適用性。
通過(guò)對(duì)FY-3B升軌/降軌和FY-3C升軌/降軌評(píng)估發(fā)現(xiàn),F(xiàn)Y衛(wèi)星在白天的數(shù)據(jù)質(zhì)量要優(yōu)于夜間質(zhì)量,印證了Cui等[19]研究。將升軌和降軌數(shù)據(jù)通過(guò)等權(quán)重法進(jìn)行融合,融合后數(shù)據(jù)樣本數(shù)量得到提升,數(shù)據(jù)質(zhì)量無(wú)顯著改善。通過(guò)隨機(jī)森林模型對(duì)FY-3B和FY-3C融合后,融合后的數(shù)據(jù)與觀測(cè)值相關(guān)性得到顯著提升(R=0.9),RMSE和Bias顯著降低,數(shù)據(jù)質(zhì)量顯著提升。
從不同區(qū)域時(shí)間序列上看,西部區(qū)域上,F(xiàn)Y-3B/3C與站點(diǎn)實(shí)測(cè)值更為接近,SMOS與站點(diǎn)實(shí)測(cè)值差異較大。其它區(qū)域上,AMSR2數(shù)據(jù)與站點(diǎn)實(shí)測(cè)值差異較大,數(shù)據(jù)質(zhì)量較差。觀測(cè)期內(nèi)(5?10月),以7?9月各個(gè)數(shù)據(jù)集與觀測(cè)值差異最大,遙感數(shù)據(jù)反演受到地形、降水、植被等因素影響較為敏感[10,12,25?27]。隨著降水和植被覆蓋度從西部到東北遞增,F(xiàn)Y-3B和FY-3C、SMOS和AMSR2遙感數(shù)據(jù)與站點(diǎn)觀測(cè)數(shù)據(jù)的差異逐漸變大,經(jīng)過(guò)隨機(jī)森林方法融合后的FY-3B/3C數(shù)據(jù)在降雨季和高植被覆蓋區(qū)誤差明顯減小。
根據(jù)區(qū)域分析,經(jīng)過(guò)融合的FY-3B/3C在各個(gè)區(qū)域上具有明顯的優(yōu)勢(shì),數(shù)據(jù)質(zhì)量好于其它數(shù)據(jù)集。整體來(lái)看,SMOS在中部和東南部(半干旱和半濕潤(rùn)地區(qū))適用性較好,AMSR2在內(nèi)蒙古地區(qū)適用性較差,F(xiàn)Y-3B/3C在內(nèi)蒙古地區(qū)適用性好[21, 28?29]。
本研究在對(duì)數(shù)據(jù)進(jìn)行評(píng)估時(shí),觀測(cè)的站點(diǎn)數(shù)據(jù)相對(duì)較少,時(shí)間序列不足,對(duì)數(shù)據(jù)評(píng)估結(jié)果存在一定的偶然性,可以增加陸面模式的土壤水分產(chǎn)品對(duì)遙感數(shù)據(jù)進(jìn)行評(píng)估[6,12,30]。在利用隨機(jī)森林模型進(jìn)行擬合時(shí),由于時(shí)間序列不足,模型的適用性還有待進(jìn)一步驗(yàn)證。從空間上看,東部區(qū)域土壤水分總體相對(duì)較差,從時(shí)間上看,7?9月土壤水分總體較差,這主要受到降水和植被覆蓋的影響,尤其7?9月東北區(qū)域上表現(xiàn)較為明顯。由于土壤水分反演受到較多因素的影響,反演產(chǎn)品的數(shù)據(jù)準(zhǔn)確性較低,所以利用融合產(chǎn)品可以有效提高土壤水分準(zhǔn)確性,整體來(lái)看FY-3B/3C在不同區(qū)域上優(yōu)勢(shì)較為明顯。在對(duì)遙感數(shù)據(jù)進(jìn)行驗(yàn)證時(shí),由于遙感數(shù)據(jù)的空間分辨率在25km,而站點(diǎn)和遙感數(shù)據(jù)按照空間位置臨近匹配,遙感數(shù)據(jù)和站點(diǎn)數(shù)據(jù)空間存在一定差異,可以進(jìn)一步降低遙感的空間分辨率,提高反演產(chǎn)品的精度[5, 26, 31]及遙感數(shù)據(jù)和站點(diǎn)數(shù)據(jù)匹配的準(zhǔn)確性。
[1]McColl K A,Alemohammad S H,Akbar R,et al.The global distribution and dynamics of surface soil moisture[J].Nature Geoscience,2017,10(2):100-104.
