• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale prediction of MEMS gyroscope random drift based on EMD-SVR

    2020-08-25 06:47:58HEJianingZHONGYingLIXingfei

    HE Jia-ning, ZHONG Ying, LI Xing-fei

    (State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072,China)

    Abstract:To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series, a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly, EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly, according to the time-frequency characteristic of each IMF, the corresponding SVR prediction model is established based on phase space reconstruction.Finally, the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model, the proposed model has higher prediction precision, which can provide the basis for drift error compensation of MEMS gyroscope.

    Key words:random drift; MEMS gyroscope; empirical mode decomposition(EMD); support vector regression(SVR); phase space reconstruction; multi-scale prediction

    0 Introduction

    With the development of micro-electromechanical systems(MEMS)technology, MEMS gyroscope has been widely used in the field of inertial navigation due to its advantages of low cost, small size, light weight and low power consumption.However, limited to the structural defects and processing technology, the performance of MEMS gyroscope is severely affected by its drift error, especially the random drift.Therefore, the accurate prediction and compensation of random drift are of vital importance for improving the measurement precision of MEMS gyroscope.

    The random drift series of MEMS gyroscope have the characteristics of non-stationarity, high nonlinearity and slow time-varying.In recent years, extensive research on the prediction methods of MEMS gyroscope random drift has been performed.A commonly used method is based on the theory of traditional time series analysis represented by auto regressive and moving average(ARMA)[1-4].Traditional time series models are mainly suitable for stationary and linear time series, which have low prediction accuracy about random drift.With the development of artificial intelligence, nonlinear models represented by neutral networks have achieved better results in random drift prediction[5-11].However, considering the complicated mechanism and multiple time scales of random drift series, the prediction accuracy of single models has encountered a bottleneck.To solve this problem, wavelet analysis has been gradually used in random drift prediction of MEMS gyroscope[12-15].Through the time-frequency analysis of drift series on different time scales, the prediction capability of nonlinear models can be fully excavated.Nevertheless, the wavelet basis and decomposition level are difficult to select, which restricts the application of wavelet analysis.Empirical mode decomposition(EMD)algorithm is a signal decomposition algorithm proposed by Huang in 1998.With the EMD, the original time series can be decomposed into a finite number of intrinsic mode functions(IMFs)with different time scales gradually.Compared with the wavelet transform, EMD is adaptive without selecting the basis function and decomposition level in advance.Multi-scale prediction models combining EMD algorithm and nonlinear models have been successfully applied to fiber optic gyroscope and proved to be more effective and accurate than single models[16-18].

    In this paper, a multi-scale prediction model based on EMD and support vector regression(SVR)is firstly applied to the random drift prediction of MEMS gyroscope.SVR is a nonlinear model which overcomes the defects of neural networks such as over fitting and easily falling into local minima.Moreover, compared with many other nonlinear models, SVR is more suitable for real-time prediction due to its sparse solution.After the EMD, SVR models are established for each IMF separately to reveal the law of random drift on different time scales.The feasibility and effectiveness of the proposed model are proven by experiments.

    1 Basic principle

    1.1 EMD algorithm

    EMD algorithm is a signal decomposition algorithm proposed by Huang in 1998.It can adaptively decompose the complex original signal into a finite number of IMFs based on the characteristic time scales of the signal itself to realize the separation of different modes.

    IMF needs to satisfy two conditions[19]: 1)in the whole data set, the number of extremas and the number of zero crossings must either equal or differ at most by one; and 2)at any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero.

    The decomposition steps of EMD are as follows.

    1)After finding all the extremas of the original signalx(t), the upper envelopeeu(t)and lower envelopeed(t)are generated by fitting the local maxima sequence and local minima sequence based on piecewise cubic spline interpolation principle, respectively.

    2)The mean value of the upper and lower envelope is computed by

    (1)

    3)The mean valuem(t)is subtracted from the original signalx(t)to get a new signal as

    h(t)=x(t)-m(t).

    (2)

    4)Steps 1-3 are repeated untilh(t)satisfies the IMF conditions.At this time, the first IMF is obtained, which is denoted asc1(t)=h(t).

