• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault diagnosis method for switch control circuit based on SVM-AdaBoost

    2020-08-25 04:50:36WANGDengfeiCHENGuangwuXINGDongfengLIANGDoudou

    WANG Deng-fei,CHEN Guang-wu,XING Dong-feng,LIANG Dou-dou

    (1. Automatic Control Research Institute, Lanzhou Jiaotong University,Lanzhou 730070,China;2. Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China)

    Abstract:In order to realize the fault diagnosis of the control circuit of all-electronic computer interlocking system(ACIS)for railway signals, taking a five-wire switch electronic control module as an research object, we propose a method of selecting the sample set of the basic classifier by roulette method and realizing fault diagnosis by using SVM-AdaBoost.The experimental results show that the proportion of basic classifier samples affects classification accuracy, which reaches the highest when the proportion is 85%.When selecting the sample set of basic classifier by roulette method, the fault diagnosis accuracy is generally higher than that of the maximum weight priority method.When the optimal proportion 85% is taken, the accuracy is highest up to 96.3%.More importantly, this way can better adapt to the critical data and improve the anti-interference ability of the algorithm, and therefore it provides a basis for fault diagnosis of ACIS.

    Key words:all-electronic computer interlocking system(ACIS);switch control circuit; support vector machine(SVM);AdaBoost;fault diagnosis

    0 Introduction

    Nowadays, the railway station signal control system have entered the stage of vigorous development of the fourth generation all-electronic computer interlocking system(ACIS)[1], which can implement the interlocking function of station signal equipment by electrical or electronic equipment.In this research, taking the control circuit of five-wire switch all-electronic control module(switch module)[2]in ACIS as a research object, the fault diagnosis method is studied by using a large amount of historical operation and debug fault data.

    As an important part of ACIS, switch module can realize all-electronic real-time control of the switch.Because of large operation current and electromagnetic interference, the fault frequency of the control circuit of switch module is high.In ACIS, switch module acts as real-time security systems, in which the relationship between multiple performance parameters is complex and the fault has random uncertainty and fuzziness, therefore the fault is difficult to distinguish.At present, diagnosis of the ACIS mainly relays on artificial experience.Researchers also have paid attention to intelligent diagnosis methods of control circuit[3], such as neural network[4-5], support vecotr machine(SVM)[6], Bayesian network[7], etc.However, there is no successful application in fault diagnosis of ACIS.Therefore, it is of great significance to study the intelligent fault diagnosis method of control circuit based on multi-performance parameters for production debugging and fault repairing of ACIS, as well as to improve the intelligence of railway signal control system.

    Adaboost[8]can adaptively adjust the accuracy of the classifier by choosing the samples of the basic classifier in the way of maximum weight priority, which changes the data distribution of training samples.Each iteration will obtain a basic classifier with the best classification and its weight in the overall classifier.As iterations increase, the final strong classifier generated by the basic classifier iteration has the smallest classification error, while SVM[9]has greater advantages in solving small sample, non-linear and high-dimensional problems.In this paper, based on the fault data accumulated by switch module in ACIS for a couple of years, a method of selecting basic classifier samples by roulette method and diagnosing them by combining the advantages of SVM and AdaBoost algorithm[10]is proposed, and then the fault diagnosis simulation of switch module control circuit is carried out.The results show that it can provide a basis for fault diagnosis of ACIS.

    1 Analysis of switch module control circuit

    Switch module drives AC five-wire switch machine to control the switch.The operation circuit structure is shown in Fig.1.The circuit interfaces X1, X2, X3, X4 and X5 are control wires connected with the switch machine through the distributor to realize switch driving and state acquisition.A, B and C are three-phase power source, K1 to K7 are electronic control switches.Besides, main switch breakdown inspection circuit, phase supervision device and current detection circuit are set up to monitor the working state of the circuit in real time.

