劉悅 史文琦 曾凡松 劉美玲 陳婷婷 黃振余 薛敏峰 向禮波 龔雙軍 楊立軍 喻大昭
摘要 為探索生物炭對(duì)小麥赤霉病的防治效果和對(duì)產(chǎn)量的影響,設(shè)置小麥播種前、返青拔節(jié)期單施或兩個(gè)時(shí)期均施生物炭處理,在小麥分蘗期人工接種病麥粒,在抽穗揚(yáng)花期采用孢子捕捉器對(duì)穗層空氣中的赤霉病菌孢子數(shù)量進(jìn)行動(dòng)態(tài)監(jiān)測(cè),并在乳熟期調(diào)查各處理的病穗率和病情指數(shù),成熟期測(cè)定各處理的理論產(chǎn)量、實(shí)際產(chǎn)量和籽粒中脫氧鐮刀菌烯醇(deoxynivalenol,DON)毒素的含量。結(jié)果表明,施用生物炭后穗層赤霉病菌孢子的數(shù)量顯著降低,赤霉病病情指數(shù)降低,且以基施和返青拔節(jié)期追施13 500 kg/hm2生物炭的處理最優(yōu);施用生物炭后小麥千粒重和株高均顯著增加(P<0.05),其中基施和追施13 500 kg/hm2生物炭的處理較對(duì)照處理增產(chǎn)29.5%(P<0.05)。
關(guān)鍵詞 小麥赤霉病; 生物炭; 防效; 產(chǎn)量
中圖分類號(hào): S 435.121.45
文獻(xiàn)標(biāo)識(shí)碼: B
DOI: 10.16688/j.zwbh.2019506
Effect of biochar on controlling wheat Fusarium head blight and yield
LIU Yue1,2, SHI Wenqi1, ZENG Fansong1, LIU Meiling1, CHENG Tingting1, HUANG Zhenyu3,
XUE Minfeng1, XIANG Libo1, GONG Shuangjun1, YANG Lijun1*, YU Dazhao1*
(1. Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Key Laboratory of
Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China; 2. Huazhong
Agricultural University, Wuhan 430071, China; 3. Agricultural Technology Service Center
of Shipai Town, Zhongxiang City, Hubei Province, Zhongxiang 431922, China)
Abstract
In order to explore the effect of biochar on Fusarium head blight (FHB), treatments of biochar at different growing stages are designed, including application of biochar either before sowing, or at green-turning and jointing stage, and both. During the tillering stage of wheat, all above treatments field were inoculated with grains containing FHB pathogen. During heading and flowering stage, spore in the air at panicle layer height were monitored with spore trappers. The disease rate of ear and disease index of each treatment were investigated at the milk ripening stage. Theoretical yield, actual yield and DON toxin content in grains of all treatments were analyzed at maturity stage. The results showed that application of biochar could both significantly reduce occurrence of FHB and number of Fusarium spores at panicle layer. Application of biochar could significantly increase 1 000-grain weight and plant height(P<0.05). The best treatment for the yield is 13 500 kg/hm2 at both sowing and jointing stage, which showed 29.5% higher yield than that of control treatment (P<0.05).
Key words