    5)By regarding the residual termr1(t)=x(t)-c1(t)as the signal to be decomposed, the above steps are repeated until the termination condition is satisfied.After a series of decomposition, the original signalx(t)can finally be decomposed into a finite number of IMFs and a residual term as

    (3)

    ThesemIMFs represent the fluctuations of the original signal on different time scales and their frequency decreases successively.The residual term is monotonous and represents the trend item.The essence of EMD algorithm is to reduce the data complexity by decomposing the original signal into the superposition of several stationary signals.

    1.2 SVR model

    SVR model is a nonlinear prediction model based on statistical learning theory, which can be viewed as the expansion of SVM model on regression problem.The principle of SVR is as follows[20].

    For a given data set {(xn,yn)}(n=1,2,…,N), wherexn∈Rdis the input vector andyn∈Ris the output value, the aim of regression problem is to obtain the optimal decision function betweenxnandyn.

    eε(yn,h(xn))=

    (4)

    Taking the sum of error term and regularizer as the objective function, the primal problem of SVR is expressed as

    (5)

    g(x)=(w*)TФ(x)b*,

    (6)

    wherew*is the optimal weight vector, andb*is the optimal offset.

    For complex feature transformation, the dimension of feature spaceZis usually large or even infinite, which makes it difficult to solve the primal problem of SVR directly.In this case, the primal problem needs to be transformed into dual problem by Lagrange multiplier method.The dual problem of SVR is still a quadratic programming problem and is expressed as

    (7)

    K(xn,xm)=exp(-γ‖xn-xm‖2),

    (8)

    whereγdetermines the width of RBF.By solving the dual problem, the optimal decision function can be obtained as

    (9)

    whereα∧*andα∨*are the optimal Lagrange multiplier vectors; andb*is the optimal offset which can be derived according to Karush-Kuhn-Trcker(KKT)condition.

    SVR model includes three parameters: the error insensitivityε, kernel parameterγand penalty factorC.These three parameters need to be selected in advance and have a significant influence on the performance of SVR model.εdetermines the error sensitivity,γandCdetermine the generalization ability.Improper selection of(C,γ)may lead to over fitting or under fitting.

    1.3 Phase space reconstruction

    Phase space reconstruction is an important step of nonlinear time series analysis.As a kind of time series with chaotic characteristic, gyroscope drift needs to be embedded in an auxiliary phase space to restore the original dynamic system.The principle is as follows.

    For a given time series {x(n)}(n=1,2,…,N), after selecting the embedding dimensionand time delay, the original time series can be reconstructed intoMvectors inm-dimensional phase space as

    P(i)=(x(i),x(i+τ),…,x(i+(m-1)τ)),

    i=1,2,…,M,

    (10)

    where the number of vectors in-dimensional phase space isM=N-(m-1)τ.

    To ensure the equivalence betweenP(i)and the original time series {x(n)}, C-C method is applied to selectmandτrationally.C-C method, proposed by Kim in 1999[21], is a joint design algorithm ofmandτwith little computation, simple operation and good performance.

    The firstM-1 vectorsP(i)(i=1,2,…,M-1)are taken as the input vectors, and the last sampling points of time series {x(n)} are taken as the corresponding output values.Then a data set that containsM-1 samples can be constructed as

    Y=[x(2+(m-1)τ)x(3+(m-1)τ) …x(N)].

    (11)

    All of theseM-1 samples are divided into the training set and testing set for SVR.

    2 Multi-scale prediction model based on EMD-SVR for random drift of MEMS gyroscope

    The prediction steps of the proposed multi-scale prediction model are as follows.

    1)With the EMD, the random drift of MEMS gyroscope is decomposed into several IMFs.

    2)According to the time-frequency characteristic of each IMF, SVR prediction models are established based on phase space reconstruction, respectively.

    3)The final prediction results are the superimposition of the prediction results of each IMF with equal weight.

    The flow chart of the proposed model is shown in Fig.1.

