• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of trajectory tracking of two-wheeled differential spherical mobile robot

    2020-08-25 04:50:40WANGWeiZHANGZhiliangGAOBenwenYIMing

    WANG Wei, ZHANG Zhi-liang,, GAO Ben-wen, YI Ming

    (1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China;2. Drilling Engineering Technology Institute of CNPC Xibu Drilling Engineering Company Limited, Urumqi 830011, China)

    Abstract:This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure, flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control, the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot, it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition, the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances, and avoids the jitter of left and right wheels during the torque output.

    Key words:mobile robot; adaptive neural sliding mode control; dynamics controller; trajectory tracking

    0 Introduction

    At present, robots play an increasingly important role in human life and work, and the mobile robot becomes an important branch in the field of robotics.During the development of the robot industry, the traditional wheeled and tracked mobile robots have been developed earlier, and the technology is more mature and widely used at present.Along with the continuous expansion of robot application, new spherical robots emerge.As a kind of mobile robot with special structure, it has a completely closed spherical shell which is composed of control system, power system, motion actuator, sensor and so on, realizing complex motion mainly according to centroid skewing, momentum conservation and other related principles.Compared with the traditional mobile robot, the spherical robot has many unique advantages.For example, it can achieve zero turning radius when it is steering.The spherical shell can effectively cushion the external impact force to protect the internal device.However, the spherical robot also has some defects.For example, because of the limitation of the spherical shell structure, the external information cannot be effectively transmitted to the internal controller via the sensor, which makes the spherical robot unable to achieve intelligent control.In addition, since the spherical robot is featured by non-integrity constraint, underactuation, non-chain, strong coupling and so on, its motion control becomes a difficult problem to solve.Therefore, it is very important to design a spherical robot with good structural characteristics to realize precise motion control, which has important theoretical significance and engineering application value.Jelassi et al.studied the optimization of scanning probe microscopy(SPM)for 3-RRR spherical parallel robot.In addition to the constrained workspace and dexterity, the distribution of single positions was also studied[1].Liu et al.has designed a new type of bionic spherical amphibious child-mother robot system, in which the spherical amphibious mother robot moves on land in a bionic four-legged crawling mode and uses a vector water jet motor to spray water for propulsion under water, featured by no noise, increased concealment and provision of control signals and energy for the micro child-robot.The micro child-robot is driven by wheels on land and designed with an amphibious impeller.The child-mother robot system realizes wireless communication through XBee communication module.Through land and underwater motion tests of the child-mother robot, the effectiveness of the designed child-mother robot system was verified[2].Huang et al.introduced a prototype of a spherical rolling robot with a new driving mechanism.The spherical robot has a momentum wheel(gyroscope)that rotates at high speed in an outer spherical shell.The test results were also provided to verify the feasibility of the mechanism[3].Fan et al.aiming at the uncertainty and nonlinearity of the mobile robot model, proposed a hybrid algorithm of PI-type sliding mode control(SMC)based on backstepping dynamic control and adaptive radial basis function neural network(RBFNN)to adjust sliding mode gain, so as to enhance the adaptability to stochastic uncertainty factors and eliminate the jitter of sliding mode control input[4].

    In combination with the flexible motion of wheeled mobile robot and the protective motion of spherical mobile robot, a two-wheeled differential spherical mobile robot is proposed here.Unlike the traditional spherical shell type rolling robot, the driving system of the two-wheeled differential spherical mobile robot realizes the complex motion of the whole system mainly by two hemispherical rollers.The hemispherical differential spherical robot is a mobile robot designed by integrating the features of the differential drive of left and right wheels of two-wheeled self-balancing robot based on the existing spherical robot.This robot not only still has the advantages of flexible movement of spherical robot in two-dimensional plane, but also eliminates the restriction of the spherical shell on internal sensor and external environment via the design of the central connecting platform, which makes it better to obtain the external information and carry a variety of sensor devices to improve the autonomous motion ability of the spherical robot.Therefore, this robot may have great advantages and extensive application prospects in the fields of planet exploration, dangerous environment detection, etc.