Fusarium head blight; biochar; control effect; yield
赤霉病是我國(guó)小麥生產(chǎn)上的重要病害之一,在長(zhǎng)江中下游麥區(qū)危害嚴(yán)重[1-2],嚴(yán)重影響小麥的產(chǎn)量和品質(zhì),威脅人畜健康[3-4]。生產(chǎn)上抗赤霉病的品種相對(duì)缺乏[5],化學(xué)農(nóng)藥的施用仍是當(dāng)前防治赤霉病的主要手段[6]。然而長(zhǎng)期施用化學(xué)藥劑,易造成病原菌抗藥性上升、防效下降,如江蘇、安徽等省因赤霉病菌對(duì)多菌靈產(chǎn)生了較大比例的抗性,已逐漸限制多菌靈的使用 [7]。隨著我國(guó)現(xiàn)代農(nóng)業(yè)綠色、環(huán)保等高質(zhì)量發(fā)展的要求,采用生態(tài)、物理和生物防治等多種措施綜合防治赤霉病成為一種趨勢(shì) [8-9]。
生物炭是高溫裂解和炭化植物秸稈殘?bào)w的產(chǎn)物,對(duì)環(huán)境友好、對(duì)人畜無害。研究顯示,施用生物炭能夠一定程度改變土壤性質(zhì),提高土壤養(yǎng)分含量[10];可用于防治煙草青枯病、煙草黑脛病、蘆筍根腐病等植物病害[11-13]。同時(shí),生物炭對(duì)水稻、白菜、蘿卜等作物的生長(zhǎng)和產(chǎn)量具有一定促進(jìn)作用[14-16]。在小麥上,目前尚未見生物炭用于防治赤霉病的研究報(bào)道,僅劉歡歡等研究發(fā)現(xiàn)生物炭能防治小麥根腐病,且能提高小麥千粒重、實(shí)粒數(shù)和有效穗數(shù) [17]。本研究擬通過地表人工接種病麥粒模擬病殘?bào)w,設(shè)置基施和拔節(jié)期追施生物炭等不同處理,探索生物炭能否有效阻礙病殘?bào)w上鐮刀菌孢子向空氣中釋放,從而減輕赤霉病發(fā)生和危害,同時(shí)觀測(cè)施用生物炭對(duì)小麥農(nóng)藝性狀和產(chǎn)量的影響,為探索小麥赤霉病的綠色防控和減肥減藥技術(shù)措施提供依據(jù)。
1 材料與方法
1.1 供試材料
供試生物炭和小麥品種:生物炭由湖北金日能源股份有限公司提供。生物炭制備原料為水稻秸稈,原料經(jīng)粉碎后過20目篩, 木醋液消毒,在厭氧環(huán)境下熱裂解所得。小麥品種為‘鄭麥9023,湖北省主推品種,中感赤霉病。
選擇性培養(yǎng)基[18]:蛋白胨15 g、KH2PO4 1 g、MgSO4·7H2O 0.5 g、PNCB 750 mg、瓊脂20 g,水補(bǔ)足至1 L。該選擇性培養(yǎng)基特異性用于鐮刀菌的檢測(cè)。
孢子捕捉器:孢子捕捉器由中國(guó)農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院病害流行實(shí)驗(yàn)室提供(專利號(hào):CN201410009269.6)。
1.2 田間試驗(yàn)設(shè)計(jì)
試驗(yàn)田位于湖北省鐘祥市石牌鎮(zhèn)三喜村(112.50°N,30.97°E)。試驗(yàn)共設(shè)置7個(gè)處理,4次重復(fù),每處理小區(qū)長(zhǎng)23 m、寬18 m,采用隨機(jī)區(qū)組排列。播種期全田基施化肥,氮磷鉀總用量17.8 kg/667 m2(N∶P2O5∶K2O=15∶7∶8)。生物炭于播種期基施和小麥返青拔節(jié)期追施,施用量見表2。整個(gè)小麥生育期,田間采用除草劑推薦藥量減量30%+增效劑的方式進(jìn)行兩次除草,除草劑為50%異丙隆可濕性粉劑(蘇州市寶帶農(nóng)藥有限責(zé)任公司)2.25 kg/hm2、20%氯氟吡氧乙酸乳油(美國(guó)陶氏益農(nóng))525 mL/hm2,增效劑為有機(jī)氟(運(yùn)城市博獲化工總廠)45 mL/hm2。
1.3 接種體準(zhǔn)備和田間接種
采用的菌株為HB11(F.asiaticum,本實(shí)驗(yàn)室保存)。將菌株接種到PDA培養(yǎng)基上,25℃培養(yǎng)3 d備用。稱取500 g小麥籽粒加1 L水,煮沸15 min。在超凈工作臺(tái)內(nèi),用直徑為5 mm的打孔器在HB11菌落上打孔,將菌餅接種到麥粒中。黑暗條件下,25℃培養(yǎng)2~3周,每3~5 d翻動(dòng)檢查1遍,待小麥粒均勻覆蓋白色菌絲體后備用。于小麥分蘗期,按 3 kg/667 m2接種體人工均勻撒施于麥田地表。對(duì)于未施生物炭的空白對(duì)照處理,在揚(yáng)花初期每小區(qū)五點(diǎn)取樣,每點(diǎn)隨機(jī)取50粒病麥粒,室內(nèi)鏡檢子囊殼形成并將子囊殼壓碎后鏡檢子囊孢子形成情況。
1.4 穗層赤霉病菌孢子的監(jiān)測(cè)