    Fig.1 Flow chart of multi-scale prediction model based on EMD-SVR

    3 Experiments and results

    3.1 Experimental procedures

    In order to verify the validity of multi-scale prediction model based on EMD-SVR, the static drift data of MEMS gyroscope CRM100 were collected.The sampling period was 0.01 s and the sampling duration was 80 min.A drift series of length 5 000 was extracted as the experimental data.By eliminating the singularity points and using wavelet threshold denoising method, the following steps were performed.

    1)EMD

    With the EMD, the drift series of gyroscope was decomposed into nine IMFs and a residual term.Fig.2 shows the raw drift series and decomposition results.Since the residual term representes the trend term of drift series which belonges to deterministic error, the random drift of gyroscope is obtained by eliminating the residual term, as shown in Fig.3.

    Fig.2 Raw drift series and decomposition results

    Fig.3 Random drift of MEMS gyroscope

    2)Phase space reconstruction

    The next step was to reconstruct each IMF separately.C-C method was used to determine the embedding dimensionmand time delayτ.

    For all IMFs, the last 1 000 samples reconstructed by phase space reconstruction were divided into testing set, and the rest were for training.

    3)Sample normalization

    To accelerate the convergence speed and improve the prediction accuracy of SVR model, sample normalization is often required before training.Z-score standardization method is widely used for sample normalization and its formula is

    (12)

    Z-score standardization was performed on the output values and each feature dimension of training set separately.To ensure the consistency of training and testing, each feature dimension of testing set was transformed in the same way as training set.

    4)Parameter selection for SVR model

    The error insensitivityεwas 0.05, and the model parameters(C,γ)were selected by 4-fold cross validation.

    5)Training and testing

    Based on the selected model parameters, training and testing were conducted for each IMF.Since the data were normalized before training, anti-normalization was needed to restore the desired prediction results.The formula is

    (13)

    6)Synthesis of prediction results

    The final prediction results of the last 1 000 sampling points were obtained by adding up the prediction results of all IMFs with equal weight.

    7)Evaluation of prediction accuracy

    To quantitatively evaluate the prediction accuracy of each IMF and the overall, the root mean square errorERMSEand correlation coefficientρwere used as evaluation indices.The formulas ofERMSEandρa(bǔ)re

    (14)

    (15)

    3.2 Experimental results and discussion

    In order to further validate the superiority of the proposed model in prediction accuracy, the single SVR model was used for comparison based on the same experimental data.The prediction results of the last 1000 sampling points using different models are shown in Figs.4 and 5, respectively.The parameter selection and prediction accuracy of the two models are listed in Tables 1 and 2, respectively.

    Fig.4 Prediction results of multi-scale prediction model based on EMD-SVR

    Fig.5 Prediction results of single SVR model

    Table 1 Parameter selection and prediction accuracy of multi-scale prediction model based on EMD-SVR

    Table 2 Parameter selection and prediction accuracy of single SVR model

    As shown in Figs.4 and 5, it is evident that the prediction values of the proposed model are closer to the actual random drift than those of SVR model.According toERMSEandρof the two models given in Tables 1 and 2, the prediction accuracy of the proposed model is higher than that of SVR model.It is proved that the multi-scale prediction model based on EMD-SVR can reduce the data complexity by decomposing the original random drift series into a series of stationary time series so as to achieve better performance than the single SVR model.

    4 Conclusions

    In this paper, a multi-scale prediction model based on EMD-SVR is proposed for random drift prediction of MEMS gyroscope.The main conclusions are as follows.

    1)The random drift of MEMS gyroscope has the characteristic of multiple time scales, which makes it difficult to achieve high prediction accuracy with the single SVR model.

    2)With the EMD, the gyroscope random drift is decomposed into several stationary IMFs with the frequency descending successively.These IMFs represent the fluctuations of random drift series on different time scales.Compared with the original random drift series, IMF is much simpler and easier to model.

    3)The proposed model reduces the data complexity by using EMD so as to achieve better performance than the single SVR model.

    4)Experimental results prove the validity of the proposed model in random drift prediction of MEMS gyroscope, and the prediction accuracy of the proposed model is higher than that of the single SVR model.