    1 Driving system and operating principle

    As shown in Fig.1, the stable platform is driven by the left and right hemispherical wheels, the motion of which are independent from each other, and it keeps a vertical state under the action of the balancing weight.The system is composed of driving wheel, stable platform, drive motor, rack and pinion, bearing and other components.The stable platform is installed by the upper and lower units by connecting bolts, and it can be equipped with sensors, cameras and control units of the system, and with the counterweight slots at below for the installation of the power supply of the system.For the spherical robot, the motor installed on the stable platform is directly connected with the gear, and the circular rack is fixedly connected with the spherical shell to keep connection with the stable platform via the bearing.The driving motor drives the gear to rotate, and the gear meshes with the circular rack, so as to drive the spherical shell to rotate.The stable platform keeps stable under the action of gravity.The omnidirectional motion of the spherical robot will be realized under the action of two driving wheels at different speeds.

    1—Top cap;2—Left gear;3—Right gear;4—Fixed plate of motor;5—Motor;6—Bearing seat;7—Driving wheel;8—Round internal gear;9—Bearing;10—Stable platform;11—Connecting bolt

    When the two driving wheels rotate in the same direction at the same speed, the spherical robot can move in a straight line.When the two driving wheels rotate in the same direction at a differential speed, the curve and circular motion can be realized.If the two driving wheels rotate in the opposite direction at the same speed, the in-situ steering motion can be realized.Therefore, compared with the existing spherical robots[3-8], the differential spherical robot is easier to realize various forms of motion.The robot is simple and dexterous and free of restriction of spherical shell, and can be carried with sensors and cameras, so as to capture external information, realize intelligence of spherical robot and expand its range of application.

    2 Differential equation of motion

    The spherical mobile robot is one of nonlinear multi-input and multi-output systems that are featured by nonholonomic constraints and strong coupling[2].At present, in the theoretical study of motion control of the mobile robot, it is generally assumed that the nonholonomic constraint of the system is an ideal constraint, that is, the wheel is in point contact with the ground and only pure rolling occurs at the point of contact without relative sliding(including lateral and longitudinal sliding).The spherical mobile robot controls the speed and direction of motion of the robot by controlling the speed of two driving wheels.

    2.1 Kinematic modeling

    In our work, we simplify the physical model of the robot when analyzing the motion of a spherical mobile robot, so as to highlight the impact of key factors.In addition, a rectangular coordinate system is established in the plane of motion, and the simplified model is shown in Fig.2.

    Fig.2 Simplified model of spherical mobile robot

    The centroid point of the stable platform isO, the distance between the two driving wheels isL, the radius of the driving wheel isR, the heading angle of the whole system isθ, the turning angle of the left driving wheel isωL, and the turning angle of the right driving wheel isωR.

    The speed at the center of mass of the stable platform of the spherical mobile robot isV0, in a direction perpendicular to two drive axles, thus the components in thexaxis andyaxis directions can be obtained as

    (1)

    By eliminatingV0in the above equation, the constraint equation can be obtained as

    (2)

    The relationship of the linear velocity, heading angle and driving wheel angle of the robot system is expressed as

    (3)

    From that, the kinematical equations of the differential spherical mobile robot can be obtained as

    (4)

    (5)

    2.2 Dynamical modeling

    The Lagrange multiplier equation[12-13]is usually selected to analyze the dynamical model of the spherical mobile robot due to nonholonomic constraints in motion.

    The position of the robot are described by the three-dimensional generalized coordinates , the mobile robot is regarded as a point, and pointOis the current position of the mobile robot.

    Since there is a nonholonomic constraint in the system, as represented by Eq.(2), which is given in the form of formula as

    (6)

    Assuming that

    (7)

    whereS(q)represents the velocity transition matrix of the system as

    v(t)=[ωRωL]Tmeans the speed matrix.The speed of the coordinate system of the robot,v(t)=[ωRωL]T, can be converted into the speed,V(t)=[vω]Tin the Cartesian coordinate system, wherevis the linear speed of the center of massC, andωis the angular speed thereof.Then the kinematical equation of the spherical mobile robot is

    (8)

    Total kinetic energy,T, of the system is

    (9)

    whereTVis the translation kinetic energy of the system;TJis the rotational kinetic energy of the system;mis the mass of the system; andIis rotational inertia.