在小麥抽穗揚(yáng)花期(2019年4月14日-28日),對(duì)分別在播種前基施,返青拔節(jié)期追施9 000 kg/hm2生物炭的處理(即表2處理5)、播種前基施,返青拔節(jié)期追施13 500 kg/hm2生物炭的處理(表2處理6)和不施生物炭的對(duì)照(表2處理7),放置孢子捕捉器監(jiān)測(cè)穗層赤霉病菌孢子的數(shù)量。孢子捕捉器使用方法參考谷醫(yī)林等的方法[19]稍加修改,即將孢子捕捉器架于田間,進(jìn)氣口高度調(diào)至與小麥穗層高度一致。每天早上7:00在孢子捕捉器內(nèi)放置裝有選擇性培養(yǎng)基的培養(yǎng)皿( 90 mm),每隔2 h更換1次,每天更換6次,每次更換時(shí)記錄田間溫度和濕度。將培養(yǎng)皿在25℃培養(yǎng)箱避光培養(yǎng)72 h后用supcre系列菌落/計(jì)數(shù)/篩選抑菌圈測(cè)量聯(lián)用儀(型號(hào) Sup G1)記錄培養(yǎng)基上的菌落數(shù),并拍照留存。
1.5 小麥赤霉病病情調(diào)查
在小麥乳熟期,參照文獻(xiàn)方法[20]調(diào)查赤霉病的發(fā)病情況,每小區(qū)采取五點(diǎn)取樣法,每點(diǎn)調(diào)查0.25 m2內(nèi)所有麥穗赤霉病病情,計(jì)算病穗率、病穗率下降百分率、病情指數(shù)和防治效果。其中,病穗率=病穗數(shù)/調(diào)查總穗數(shù);病穗率下降百分率=(空白對(duì)照區(qū)病穗率-生物炭處理區(qū)病穗率)/空白對(duì)照區(qū)病穗率×100%;病情指數(shù)=100×∑(各級(jí)病穗數(shù)×相應(yīng)級(jí)數(shù)值)/(調(diào)查總穗數(shù)×最高級(jí)數(shù)值);防治效果=(空白對(duì)照區(qū)病情指數(shù)-生物炭處理區(qū)病情指數(shù))/空白對(duì)照區(qū)病情指數(shù)×100%。
1.6 產(chǎn)量測(cè)定
小麥成熟后,采用大型收割機(jī)對(duì)每小區(qū)收割實(shí)測(cè)鮮重產(chǎn)量。并隨機(jī)選擇3個(gè)小區(qū)稱量1 kg小麥籽粒,去雜、曬干后計(jì)算矯正系數(shù),計(jì)算實(shí)際產(chǎn)量。每個(gè)小區(qū)采用“1米雙行法”[21]收取小麥穗,調(diào)查總穗數(shù),并隨機(jī)選取30穗調(diào)查穗長(zhǎng)、穗粒數(shù)、千粒重,計(jì)算理論產(chǎn)量。其中,矯正系數(shù)=去雜、曬干后小麥籽粒重量/小麥籽粒鮮重;實(shí)際產(chǎn)量=鮮重產(chǎn)量×矯正系數(shù);萬穗數(shù)/667 m2=1 m雙行穗數(shù)/(行距(cm)×0.3);理論產(chǎn)量(kg/667 m2)=萬穗數(shù)/667 m2×穗粒數(shù)×千粒重×0.01。
1.7 小麥籽粒DON毒素測(cè)定
每個(gè)樣品隨機(jī)稱取80 g混合籽粒磨成細(xì)粉(<2 mm)委托江蘇省農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品質(zhì)量檢查中心測(cè)定DON含量。具體測(cè)定方法參照《SN/T3137-2012出口食品中DON、3-DON,15-DON及其代謝物的測(cè)定:液相色譜-質(zhì)譜/質(zhì)譜法》進(jìn)行。
1.8 統(tǒng)計(jì)分析
數(shù)據(jù)采用 Microsoft Excel 2010和SPSS 22.0進(jìn)行分析處理,田間試驗(yàn)所測(cè)數(shù)據(jù)進(jìn)行單因素方差分析,用 Duncan 氏新復(fù)極差法對(duì)處理間差異顯著性進(jìn)行檢驗(yàn)。
2 結(jié)果與分析
[3] CALENGE F, FAURE A, GOERRE M, et al. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific qtl for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis [J]. Phytopathology, 2004, 94(4): 370-379.
[4] 劉易科, 佟漢文, 朱展望, 等. 小麥赤霉病抗性機(jī)理研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(8): 1476-1488.
[5] 劉紅軍, 侯清松. 小麥赤霉病的發(fā)生發(fā)展及抗赤資源利用[J]. 小麥研究, 2014, 35(1):11-17.
[6] 張潔, 伊艷杰, 王金水, 等. 小麥赤霉病的防治技術(shù)研究進(jìn)展[J]. 中國(guó)植保導(dǎo)刊, 2014, 34(1): 24-28.
[7] 錢恒偉, 遲夢(mèng)宇, 黃金光. 小麥赤霉病病菌抗藥性研究進(jìn)展[J]. 中國(guó)植保導(dǎo)刊, 2016, 36(4): 19-23.
[8] 鄭小亮, 董超, 牛瑞艷, 等. 枯草芽孢桿菌Zl-2抗菌蛋白特性及對(duì)小麥赤霉病菌的抑制作用[J]. 黑龍江大學(xué)自然科學(xué)學(xué)報(bào), 2018, 35(2): 206-211.
[9] 李素平, 馮笑, 朱云云, 等. 煙管菌M-1對(duì)小麥苗期赤霉病的防效及其生理生化機(jī)制分析[J]. 植物保護(hù)學(xué)報(bào), 2019, 46(4):795-804.