[2]Al Bitar A,Leroux D,Kerr Y H,et al.Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL Network[J].Ieee Transactions on Geoscience and Remote Sensing,2012,50(5):1572-1586.
[3]Assouline S.Infiltration into soils:conceptual approaches and solutions[J].Water Resources Research,2013,49(4):1755-1772.
[4]Sahoo A K,Houser P R,Ferguson C,et al.Evaluation of AMSR-E soil moisture results using the in-situ data over the little river experimental watershed,georgia[J].Remote Sensing of Environment,2008,112(6):3142-3152.
[5]馬柱國(guó),符淙斌,謝力,等.土壤濕度和氣候變化關(guān)系研究中的某些問(wèn)題[J].地球科學(xué)進(jìn)展,2001,16(4):563-568.
Ma Z G,Fu Z B,Xie L,et al.Some problems in the study on the relationship between soil moisture and climatic change[J].Advances in Earth Science,2001,16(4):563-568.(in Chinese)
[6]宋海清,李云鵬,張靜茹,等.內(nèi)蒙古地區(qū)多種土壤濕度資料的初步評(píng)估[J].干旱區(qū)資源與環(huán)境,2016,30(8):139-144.
Song H Q,Li Y P,Zhang J R,et al.Evaluation of ERA5 reanalysis soil moisture over Inner Mongolia[J].Journal of Arid Land Resources and Environment,2016,30(8):139-144. (in Chinese)
[7]Seneviratne S I,Corti T,Davin E L,et al.Investigating soil moisture–climate interactions in a changing climate:a review[J].Earth-Science Reviews,2010,99(3-4):125-161.
[8]姚艷麗,傅瑋東,邢文淵,等.基于MODIS資料的新疆土壤水分遙感應(yīng)用研究[J].中國(guó)農(nóng)業(yè)氣象,2011,32(S1):161-164.
Yao Y L,Fu W D,Xing W Y,et al.Research on the remote sensing of soil moisture based on MODIS data in Xinjiang[J].Chinese Journal of Agrometeorology,2011,32(S1):161-164.(in Chinese)
[9]賀俊杰,王英舜,李云鵬,等.利用EOS/MODIS植被供水指數(shù)監(jiān)測(cè)錫林郭勒地區(qū)土壤濕度[J].中國(guó)農(nóng)業(yè)氣象,2013,34(2):243-248.
He J J,Wang Y S,Li Y P,et al.Soil moisture monitoring with EOS/MODIS VSWI product in Xilingol[J].Chinese Journal of Agrometeorology,2013,34(2):243-248.(in Chinese)
[10]Zhang X,Zhao J,Sun Q,et al.Soil moisture retrieval from AMSR-E data in Xinjiang,China:models and validation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(1):117-127.
[11]Nicolai-Shaw N,Zscheischler J,Hirschi M,et al.A drought event composite analysis using satellite remote-sensing based soil moisture[J].Remote Sensing of Environment,2017,203:216-225.
[12]Kim H,Parinussa R,Konings A G,et al.Global-scale assessment and combination of SMAP with ASCAT(active) and AMSR2(passive) soil moisture products[J].Remote Sensing of Environment,2018,204:260-275.
[13]Parinussa R M,Holmes T R H,Wanders N,et al.A preliminary study toward consistent soil moisture from AMSR2[J].Journal of Hydrometeorology,2015,16(2):932-947.
[14]Kolassa J,Gentine P,Prigent C,et al.Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy(part 2):product evaluation[J].Remote Sensing of Environment,2017,195:202-217.