    A binding force is added as an input item to the dynamical equation of the system to prevent the driving wheel from sideslip.The Lagrange equation with multipliers is represented as

    (10)

    Substituting Eq.(9)into Eq.(10), we can obtain the dynamical model of the system as[9]

    (11)

    It can be seen that the dynamic equation of the spherical mobile robot is[11-12]

    (12)

    Eq.(12)can be further converted to

    (13)

    where

    3 Design of trajectory tracking controller

    Based on the kinematical and dynamical equations of the spherical mobile robot mentioned above, firstly, an appropriate control function is selected for the pose error system of kinematical Eq.(8)to design a reasonable kinematics controller, and the linear speedvand angular speedωoutput from the controller are used as auxiliary control inputs, so that the actual and planned trajectories of motion of the robot converge to zero.After that, according to the dynamical equations of the system, the torque controller of the spherical mobile robot is designed by using adaptive neural sliding mode control[9-10], so as to make its speed converge to the desired speed given by the motion controller.

    3.1 Design of kinematical controller

    According to the motion system of the spherical mobile robot, the motion trajectory is given asqd=[xdydθd]T, and the tracking error of the position and course of the system is

    (14)

    Then, the differential equation ofqeis

    (15)

    Then, according to Lyapunov function[10], the auxiliary speed control input,VF, is designed as

    (16)

    wherekx,ky,ks,αandλ(α+λ=1)are constant greater than zero.VFmakes the pose error of the spherical mobile robot converge to zero.

    3.2 Design of dynamical controller

    By using adaptive neural sliding mode control[11-13], the speed tracking error of spherical mobile robot is designed as

    (17)

    The sliding mode surface is selected by Eq.(13)as

    (18)

    whereη>0.

    Then, the derivative ofS(t)can be got as

    (19)

    LetB=E0τ, the equivalent control lawBeqis

    (20)

    The control characteristic of the robot is realized by adjustingη.However, there are unknown parameters and disturbances in the whole system.And also, the above Eq.(20)cannot accurately describe the characteristics of the system and the stability of the entire system.Therefore, the adaptive neural network is used to approximate Eq.(19), the input of the network is 2, the number of hidden units is N, and the output of the network is 2.Taking the tracking error as the input of the neural network, i.e.xi=ec(i),(i=1,2), and the output of the neural network is

    (21)

    where the weight vector of the neural network isWi=[wi1wi2…wim]T;Hirefers to the radial basis vector,Hi=[hi1hi1…h(huán)im]T, andhijis a Gaussian function in the form as

    (22)

    (23)

    wherej=1,2,…,m;c(∶,j)refers to the network center, andbjrefers to the base width.

    It is assumed that the optimal output value of the network is

    (24)

    Because of the minimum deviation in the system model, its equivalent control is

    (25)

    In order to overcome the influence of uncertain parameters and disturbances in the system, the adaptive adjustment of neural network weights is adopted, and the equivalent control is

    (26)

    (27)

    (28)

    At that time, the law of neural sliding mode control is

    (29)

    In order to eliminate the jittering in the system, radial basis function neural network(RBFNN)is used to adjust the sliding mode gain,Γ, and the sliding mode surface is taken as the input of RBFNN, causingxi=si,i=1,2, so that the output of RBFNN[13]is

    (30)

    whereAi=[αi1αi2…αim]Tis the weight vector of the network, andψi=[φi1φi2…φim]T, in whichφijis Gauss function, namely

    i=1,2,j=1,2,…,m,

    (31)

    wheredijis the center of thejth node of theith input in RBFNN, andδijis the base width, all of which are the constants greater than zero.

    For the gain of switching control, the optimal parameters should be selected in the design process of sliding mode controller.Because of the uncertain parameters and unknown disturbances as well as the uncertain factors of approximation accuracy of neural network, the parameters obtained by mobile robot system are often imprecise.Therefore, the adaptive control law is used to estimate the optimal parameters[14-15].