[10]WANG Jinyang, XIONG Zhengqin, YAKOV K, et al. Biochar stability in soil: meta-analysis of decomposition and priming effects [J]. GCB Bioenergy, 2016, 8(3): 512-523.
[11]萬惠霞, 馮小虎, 張文梅, 等. 生態(tài)炭肥防治煙草青枯病及其土壤微生態(tài)學(xué)機(jī)理分析[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2015, 27(6): 92-97.
[12]ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils [J]. Plant Disease, 2011, 95(8): 960 -966.
[13]張涵, 焦永吉, 趙世民, 等. 利用生態(tài)炭肥修復(fù)土壤防治煙草根結(jié)線蟲病與黑脛病[J]. 煙草科技, 2016, 49(6): 30-35.
[14]OGUNTUNDE P G, ABIODUN B J, AJAYI A E, et al. Effects of charcoal production on soil physical properties in Ghana [J]. Journal of Plant Nutrition and Soil, 2008, 171(4): 591-596.
[15]張登曉, 周惠民, 潘根興, 等. 城市園林廢棄物生物質(zhì)炭對(duì)小白菜生長(zhǎng)、硝酸鹽含量及氛素利用率的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(6): 1569-1576.
[16]陳雪嬌, 楊丹丹, 李貴桐, 等. 不同溫度生物質(zhì)炭復(fù)混肥對(duì)小白菜和櫻桃蘿卜產(chǎn)量及硝酸鹽的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2014, 30(34): 30-34.
[17]劉歡歡, 董寧禹, 柴升, 等. 生態(tài)炭肥防控小麥根腐病效果及對(duì)土壤健康修復(fù)機(jī)理分析[J]. 植物保護(hù)學(xué)報(bào), 2015, 42(4): 504-509.
[18]LESLIE J F, SUMMERELL B A. The Fusarium laboratory manual [M]. USA: Blacking Publishing, 2006.
[19]谷醫(yī)林, 王翠翠, 初炳瑤, 等. 甘谷縣春季空氣中小麥條銹菌孢子動(dòng)態(tài)的監(jiān)測(cè)及其與氣象因素的相關(guān)性分析[J].植物保護(hù)學(xué)報(bào), 2018, 45(1): 161-166.
[20]農(nóng)藥田間藥效試驗(yàn)準(zhǔn)則 第15部分殺菌劑防治小麥赤霉?。?NY/T1464-2007 [S]. 北京:中國(guó)農(nóng)業(yè)出版社, 2008.
[21]周應(yīng)軍. 聯(lián)合收割機(jī)收獲條件下小麥理論產(chǎn)量和實(shí)收產(chǎn)量的比較[J]. 農(nóng)業(yè)開發(fā)與裝備, 2017(5): 79.
[22]AKHTER A, HAGE-AHMED K, SOJA G, et al. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil [J]. Plant and Soil, 2016, 406(1/2): 425-440.
[23]陳芳, 張康康, 谷思誠(chéng), 等. 不同種類生物質(zhì)炭及施用量對(duì)水稻生長(zhǎng)及土壤養(yǎng)分的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 38(5): 57-63.
[24]ROGOVSKA N, LAIRD D, LEANDRO L, et al. Biochar effect on severity of soybean root disease caused by Fusarium virguliforme [J]. Plant and Soil, 2017, 413(1/2): 111-126.
[25]YAO Qin, LIU Junjie, YU Zhenhua, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China [J]. Soil Biology and Biochemistry, 2017, 110(6): 56-67.
[26]ROSSI V, LANGUASCO L, PATTORI E, et al. Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by head blight [J]. Journal of Plant Pathology, 2002, 84(1): 53-64.
[27]DAVID R F, BOZORGMAGHAM A E, SCHMALE D G, et al. Identification of meteorological predictors of Fusarium graminearum ascospore release using correlation and causality analyses [J]. European Journal of Plant Pathology, 2015, 145(2): 1-10.
[28]MANSTRETTA V, GOURDAIN E, ROSSI V. Deposition patterns of Fusarium graminearum ascospores and conidia within a wheat canopy [J]. European Journal of Plant Pathology, 2015, 143(4): 873-880.
[29]王智慧, 殷大偉, 王洪義, 等. 生物炭對(duì)土壤養(yǎng)分、酶活性及玉米產(chǎn)量的影響[J]. 東北農(nóng)業(yè)科學(xué), 2019, 44(3): 14-19.
[30]ALBURQUERQUE J A, SALAZAR P, BARRN V, et al. Enhanced wheat yield by biochar addition under different mineral fertilization levels [J]. Agronomy for Sustainable Development, 2013, 33(3): 475-484.
[31]ZWIETEN L V, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1/2): 235-246.
(責(zé)任編輯:楊明麗)