[15]Karthikeyan L,Pan M,Wanders N,et al.Four decades of microwave satellite soil moisture observations(part 2):product validation and inter-satellite comparisons[J].Advances in Water Resources,2017,109:236-252.
[16]Srivastava P K.Satellite soil moisture:review of theory and applications in water resources[J].Water Resources Management,2017,31(10):3161-3176.
[17]Lee J H,Zhao C F,Kerr Y.Stochastic bias correction and uncertainty estimation of satellite-retrieved soil moisture products[J].Remote Sensing,2017,9(8):847.
[18]Liao M,Zhang P,Yang G L,et al.Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J].Atmospheric Measurement Techniques,2016,9(2):781-792.
[19]Cui Y K,Long D,Hong Y,et al.Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau[J].Journal of Hydrology,2016,543:242-254.
[20]徐作敏,唐世浩,王昊.基于變分法的FY-3C土壤水分產(chǎn)品適用性分析[J].灌溉排水學(xué)報(bào),2019,38(S1):68-74.
Xu Z M,Tang S H,Wang H.Applicability analysis of FY-3C's soil moisture based on variational correction method[J].Journal of Irrigation and Drainage,2019,38(S1):68-74.(in Chinese)
[21]Chen Y,Yang K,Qin J,et al.Evaluation of SMAP,SMOS,and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J].Journal of Geophysical Research:Atmospheres,2017,122(11):5780-5792.
[22]Liu Y Y,van Dijk A I J M,de Jeu R A M,et al.An analysis of spatiotemporal variations of soil and vegetation moisture from a 29-year satellite-derived data set over mainland Australia[J].Water Resources Research,2009,45(7):4542-4548.
[23]萬(wàn)紅,高碩,郭鵬.青藏高原地區(qū)FY-3B微波遙感土壤水分產(chǎn)品適用性研究[J].干旱區(qū)資源與環(huán)境,2018,32(4):132-137.
Wan H,Gao S,Guo P.Applicability evaluation of FY-3B remote sensing soil moisture products in the Tibetan plateau[J].Journal of Arid Land Resources and Environment,2018,32(4):132-137.(in Chinese)
[24]李瑞娟,李兆富,郝睿,等.亞洲區(qū)域AMSR2與SMOS土壤水分產(chǎn)品對(duì)比研究[J].遙感技術(shù)與應(yīng)用,2019,34(1):125-135.
Li R J,Li Z F,Hao R,et al.A regional-scale performance evaluation of SMOS and AMSR2 soil moisture products over Asia[J].Remote Sensing Technology and Application,2019,34(1):125-135.(in Chinese)
[25]Lin L F,Ebtehaj A M,Flores A N,et al.Combined assimilation of satellite precipitation and soil moisture:a case study using TRMM and SMOS data[J].Monthly Weather Review,2017,145(12):4997-5014.
[26]Knipper K R,Hogue T S,Franz K J,et al.Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona[J].Journal of Applied Remote Sensing,2017,11(2):026021.
[27]Park S,Im J,Park S,et al.AMSR2 soil moisture downscaling using multisensor products through machine learning approach[A].2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS)[C].Milan,Italy:IEEE,2015:1984-1987.
[28]Su Z,Wen J,Dente L,et al.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature(Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J].Hydrology and Earth System Sciences,2011,15(7):2303-2316.
[29]Chen Y Y,Yang K,Qin J,et al.Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J].Journal of Geophysical Research-Atmospheres,2013,118(10):4466-4475.
[30]鄧明珊,孟憲紅,馬英賽,等.基于GLDAS產(chǎn)品的青藏高原土壤濕度特征分析[J].干旱氣象,2018,36(4):595-602.
Deng M S,Meng X H,Ma Y S,et al.Analysis on soil moisture characteristics of Tibetan Plateau based on GLDAS[J].Journal of Arid Meteorology,2018,36(4):595-602.(in Chinese)
[31]Khodayar S,Coll A,Lopez-Baeza E.An improved perspective in the spatial representation of soil moisture:potential added value of SMOS disaggregated 1 km resolution "all weather" product[J].Hydrology and Earth System Sciences,2019,23(1):255-275.