    Fig.1 Structure diagram of switch module main operation circuit

    The operating flow of switch operation circuit is as follows: When the switch is in reverse position and the switch module receives the normal operation command from interlocking system, switches K1, K2, K3, K4 and K6 are turned on and then X1, X2 and X5 are connected, which drives the switch machine to rotate towards normal position.When the switch is in normal position and the switch module receives reverse operation command, switches K1, K2, K3, K5 and K7 are turned on and then X1, X3 and X4 are connected, which leads to phase conversion and drives the switch machine to reverse position.

    Switch module indication circuit structure is shown in Fig.2.It consists of transformer, current limiting resistance R1, normal indication detection circuit, reverse indication detection circuit, power source for switch indication, etc.It can monitor the switch position in real time.

    Fig.2 Structure diagram of switch module indication circuit

    Indication diode, usually connected to the distributor, is the main component of the whole circuit.When it breaks down and is reversely connected, switch indication is lost, which can also effectively prevent X2 and X3 from reversing and resulting in error indication.Therefore, indication diode is an important component to ensure the normal operation of switch indication circuit, but its component characteristics lead to frequent faults of the whole circuit, therefore it should be included in the whole control circuit for fault analysis.

    According to the features of the control circuit of switch module, the fault tree[11]is drawn, as shown in Fig.3.Ten types of failure modes are defined from A1 to A10, as listed in Table 1, which are represented by labels-5 to 5, respectively.

    Fig.3 Fault tree of Switch module control circuit

    Table 1 Fault modes of Switch module control circuit

    In order to diagnose switch module control circuit, 13 separated fault features are selected from ACIS and monitoring machine according to fault mode and cause analysis, as listed in Table 2, which are recorded as B1 to B13.

    Table 2 Fault features description of switch module control circuit

    Therefore, the fault diagnosis of switch module control circuit takes the fault features shown in Table 2 as inputs and the fault modes shown in Table 1 as outputs.

    2 SVM-AdaBoost fault diagnosis method

    The problem studied in this paper has the characteristics of small sample size, non-linearity and high dimension, therefore SVM is used as the basic classifier.AdaBoost[12]method can enhance the performance of classifier adaptively by superposition, but in the process of Adaboost training, the training is too biased towards such difficult samples, which makes the Adaboost algorithm vulnerable to noise interference.Because roulette algorithm can ensure that each sample has a certain probability of being selected to form a subset of the basic classifier, it can improve the anti-interference ability of the classifier.Therefore, roulette algorithm is used as the selection method of training sample subset of basic classifier, SVM-AdaBoost is used as fault diagnosis method, and switch module control circuit is taken to study the fault diagnosis method of control circuit of ACIS.

    2.1 SVM

    SVM[13]is a machine learning method based on statistical learning theory.It improves the generalization ability of learning machine by seeking the smallest structured risk, realizes the minimization of experience risk and confidence range, and achieves the goal of good statistical law in the case of fewer samples.

    For a set of training samples

    S={(xi,yi)},xi∈Rn,yi∈{1,-1},

    (1)

    wherexiis the data point,yirepresents the sample category.To classify the vast majority of samples correctly, the hyperplane should satisfy the requirement of maximizing the sum of the minimum distances from two types of sample points to the hyperplane.The expression of the hyperplane is given by

    wTx+b=0.

    (2)

    wherewis the weight vector andbis bias of hyperplane.The distributions ofwandbare essentially linear, and non-linearity is caused by noise, that is, there are very few outliers far from the normal position.Using soft interval, good results can be obtained as

    s.t.yi(wTxi+b)≥1-ξi,

    ξi≥0,i=1,2,…,n,

    (3)

    whereξiis a slack variable and represents the number of function intervals of the data pointxiallowed to deviate from the hyperplane;c>0 is a penalty factor and presents the tolerance allowed to make mistakes.

    For linear non-separable problems, the data are mapped to high-dimensional space by kernel function, and the SVM is extended to the non-linear separable case.Since Eq.(3)satisfies the karush-kuhn-tucher(KKT)condition, the above problem is transformed into

    s.t.0≤αi≤c,

    (4)

    whereαiandαjare Lagrange coefficients andK(xi,xj)is the kernal function.Here, linear and Gaussian kernels are used, and their expressions are given by

    K(xi,xj)=〈xi,xj〉,

    (5)

    (6)

    The decision function can be obtained by

    (7)

    The above parameterscandδare determined by grid optimization method.