    Assuming that the switching controller of the optimal gain is

    (32)

    and the estimated gain switching controller is

    (33)

    (34)

    (35)

    whereγi>0, from which the adaptive neural sliding mode controller of the system is obtained as

    (36)

    3.3 Certificate of stability

    Theorem: According to Eq.(8)of spherical mobile robot system, Lyapunov function is selected to design Eq.(16)of the kinematical controller, and the adaptive neural sliding mode is used to design Eq.(36)of the dynamical controller of the system.The adaptive law of parameters is Eqs.(27)and(35), which indicates that Eq.(12)of the whole system is asymptotically stable.

    It is proved that Lyapunov function should be selected as

    L=L1+L2,

    (37)

    (38)

    (39)

    Substituting the derivative ofL1in respect of time into Eq.(15), we can obtain

    xe(vrcosθe-v-Ksθew)+vrsinθe(ye+Ksθe)+

    ((ye+Ksθs)Ks+sinθe/Ky)(wr-w).

    (40)

    Substituting Eq.(16)into Eq.(40), we can obtain

    (41)

    Substituting the derivative of Eq.(39)into Eqs.(19),(26),(27),(34),(35)and(36), we can obtain

    (42)

    Ifηi>0, the following equation can be obtained as

    (43)

    ?≥0.

    (44)

    4 Simulation test

    In this paper, a simulation model is built in Matlab/Simulink to verify the trajectory tracking control of the spherical mobile robot according to the control designed by the neural network adaptive sliding mode control.The control algorithm is shown in Fig.3.

    Fig.3 Structural diagram of kinematical and dynamical control algorithm of spherical mobile robot

    Fig.4 S-trajectory tracking of spherical mobile robot

    For the circular trajectory,yr=sin(t),θr(t)=t,vr=1 m/s andωr=1 rad/s.The initial error between the actual trajectory and the reference trajectory of the spherical mobile robot is defined asqe=(0.5 0 0), and the initial reference pose isq=(1 0 π/2).The simulation of the robot in trajectory tracking of 40 s is shown in Fig.5.It can be seen from Figs.4 and 5 that the robot has strong flexibility in motion and can complete complex trajectory motion.Under the adaptive neural sliding mode control, the system can realize the trajectory tracking control well, and enters the steady state in 3 s, during which the trajectory and heading angle converge to the reference value gradually.

    Fig.5 Tracking of circular trajectory of spherical mobile robot

    It can be seen from shown Figs.6 and 7, the tracking error of the system gradually converges to zero in 3 s, and no jittering is found in the whole system in the process of the trajectory tracking, and the influence of unknown parameters and disturbances is eliminated.

    Fig.6 System tacking error

    Fig.7 Control curve of left and right wheels

    5 Conclusion

    In this paper, we discuss a two-wheeled differential spherical mobile robot.The robot body is composed of an internal support platform and two hemispherical rollers, which increases the loading space of the sensor.The robot is simple in structure, flexible in motion and easy to control.Based on the adaptive neural sliding mode control method, the trajectory tracker of the system is designed, and a model is built for simulation.The simulation test results show that the spherical robot can complete the control over the tracking along the s-trajectory and the circular trajectory and eliminate the influence of unknown parameters and disturbances in the motion of the spherical robot, and no jittering is found during the torque output of the whole system.Therefore, the system proposed is stable and reliable, meeting the requirements of mobile robot system for jittering prevention and anti-interference.