    欧美精品一区二区大全| av在线播放精品| netflix在线观看网站| 建设人人有责人人尽责人人享有的| 999久久久国产精品视频| h视频一区二区三区| 精品久久久久久久毛片微露脸 | av网站免费在线观看视频| 少妇人妻 视频| 青春草亚洲视频在线观看| 成年人午夜在线观看视频| 人人妻,人人澡人人爽秒播 | 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 一本一本久久a久久精品综合妖精| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 精品福利观看| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 久久久久国产一级毛片高清牌| 精品国产国语对白av| 每晚都被弄得嗷嗷叫到高潮| 黄色视频不卡| 国产国语露脸激情在线看| 人人澡人人妻人| 国产日韩欧美视频二区| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| 日本一区二区免费在线视频| 国产1区2区3区精品| 韩国高清视频一区二区三区| 欧美人与善性xxx| 亚洲精品日韩在线中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产片特级美女逼逼视频| 少妇精品久久久久久久| 性色av乱码一区二区三区2| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 国产亚洲av高清不卡| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人| 国产亚洲午夜精品一区二区久久| 一级黄片播放器| 少妇被粗大的猛进出69影院| 亚洲av电影在线进入| 国产黄色免费在线视频| 波野结衣二区三区在线| 精品人妻在线不人妻| 熟女av电影| 色网站视频免费| 日韩av在线免费看完整版不卡| 亚洲av电影在线进入| 国产高清不卡午夜福利| 国产亚洲精品久久久久5区| 丝袜美腿诱惑在线| 满18在线观看网站| 日韩人妻精品一区2区三区| 久久性视频一级片| 婷婷色综合大香蕉| 亚洲av成人精品一二三区| 国产成人免费观看mmmm| 中文精品一卡2卡3卡4更新| 日本av手机在线免费观看| 免费看av在线观看网站| 91麻豆精品激情在线观看国产 | 久久精品久久久久久噜噜老黄| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| 国产精品.久久久| 又大又黄又爽视频免费| 国产av国产精品国产| 国产一级毛片在线| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 色视频在线一区二区三区| 免费看av在线观看网站| 性高湖久久久久久久久免费观看| 两人在一起打扑克的视频| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 色网站视频免费| 七月丁香在线播放| 欧美日韩精品网址| 一二三四社区在线视频社区8| 久久九九热精品免费| 在线观看国产h片| 丰满饥渴人妻一区二区三| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 大片免费播放器 马上看| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 国产精品免费大片| 免费看av在线观看网站| 大陆偷拍与自拍| 欧美黄色淫秽网站| 下体分泌物呈黄色| 尾随美女入室| 日韩制服骚丝袜av| 亚洲国产精品成人久久小说| 国产伦理片在线播放av一区| 18禁黄网站禁片午夜丰满| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网 | 免费观看a级毛片全部| 一级毛片女人18水好多 | 免费高清在线观看日韩| 大码成人一级视频| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看av| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 国产精品久久久久久人妻精品电影 | 一级黄片播放器| 国产精品一二三区在线看| 国产在线一区二区三区精| 国产真人三级小视频在线观看| 国产欧美亚洲国产| 满18在线观看网站| 久久这里只有精品19| www.