    2.2 SVM-AdaBoost method

    The core idea of AdaBoost algorithm is to increase the weight of error sample and to reduce the weight of correct samples, so as to train a new basic classifier under the new sample distribution.Thus several basic classifiers are obtained, and a strong classifier is formed by superimposing certain weights.

    To improve the anti-interference ability of AdaBoost, the proportional coefficientKis set, andK-ratio samples are selected by roulette algorithm to form a subset of basic classifier samples in each iteration.

    The basic idea of roulette algorithm is that the probability of a sample being selected is proportional to the value of its fitness function.If the sample size isNandfit(xi)is the fitness of samplexi, the selection probability ofxiis calculated by

    (8)

    Roulette process is as follows.

    1)Produce a random numberRwith uniform distribution in an interval of[0,1].

    2)IfR≤q1, samplex1is selected;

    The training process of the SVM-AdaBoost algorithm[14]for selecting the sample set of the basic classifier by roulette method is as follows.

    1)According to the training sample set

    S={(xi,yi)},i=1,2,…,N,

    (9)

    we choose the proportionpof basic classifier samples to total samples, the iteration numberM, the exit accuracyA, and the individual fitnessfit(xi)of smaplexi, wherefit(xi)is the current weight of the samplexi.

    2)Initialize sample weights

    (10)

    3)For the number of iterationsm=1,2,…,M,

    ① According to the current sample weightvm,i, the training sample subsetSm?Sof basic classifierGm(x)is obtained by roulette algorithm;

    ② Using the training data set with weight distributionvm, the basic classifierGm(x)is obtained by SVM learning.

    ③ The classification error rateemofGm(x)on the training data set is calculated by

    (11)

    ④ The weight ofGm(x)in the final classifier is calculated by

    (12)

    whereαmdenotes the importance ofGm(x)in the final classifier, and its purpose is to obtain the weight of the basic classifier in the final classifier.

    ⑤ The weight distribution of the training data set is update by

    (13)

    (14)

    wherezmis the normalization factor, makingvm+1obey a probability distribution.The updating increases the weights of the samples misclassified and reduces the weights of the samples correctly classified by the basic classifier.Thus, the AdaBoost method can focus on the more difficult samples.Then Eq.(12)is reduced to

    (15)

    whereyiGm(xi)=-1 represents that the sample is misclassified by the basic classifier, andyiGm(xi)=1 represents that the sample is correctly classified.

    ⑥ The training process is completed after the classification accuracy reaches the established thresholdAor iteration has performedMtimes.

    4)The decision functionF(x)of the final classifier is obtained as

    (16)

    The algorithm classification process is described as follows.

    1)Weak classifiers are cascaded into strong classifiers as

    (17)

    2)Substituting the sample values into Eq.(16), classification results are obtained as

    (18)

    The above process is a binary classification problem.To solve the multi-classification problem, a pair of multi-classification methods are used to construct a multi-classifier.The approach is to design a classifier between any two classes of samples, therefore thel-class samples need to designl(l-1)/2 classifiers.When classifying an unknown sample, the category that gets the most votes is the category of the unknown sample.

    Selceting the samples of basic classifier by using roulette algorithm can ensure that the algorithm pays attention to the difficult samples, while smaller weight samples can also have a certain probability to participate in the training process, which improves the integrity of the basic classifier samples, makes the basic classifier after several iterations not completely concentrated on the difficult samples, and improves the anti-interference ability of the classifier.At the same time, the different sample sets ensure the heterogeneity of the basic classifier.

    3 Simulation and analysis

    Fault diagnosis is carried out by using 1 784 fault data accumulated from more than 400 railway stations and production debugging.The sample distribution is shown in Table 3.

    Table 3 Samples distribution of switch module control circuit faults

    3.1 Samples acquisition of basic classifier

    The basic classifier samples are selected by the maximum weight priority and roulette method, respectively.The two methods select all the unified samples and use SVM-AdaBoost to classify faults.The strategies are as follows.