    国产av不卡久久| 亚洲国产精品久久男人天堂| 国产亚洲欧美98| 欧美xxxx性猛交bbbb| 国产精品久久久久久精品电影小说 | a级一级毛片免费在线观看| 好男人在线观看高清免费视频| 日韩高清综合在线| 丝袜美腿在线中文| 丝袜美腿在线中文| 18禁在线无遮挡免费观看视频| 亚洲七黄色美女视频| 亚洲七黄色美女视频| 亚洲婷婷狠狠爱综合网| 亚洲婷婷狠狠爱综合网| 一本久久中文字幕| 好男人视频免费观看在线| 卡戴珊不雅视频在线播放| 夜夜爽天天搞| 一本一本综合久久| 免费人成在线观看视频色| 亚洲中文字幕日韩| 国产男人的电影天堂91| 国产淫片久久久久久久久| 久久久a久久爽久久v久久| 色综合色国产| 久久精品国产亚洲av香蕉五月| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 18+在线观看网站| 久久热精品热| or卡值多少钱| 麻豆精品久久久久久蜜桃| 欧美变态另类bdsm刘玥| 蜜臀久久99精品久久宅男| 国产精品三级大全| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| eeuss影院久久| 乱人视频在线观看| 欧美3d第一页| 免费无遮挡裸体视频| 亚洲精品成人久久久久久| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 国产欧美日韩精品一区二区| 神马国产精品三级电影在线观看| 亚洲av一区综合| 久久人人爽人人片av| av专区在线播放| 两个人的视频大全免费| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 中文字幕免费在线视频6| 精品少妇黑人巨大在线播放 | 亚洲无线在线观看| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 我要搜黄色片| 高清毛片免费看| 网址你懂的国产日韩在线| avwww免费| 99国产精品一区二区蜜桃av| 99久久人妻综合| 国产黄片美女视频| 在线免费观看的www视频| 性色avwww在线观看| 精品久久久久久久久久久久久| 黄色日韩在线| av又黄又爽大尺度在线免费看 | 欧美色欧美亚洲另类二区| a级一级毛片免费在线观看| 男女啪啪激烈高潮av片| 日本免费a在线| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 只有这里有精品99| 欧美zozozo另类| 亚洲不卡免费看| 在线观看66精品国产| 亚洲综合色惰| 麻豆国产av国片精品| 啦啦啦韩国在线观看视频| 欧美精品一区二区大全| 国产精品精品国产色婷婷| 免费看av在线观看网站| 亚洲av二区三区四区| 精品国产三级普通话版| 亚洲av免费高清在线观看| 啦啦啦韩国在线观看视频| 国产乱人视频| 超碰av人人做人人爽久久| 国产精品伦人一区二区| 在线观看免费视频日本深夜| 国产一区二区亚洲精品在线观看| 久久久国产成人精品二区| 久久久久国产网址| 国产成年人精品一区二区| 久久久久网色| 一个人看视频在线观看www免费| 91aial.com中文字幕在线观看| 亚洲av第一区精品v没综合| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 亚洲欧洲日产国产| 亚洲av电影不卡..在线观看| 国产极品精品免费视频能看的| 中文精品一卡2卡3卡4更新| av女优亚洲男人天堂| 中文字幕av在线有码专区| 国内少妇人妻偷人精品xxx网站| 亚洲无线在线观看| 国产91av在线免费观看| 午夜福利在线观看免费完整高清在 | 成人亚洲精品av一区二区| 国产精品一区二区在线观看99 | av.在线天堂| 哪里可以看免费的av片| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 欧美色欧美亚洲另类二区| 日本熟妇午夜| 欧美精品国产亚洲| 女人被狂操c到高潮| 大香蕉久久网| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 国产精华一区二区三区| 国产成人一区二区在线| 亚洲av.av天堂| av女优亚洲男人天堂| 尾随美女入室| 国产成人91sexporn| 久久久久网色| 国产午夜精品论理片| 久久精品国产自在天天线| 中国美女看黄片| 免费观看精品视频网站| 少妇丰满av| 午夜老司机福利剧场| 联通29元200g的流量卡| 久久精品国产自在天天线| 一本久久精品| 亚洲成av人片在线播放无| 3wmmmm亚洲av在线观看| 国产片特级美女逼逼视频| 久久久久免费精品人妻一区二区| 99热只有精品国产| 干丝袜人妻中文字幕| 国产精品一区二区在线观看99 | 精品人妻偷拍中文字幕| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 2022亚洲国产成人精品| 