熟女人妻精品国产| 91九色精品人成在线观看| 亚洲av综合色区一区| 久久久国产欧美日韩av| 大香蕉久久网| 男的添女的下面高潮视频| 菩萨蛮人人尽说江南好唐韦庄| 99久久综合免费| tube8黄色片| 人成视频在线观看免费观看| 国产成人av激情在线播放| 成人国产一区最新在线观看 | 水蜜桃什么品种好| 久久鲁丝午夜福利片| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 热99久久久久精品小说推荐| 婷婷色综合大香蕉| 国语对白做爰xxxⅹ性视频网站| 天天影视国产精品| 波多野结衣一区麻豆| netflix在线观看网站| 欧美97在线视频| 最新的欧美精品一区二区| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| avwww免费| 亚洲av国产av综合av卡| 欧美中文综合在线视频| 亚洲欧美一区二区三区国产| 国产亚洲欧美在线一区二区| 激情五月婷婷亚洲| 中文字幕制服av| 你懂的网址亚洲精品在线观看| 国产男女内射视频| 久久人人97超碰香蕉20202| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 免费观看a级毛片全部| 一级毛片我不卡| 午夜福利乱码中文字幕| 18禁黄网站禁片午夜丰满| 超碰成人久久| 亚洲第一青青草原| 一本—道久久a久久精品蜜桃钙片| 狂野欧美激情性bbbbbb| 黄色视频不卡| 丰满人妻熟妇乱又伦精品不卡| 久久久久久人人人人人| 欧美在线一区亚洲| 久久 成人 亚洲| 午夜福利视频在线观看免费| 亚洲天堂av无毛| 天天躁日日躁夜夜躁夜夜| 两个人免费观看高清视频| 最黄视频免费看| 99国产精品一区二区三区| 国产不卡av网站在线观看| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 亚洲一码二码三码区别大吗| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说| 亚洲美女黄色视频免费看| av国产久精品久网站免费入址| 午夜福利一区二区在线看| 婷婷色综合大香蕉| 亚洲精品第二区| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品成人在线| 老司机深夜福利视频在线观看 | 国产黄色免费在线视频| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 久久久精品94久久精品| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 女性被躁到高潮视频| 久久久久精品人妻al黑| 婷婷丁香在线五月| 老司机靠b影院| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 无遮挡黄片免费观看| 国产精品偷伦视频观看了| 咕卡用的链子| 亚洲av美国av| 高清av免费在线| 亚洲国产欧美日韩在线播放| 精品福利永久在线观看| 色播在线永久视频| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 亚洲精品一区蜜桃| 视频区欧美日本亚洲| 在线av久久热| 亚洲精品国产av蜜桃| 满18在线观看网站| 欧美日韩国产mv在线观看视频| 成人国产一区最新在线观看 | 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 国产黄色免费在线视频| 老司机影院成人| 国产在线视频一区二区| 国产人伦9x9x在线观看| 男人添女人高潮全过程视频| 日本午夜av视频| 老司机亚洲免费影院| 99国产精品免费福利视频| 大码成人一级视频| 午夜视频精品福利| 又大又爽又粗| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 国产激情久久老熟女| 自线自在国产av| 亚洲精品自拍成人| 超碰成人久久| 美女脱内裤让男人舔精品视频| 久久热在线av| 国产日韩欧美在线精品| 国产极品粉嫩免费观看在线| √禁漫天堂资源中文www| 成年av动漫网址| 18在线观看网站| 日韩免费高清中文字幕av| 久久av网站| 亚洲综合色网址| 伊人久久大香线蕉亚洲五| 久久免费观看电影| www日本在线高清视频| 亚洲精品美女久久av网站| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 男人操女人黄网站| 日韩一区二区三区影片| 国产精品 国内视频| 美国免费a级毛片| 日本黄色日本黄色录像| 久久国产精品人妻蜜桃| 另类亚洲欧美激情| 啦啦啦在线观看免费高清www| 少妇粗大呻吟视频| 中国美女看黄片| 老司机深夜福利视频在线观看 | 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 久久久精品94久久精品| 久久影院123| 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 日韩伦理黄色片| 欧美 亚洲 国产 日韩一| 午夜影院在线不卡| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 国产精品一二三区在线看| 欧美日本中文国产一区发布| 操出白浆在线播放| 亚洲av片天天在线观看| 在线观看人妻少妇| cao死你这个sao货| av一本久久久久| 久热爱精品视频在线9| 日韩精品免费视频一区二区三区| 男的添女的下面高潮视频| 精品一区在线观看国产| 精品少妇一区二区三区视频日本电影| 国产又色又爽无遮挡免| 久久精品亚洲av国产电影网| 亚洲情色 制服丝袜| 免费在线观看影片大全网站 | 在线看a的网站| 亚洲精品国产一区二区精华液| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 免费观看a级毛片全部| 天天躁日日躁夜夜躁夜夜| 热99久久久久精品小说推荐| 国产精品 欧美亚洲| 在线观看一区二区三区激情| 七月丁香在线播放| 新久久久久国产一级毛片| 操出白浆在线播放| 成年av动漫网址| 制服诱惑二区| 老汉色∧v一级毛片| 亚洲精品久久久久久婷婷小说| 亚洲精品日本国产第一区| 亚洲中文av在线| www.