Data Fusion and Evaluation of Soil Moisture Products from FY-3B/3C Microwave Remote Sensing in Inner Mongolia
JIANG Shao-jie1, SONG Hai-qing1, LI Yun-peng1, PAN Xue-biao2, JIANG Hui-fei2
(1.Ecological and Agricultural Meteorology Center of Inner Mongolia Autonomous Region, Hohhot 010051, China; 2.College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193)
Soil moisture is one of the most important components of land-atmosphere coupling system, and soil moisture monitoring plays a significant part in climate, hydrology, and agriculture. Active microwave and passive microwave are two basic microwave approaches which are used to monitor soil moisture. As of now, the passive microwave method is widely used due to its longer wavelengths and stronger penetrating power. It was considered that the passive microwave retrieved method could work well in effectively monitoring spatial and temporal changes of soil moisture in large-scale areas. However, the data retrieved by satellites needs further evaluation and verification. At present, various microwave methods have been proposed for soil moisture retrieve, and a number of corresponding soil moisture products have also been published. Compared to station-based data, remote sensing data can better reveal the dynamic change of soil moisture in a certain region at grid points. Based on the observed data of station-based soil moisture at the upper soil layer (0?10cm) during the growing season (May?October) in 2018, this paper collected and examined the remote senescing datasets from FY-3B, FY-3C, ASMR2 and SMOS which were consistent with the station-based data in time and space. Furthermore, the applicability of FY-3B/3C fusion in different regions of Inner Mongolia was evaluated, which may provide a reliable scientific basis for the application of soil moisture products based on Fengyun Satellites and other related researches. The ascending and descending data of FY-3B and FY-3C were fused respectively by employing weighted average method. In order to evaluate and compare the applicability of remote senescing datasets from AMSR2, FY-3B/3C and SMOS in Inner Mongolia, FY-3B/3C datasets were then formed by random forest method. The results showed that daytime data were of better quality than night data of FY-3B ascending/descending and FY-3C ascending/descending. The data quality of fused FY-3B and FY-3C processed by weighted average method exhibited no significantly improved. And the data quality of FY-3B/3C products formed by random forest models was significantly enhanced. In the rainy season of high vegetation coverage area (NE), the quality of FY-3B/3C data products were better than those of SMOS and AMSR2. Overall, in Inner Mongolia,SMOS is more applicable in Middle (M) and Southeast (SE) regions, AMSR2 has poor applicability in the whole region, while FY-3B/3C performs the best.
FY-3B/3C; Soil moisture; Data fusion; Remote sensing monitoring; Applicability
10.3969/j.issn.1000-6362.2020.08.006
姜少杰,宋海清,李云鵬,等.內(nèi)蒙古地區(qū)FY-3B/3C微波遙感土壤水分?jǐn)?shù)據(jù)產(chǎn)品的融合與評(píng)估[J].中國(guó)農(nóng)業(yè)氣象,2020,41(8):529-538
2020?01?06
李云鵬,E-mail:lyp5230@163.com
國(guó)家重點(diǎn)研發(fā)計(jì)劃重大自然災(zāi)害監(jiān)測(cè)預(yù)警與防范專(zhuān)項(xiàng)(2018YFC1506606);內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(201602103);國(guó)家自然科學(xué)基金項(xiàng)目(41775156);內(nèi)蒙古自治區(qū)氣象局科技創(chuàng)新項(xiàng)目(nmqxkjcx201702;nmqxkjcx201806);內(nèi)蒙古自治區(qū)自然科學(xué)基金面上項(xiàng)目(2017MS0410;2018MS04005);內(nèi)蒙古科技重大專(zhuān)項(xiàng)(2020ZD0005);內(nèi)蒙古科技計(jì)劃項(xiàng)目(2019GG016)
聯(lián)系方式:姜少杰,E-mail:jiang470004510@163.com