免费观看的影片在线观看| 久久久久久久久中文| 美女大奶头视频| 一级毛片我不卡| 成人欧美大片| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放 | 国内精品宾馆在线| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 国产av一区在线观看免费| 悠悠久久av| 欧美日韩乱码在线| 99热精品在线国产| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 久久精品国产亚洲av涩爱 | 亚洲精华国产精华液的使用体验 | 青春草视频在线免费观看| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 校园人妻丝袜中文字幕| 99精品在免费线老司机午夜| 搡女人真爽免费视频火全软件| 精品一区二区三区视频在线| 三级经典国产精品| 成人漫画全彩无遮挡| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 国产精品人妻久久久影院| 久久九九热精品免费| av在线观看视频网站免费| 精品久久久久久久末码| 午夜免费男女啪啪视频观看| 热99在线观看视频| 麻豆av噜噜一区二区三区| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 天天躁日日操中文字幕| 大又大粗又爽又黄少妇毛片口| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 91精品一卡2卡3卡4卡| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 成年免费大片在线观看| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 日本熟妇午夜| 日本色播在线视频| 久久久久久国产a免费观看| 美女 人体艺术 gogo| 国产又黄又爽又无遮挡在线| 欧美最新免费一区二区三区| 日韩中字成人| 99国产精品一区二区蜜桃av| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 国产 一区精品| а√天堂www在线а√下载| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 美女大奶头视频| 毛片一级片免费看久久久久| 91精品国产九色| www.av在线官网国产| 婷婷六月久久综合丁香| 秋霞在线观看毛片| 欧美一区二区精品小视频在线| 性插视频无遮挡在线免费观看| kizo精华| 亚洲国产欧美人成| 国产高清三级在线| 99热网站在线观看| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说 | 美女大奶头视频| 国产精品久久久久久精品电影小说 | 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 99热精品在线国产| av又黄又爽大尺度在线免费看 | 大又大粗又爽又黄少妇毛片口| 亚洲欧洲国产日韩| 午夜福利成人在线免费观看| 日日啪夜夜撸| 人妻少妇偷人精品九色| 亚洲电影在线观看av| a级毛片a级免费在线| 桃色一区二区三区在线观看| 国产在线男女| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲网站| 国产精品人妻久久久久久| 国产精品.久久久| 日产精品乱码卡一卡2卡三| 精品国产三级普通话版| 国产精品日韩av在线免费观看| 久99久视频精品免费| 成人午夜精彩视频在线观看| 波多野结衣高清无吗| 一级二级三级毛片免费看| 如何舔出高潮| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 国产午夜精品一二区理论片| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 亚洲三级黄色毛片| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 久久久久久久久久久丰满| 免费无遮挡裸体视频| 日韩精品有码人妻一区| 一本久久精品| 国产高清三级在线| 国产女主播在线喷水免费视频网站 | 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 日韩欧美三级三区| 成人av在线播放网站| 看片在线看免费视频| 国产三级在线视频| 欧美激情在线99| 乱码一卡2卡4卡精品| 久久热精品热| 男人和女人高潮做爰伦理| 在线观看66精品国产| av在线播放精品| 国产精品不卡视频一区二区| 一级毛片电影观看 | 国产精品99久久久久久久久| 国产精品女同一区二区软件| 免费av观看视频| 九色成人免费人妻av| 老女人水多毛片| 