精华液| 欧美日韩av久久| 下体分泌物呈黄色| 一本一本久久a久久精品综合妖精| 桃花免费在线播放| 国产老妇伦熟女老妇高清| 亚洲成人国产一区在线观看 | 99九九在线精品视频| 亚洲第一av免费看| 亚洲av国产av综合av卡| av国产精品久久久久影院| 国产淫语在线视频| 69精品国产乱码久久久| 黄色怎么调成土黄色| 成年av动漫网址| 精品免费久久久久久久清纯 | 国产精品免费视频内射| 国产精品二区激情视频| 亚洲av男天堂| 一边摸一边做爽爽视频免费| 久久中文字幕一级| 一本久久精品| 久久人妻福利社区极品人妻图片 | 一级片免费观看大全| 色婷婷久久久亚洲欧美| 精品免费久久久久久久清纯 | 超色免费av| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 男的添女的下面高潮视频| www日本在线高清视频| 波野结衣二区三区在线| 搡老乐熟女国产| 亚洲欧美激情在线| 狂野欧美激情性bbbbbb| 大香蕉久久网| 亚洲国产中文字幕在线视频| 18禁观看日本| 亚洲av日韩精品久久久久久密 | 丁香六月天网| 国产精品av久久久久免费| 日韩av免费高清视频| 另类精品久久| 少妇裸体淫交视频免费看高清 | 中文字幕亚洲精品专区| 51午夜福利影视在线观看| 9色porny在线观看| 亚洲成人免费av在线播放| 丝袜人妻中文字幕| 一本综合久久免费| 考比视频在线观看| 午夜老司机福利片| 日韩 亚洲 欧美在线| 一二三四社区在线视频社区8| 各种免费的搞黄视频| 精品少妇一区二区三区视频日本电影| 日韩一本色道免费dvd| 亚洲欧美精品综合一区二区三区| 汤姆久久久久久久影院中文字幕| 激情视频va一区二区三区| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 大香蕉久久成人网| 国产欧美日韩一区二区三区在线| 日韩伦理黄色片| 三上悠亚av全集在线观看| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 国产极品粉嫩免费观看在线| 亚洲少妇的诱惑av| 一级片'在线观看视频| 男人添女人高潮全过程视频| 日韩av免费高清视频| 欧美黑人精品巨大| 黑人欧美特级aaaaaa片| 一二三四社区在线视频社区8| 亚洲 欧美一区二区三区| 十八禁网站网址无遮挡| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 免费看十八禁软件| 亚洲成人免费电影在线观看 | 久久久久久久大尺度免费视频| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 成人国语在线视频| 人妻 亚洲 视频| svipshipincom国产片| 久久天堂一区二区三区四区| 一级毛片女人18水好多 | 咕卡用的链子| 国产成人精品久久二区二区91| 亚洲国产精品成人久久小说| 十八禁人妻一区二区| 建设人人有责人人尽责人人享有的| 久久九九热精品免费| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 国产xxxxx性猛交| svipshipincom国产片| 欧美黄色片欧美黄色片| 国产成人免费无遮挡视频| 视频区欧美日本亚洲| 久久精品国产综合久久久| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 亚洲av欧美aⅴ国产| 一边摸一边做爽爽视频免费| 美女主播在线视频| 丁香六月天网| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 天天添夜夜摸| 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 精品熟女少妇八av免费久了| 国产无遮挡羞羞视频在线观看| 十八禁人妻一区二区| 美女视频免费永久观看网站| 国产麻豆69| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 人人妻人人爽人人添夜夜欢视频| 美女福利国产在线| 亚洲av日韩在线播放| 一级黄色大片毛片| av福利片在线| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| netflix在线观看网站| 