    1)When sample proportionpis 55%, 65%, 75%, 85%, 95% and 100%, respectively, the samples are trained.

    2)The maximum weight priority method ranks the samples according to their weights, and takes the toppdata as the subset of the basic classifier.The roulette method chooses the sample subset in the roulette method described in Section 2.2.

    3)SVM-AdaBoost is used to train the two way, and results are verified by test data, as shown in Fig.4.

    Fig.4 Impact of sample acquisition methods on basic classifiers

    The experimental results show that the diagnosis accuracy of the classifier which uses roulette method is generally higher than that of the maximum weight priority method when the proportion of samples is less than 85%.Whenp>85%, the diagnosis accuracy of the maximum weight priority method is slightly higher than that of the roulette method, and whenp=85%, the SVM-AdaBoost algorithm has the highest diagnosis accuracy when the roulette method is used to select the basic classifier samples.Therefore, the optimal proportion isp=85%.

    3.2 Analysis of fault diagnosis accuracy

    The diagnosis experiments are carried out by using the methods shown in Table 4.Because of small sample size, SVM shows better accuracy than BP neural network.The average fault diagnosis rate of linear kernel SVM and BP neural network are approximately equal, about 80%.For Gauss kernel SVM, the optimal classification parameterscandδare chosen by grid optimization method.WhenCbest=4 andδbest=12.8, the classification result is the best,and the accuracy is 89.4%.

    Table 4 Fault rate of Switch module control circuit

    Linear kernel SVM has a strong ability to classify single feature fault such as operation power fault represented by A9 and indication power fault represented by A10, and all of them are classified correctly.Compared with linear kernel SVM, Gauss kernel SVM, which has higher fault diagnosis rate for other non-single feature faults.For A6, A7 and A8 fault modes, Gauss kernel SVM shows lower resolution than other modes because based on train station fault data, experienced engineers can hardly distinguish these three types of faults from the monitor data and curves.The average accuracy of Gauss kernel SVM is higher than that of linear kernel SVM and BP neural network method.

    For the SVM-AdaBoost method, it uses roulette algorithm to select basic classifier samples.Taking into account the fact that linear kernel SVM has a high fault diagnosis rate for single fearture faults, the first basic classifier uses linear kernel SVM, and subsequently uses Gaussian kernel SVM.Each Gaussian kernel SVM uses grid optimization method to determine parameterscandδ.

    Let the accuracy thresholdA=95%, the number of iterationsM=10, and then the experiment is carried out.When iteration performs 4 times, the accuracy meets the loop iteration exit request.At this point, the SVM-AdaBoost fault diagnosis result is shown in Fig.5, and the accuracy is up to 96.3%(414/430), which is much better than other methods.It is proved that this method has better resolution in Switch module control circuit fault diagnosis.

    Fig.5 Fault diagnosis results of SVM-AdaBoost

    3.3 Analysis of anti-interference capability

    In the process of Adaboost training, the weight of difficult samples increases exponentially, and the training is too biased towards difficult samples, which makes the Adaboost algorithm vulnerable to noise interference.Furthermore, the control circuit is vulnerable to external complex environment interference, component performance degradation and other factors, which easily causes fault feature offset and fault feature data being at the edge of normal operating conditions, while such data are vulnerable to the performance of the algorithm.

    As shown in Fig.6, non-switching features of switch module are selected to analyze the distribution of fault feature data.The data marked with circle is part of the data deviating from the normal value.The classification results show that this kind of data are easy to be misjudged by various classification methods in Table 4.Therefore, outliers far away from the most points in Fig.6 and the similar outliers artificially simulated are selected to form a test sample set with a total of 100 data.

    Fig.6 Characteristic data distribution of switch module control circuit

    The experimental results are shown in Table 5.For this kind of samples, the accuracy of sample selection by roulette method is 14% higher than that by maximum weight priority way.