热99在线观看视频| 亚洲精品乱码久久久v下载方式| 国产 一区精品| 人妻系列 视频| 午夜福利高清视频| 国产真实乱freesex| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费| 婷婷亚洲欧美| 日韩av在线大香蕉| 亚洲性久久影院| 男女边吃奶边做爰视频| 麻豆一二三区av精品| 中文精品一卡2卡3卡4更新| 国产又黄又爽又无遮挡在线| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| eeuss影院久久| 成人二区视频| 国产极品天堂在线| 午夜激情福利司机影院| 日本黄大片高清| 一本久久中文字幕| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 人体艺术视频欧美日本| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 一级毛片我不卡| 变态另类成人亚洲欧美熟女| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区在线观看99 | 99久久精品热视频| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 黄色一级大片看看| 免费搜索国产男女视频| 国内精品一区二区在线观看| 99久久无色码亚洲精品果冻| 成人亚洲欧美一区二区av| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 在线观看66精品国产| 嫩草影院入口| 国产亚洲精品久久久久久毛片| 岛国在线免费视频观看| 亚洲av二区三区四区| 夜夜爽天天搞| 九九在线视频观看精品| 美女cb高潮喷水在线观看| 国产熟女欧美一区二区| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 欧美zozozo另类| 国产精品国产高清国产av| 久久6这里有精品| 成人高潮视频无遮挡免费网站| 91在线精品国自产拍蜜月| 免费看光身美女| 舔av片在线| kizo精华| 校园人妻丝袜中文字幕| 伦理电影大哥的女人| 丝袜美腿在线中文| 九草在线视频观看| 舔av片在线| 日韩成人伦理影院| 狠狠狠狠99中文字幕| 亚洲在久久综合| 日韩 亚洲 欧美在线| 在线观看免费视频日本深夜| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 青春草国产在线视频 | 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 1024手机看黄色片| 欧美+亚洲+日韩+国产| 99热全是精品| 哪个播放器可以免费观看大片| 中出人妻视频一区二区| 国产高清激情床上av| 99久久成人亚洲精品观看| 日韩欧美一区二区三区在线观看| 国产亚洲av片在线观看秒播厂 | 我的老师免费观看完整版| 国产老妇伦熟女老妇高清| 三级国产精品欧美在线观看| 久99久视频精品免费| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 97人妻精品一区二区三区麻豆| 欧美成人精品欧美一级黄| eeuss影院久久| 国产久久久一区二区三区| 久久久久久伊人网av| 国产色爽女视频免费观看| 亚洲熟妇中文字幕五十中出| 人人妻人人看人人澡| 中国国产av一级| 一个人看视频在线观看www免费| 欧美激情在线99| av福利片在线观看| 午夜精品在线福利| 91午夜精品亚洲一区二区三区| 免费在线观看成人毛片| 亚洲精品日韩av片在线观看| 日本在线视频免费播放| 97超视频在线观看视频| 成人一区二区视频在线观看| or卡值多少钱| 岛国毛片在线播放| 一级毛片我不卡| 三级国产精品欧美在线观看| 久久人人爽人人片av| 日韩欧美精品v在线| 一卡2卡三卡四卡精品乱码亚洲| 美女被艹到高潮喷水动态| 高清在线视频一区二区三区 | 久久久久性生活片| 婷婷亚洲欧美| 国产av不卡久久| 久久精品久久久久久久性| 91午夜精品亚洲一区二区三区| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 亚州av有码| 中文字幕制服av| 日韩,欧美,国产一区二区三区 | 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩高清在线视频| 国产蜜桃级精品一区二区三区| 欧美高清性xxxxhd video| 亚洲成人av在线免费| 舔av片在线| 最近最新中文字幕大全电影3| 久久国产乱子免费精品| 欧美成人免费av一区二区三区| 国产av在哪里看| a级毛色黄片| 日日啪夜夜撸| 欧美色视频一区免费| 女同久久另类99精品国产91| 亚洲五月天丁香| 夫妻性生交免费视频一级片| 中国美女看黄片| 欧美区成人在线视频| 