男女免费视频国产| 久热爱精品视频在线9| 一区在线观看完整版| 久久人人97超碰香蕉20202| 美女主播在线视频| 亚洲国产成人一精品久久久| 视频区图区小说| 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 岛国毛片在线播放| 99国产精品一区二区三区| 亚洲精品久久久久久婷婷小说| 久久久久久久大尺度免费视频| 成人国语在线视频| kizo精华| 午夜日韩欧美国产| av网站免费在线观看视频| 另类精品久久| 久久久久久亚洲精品国产蜜桃av| 国产午夜精品一二区理论片| av在线播放精品| 黄频高清免费视频| 国产亚洲av高清不卡| 操出白浆在线播放| 精品视频人人做人人爽| 日本av手机在线免费观看| 国产有黄有色有爽视频| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频 | 欧美激情高清一区二区三区| 国产亚洲av高清不卡| 免费在线观看黄色视频的| 国产成人系列免费观看| 青青草视频在线视频观看| 成人亚洲精品一区在线观看| 丝袜脚勾引网站| 婷婷色综合大香蕉| 国产免费又黄又爽又色| 一级毛片女人18水好多 | 一区二区三区激情视频| 99久久精品国产亚洲精品| 精品人妻在线不人妻| 亚洲色图综合在线观看| 男女下面插进去视频免费观看| 免费看av在线观看网站| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 丰满少妇做爰视频| 欧美亚洲 丝袜 人妻 在线| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 黄色一级大片看看| 成年人午夜在线观看视频| 麻豆国产av国片精品| 亚洲国产毛片av蜜桃av| 青青草视频在线视频观看| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| e午夜精品久久久久久久| 亚洲精品一二三| 国产精品一区二区在线不卡| 免费看不卡的av| 免费不卡黄色视频| 亚洲,一卡二卡三卡| 久久鲁丝午夜福利片| xxxhd国产人妻xxx| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 熟女av电影| 久久人人爽av亚洲精品天堂| 99re6热这里在线精品视频| 久久人人爽av亚洲精品天堂| 十八禁网站网址无遮挡| av国产精品久久久久影院| 大香蕉久久网| 热re99久久国产66热| 久久中文字幕一级| 欧美国产精品va在线观看不卡| 欧美在线一区亚洲| 国产精品99久久99久久久不卡| 亚洲av国产av综合av卡| 在线观看www视频免费| 一区在线观看完整版| 欧美+亚洲+日韩+国产| 国产精品秋霞免费鲁丝片| 国产野战对白在线观看| 首页视频小说图片口味搜索 | 婷婷色麻豆天堂久久| 伊人久久大香线蕉亚洲五| 免费av中文字幕在线| 国产精品一区二区在线观看99| 久久久久国产精品人妻一区二区| 老司机午夜十八禁免费视频| 蜜桃在线观看..| 久久精品国产综合久久久| 欧美日韩成人在线一区二区| 国产精品久久久av美女十八| 久久青草综合色| 国产成人精品无人区| 久久人人97超碰香蕉20202| 男女高潮啪啪啪动态图| 精品国产一区二区三区久久久樱花| 丰满饥渴人妻一区二区三| 狂野欧美激情性xxxx| 老汉色av国产亚洲站长工具| 午夜激情av网站| 亚洲国产av影院在线观看| 熟女av电影| 老司机深夜福利视频在线观看 | 中文字幕av电影在线播放| cao死你这个sao货| 人人妻,人人澡人人爽秒播 | 人妻 亚洲 视频| av在线播放精品| 国产有黄有色有爽视频| 午夜激情av网站| 黄色片一级片一级黄色片| 国产不卡av网站在线观看| 欧美日韩国产mv在线观看视频| 久久99精品国语久久久| 无遮挡黄片免费观看| 日本av手机在线免费观看| 大陆偷拍与自拍| 精品福利观看| 后天国语完整版免费观看| 美女午夜性视频免费| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 亚洲中文字幕日韩| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 最近手机中文字幕大全| 观看av在线不卡| 久久毛片免费看一区二区三区| 9191精品国产免费久久| 国产精品成人在线| 国产淫语在线视频| 午夜91福利影院| 午夜av观看不卡| 成人午夜精彩视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 日本av免费视频播放| 日韩欧美一区视频在线观看| 精品卡一卡二卡四卡免费| 如日韩欧美国产精品一区二区三区| 日韩精品免费视频一区二区三区| netflix在线观看网站| 如日韩欧美国产精品一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久av网站| 国产黄色视频一区二区在线观看|