夜夜爽天天搞| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 亚洲欧美精品专区久久| 少妇猛男粗大的猛烈进出视频 | a级毛色黄片| 看非洲黑人一级黄片| 国产 一区 欧美 日韩| 久久久久久久午夜电影| 不卡视频在线观看欧美| 美女cb高潮喷水在线观看| 欧美+亚洲+日韩+国产| 如何舔出高潮| 深夜精品福利| 日韩成人伦理影院| 欧美xxxx黑人xx丫x性爽| 日韩欧美 国产精品| 亚洲成a人片在线一区二区| 亚洲欧美成人综合另类久久久 | 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 久久久久久伊人网av| 美女被艹到高潮喷水动态| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 在线免费观看不下载黄p国产| 久久精品国产自在天天线| 男女那种视频在线观看| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 在线免费观看不下载黄p国产| 久久精品国产自在天天线| 亚洲av成人精品一区久久| 乱人视频在线观看| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看 | 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 久久精品久久久久久久性| 免费av毛片视频| 欧美变态另类bdsm刘玥| 男女视频在线观看网站免费| 国内少妇人妻偷人精品xxx网站| 欧美成人精品欧美一级黄| 深夜精品福利| 搞女人的毛片| 在现免费观看毛片| 免费观看a级毛片全部| 丝袜喷水一区| av在线天堂中文字幕| 欧美日韩综合久久久久久| 久久久色成人| 18禁黄网站禁片免费观看直播| 国产大屁股一区二区在线视频| 国产一区二区在线av高清观看| 久久久久免费精品人妻一区二区| 插阴视频在线观看视频| 日日啪夜夜撸| 乱码一卡2卡4卡精品| 最近视频中文字幕2019在线8| 国产白丝娇喘喷水9色精品| 欧美色视频一区免费| 亚洲成人中文字幕在线播放| 亚洲三级黄色毛片| 亚洲av熟女| 1000部很黄的大片| 成人亚洲精品av一区二区| 床上黄色一级片| 国内精品一区二区在线观看| av女优亚洲男人天堂| 精品久久久久久久久亚洲| 免费观看精品视频网站| 久久6这里有精品| 欧美一区二区精品小视频在线| 亚洲av电影不卡..在线观看| 精品久久国产蜜桃| 一个人看的www免费观看视频| 国产麻豆成人av免费视频| 精品国产三级普通话版| 国产午夜精品一二区理论片| 在线观看午夜福利视频| 国产精品福利在线免费观看| 精品久久久久久久久久免费视频| 午夜亚洲福利在线播放| 国产精品一区二区性色av| 欧美成人精品欧美一级黄| 哪里可以看免费的av片| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器| 少妇丰满av| 赤兔流量卡办理| 国产精品久久视频播放| 日产精品乱码卡一卡2卡三| 国产大屁股一区二区在线视频| 欧美一区二区亚洲| 久久精品91蜜桃| 国产v大片淫在线免费观看| 一边亲一边摸免费视频| 网址你懂的国产日韩在线| 国产中年淑女户外野战色| 国产精品一及| 亚洲在久久综合| 国产老妇伦熟女老妇高清| 3wmmmm亚洲av在线观看| 看片在线看免费视频| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 亚洲在线自拍视频| 日日摸夜夜添夜夜爱| 又粗又爽又猛毛片免费看| 午夜久久久久精精品| 超碰av人人做人人爽久久| 麻豆久久精品国产亚洲av| 免费黄网站久久成人精品| 国产一区二区三区在线臀色熟女| 网址你懂的国产日韩在线| 久久九九热精品免费| 欧美+亚洲+日韩+国产| 久久精品国产鲁丝片午夜精品| 一级二级三级毛片免费看| 亚洲人成网站在线播放欧美日韩| 性欧美人与动物交配| 九色成人免费人妻av| 波野结衣二区三区在线| 精品人妻熟女av久视频| 国产一区二区三区av在线 | 九色成人免费人妻av| 亚洲av二区三区四区| 久久久国产成人免费| 村上凉子中文字幕在线| 99久久人妻综合| 偷拍熟女少妇极品色| 国产女主播在线喷水免费视频网站 | 美女xxoo啪啪120秒动态图| 寂寞人妻少妇视频99o| 国产精品久久电影中文字幕| 舔av片在线| 精品一区二区三区人妻视频| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| 精品一区二区三区人妻视频| 日本在线视频免费播放| 超碰av人人做人人爽久久| 国产精品综合久久久久久久免费| 国产乱人偷精品视频| 一夜夜www| 大型黄色视频在线免费观看| 国产综合懂色| 亚洲av第一区精品v没综合| 又粗又爽又猛毛片免费看| 国产高清三级在线| 少妇猛男粗大的猛烈进出视频 | 日韩欧美国产在线观看| а√天堂www在线а√下载|