    Table 5 Analysis of anti-interference ability of SVM-AdaBoost

    Experimental results show that the method of fault diagnosis based on SVM-AdaBoost can better adapt to critical data and improve anti-interference ability when the sample set of basic classifier is selected by using roulette method.

    4 Conclusion

    In this paper, the SVM-AdaBoost method is used to diagnose the switch module control circuit of the ACIS.

    The acquisition way of basic classifier sample set affects the diagnosis accuracy of SVM-AdaBoost.The diagnosis accuracy is generally higher than the maximum weight priority method by using the roulette method to obtain samples.Simultaneously, this method can better adapt to critical data and improve the anti-interference ability of the algorithm.

    The proportion of basic classifier samples has a great influence on the accuracy of SVM-AdaBoost fault diagnosis.The proportion of samples can be determined by experiment according to the sample data.The fault diagnosis method based on SVM-AdaBoost for switch module control circuit has better accuracy.The research content can be applied to the fault diagnosis of ACIS.

    亚洲无线观看免费| 老女人水多毛片| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 日韩欧美一区二区三区在线观看| 草草在线视频免费看| 色吧在线观看| 亚洲激情五月婷婷啪啪| 亚洲经典国产精华液单| 老熟妇乱子伦视频在线观看| 色5月婷婷丁香| 在线播放无遮挡| 免费一级毛片在线播放高清视频| 久久久久久久亚洲中文字幕| 国产亚洲精品av在线| 国产精品99久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲三级黄色毛片| 国产乱人偷精品视频| 久久久久久国产a免费观看| 国产精品一及| 热99在线观看视频| 五月伊人婷婷丁香| ponron亚洲| 国产高清不卡午夜福利| 少妇高潮的动态图| 不卡视频在线观看欧美| 全区人妻精品视频| 亚洲精品日韩在线中文字幕 | 国产不卡一卡二| 最近视频中文字幕2019在线8| 亚洲国产色片| 欧美一级a爱片免费观看看| 熟女电影av网| 五月玫瑰六月丁香| 麻豆国产av国片精品| 老师上课跳d突然被开到最大视频| 看十八女毛片水多多多| 久久亚洲精品不卡| 亚洲高清免费不卡视频| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 国产精品野战在线观看| 嫩草影视91久久| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 精品国内亚洲2022精品成人| 久久热精品热| 中文字幕熟女人妻在线| 国产精品伦人一区二区| 亚洲av五月六月丁香网| 精品一区二区免费观看| 国内精品宾馆在线| 又爽又黄a免费视频| 国产精品99久久久久久久久| 一级a爱片免费观看的视频| 国产精品日韩av在线免费观看| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 熟女电影av网| 色哟哟·www| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添小说| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在 | 色在线成人网| 日本a在线网址| 性欧美人与动物交配| 亚洲无线观看免费| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 久久草成人影院| 熟妇人妻久久中文字幕3abv| 深夜a级毛片| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 中文字幕av成人在线电影| 97在线视频观看| 非洲黑人性xxxx精品又粗又长| 18+在线观看网站| 亚洲精品在线观看二区| 最近视频中文字幕2019在线8| 麻豆乱淫一区二区| 欧美激情久久久久久爽电影| 久久久久久久久大av| 性色avwww在线观看| 久久人妻av系列| av.在线天堂| 亚洲av免费在线观看| 久久久久九九精品影院| 国产探花在线观看一区二区| 此物有八面人人有两片| 日韩成人av中文字幕在线观看 | www.色视频.com| 在线观看午夜福利视频| 青春草视频在线免费观看| 悠悠久久av| 国产一区二区亚洲精品在线观看| 桃色一区二区三区在线观看| 亚洲经典国产精华液单| 99热只有精品国产| 午夜爱爱视频在线播放| 伊人久久精品亚洲午夜| 日日撸夜夜添| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 久久精品国产鲁丝片午夜精品| 成人一区二区视频在线观看| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 久久精品夜色国产| 久久久久国产精品人妻aⅴ院| 日本 av在线| 性色avwww在线观看| 成人综合一区亚洲| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月| 麻豆乱淫一区二区| 级片在线观看| 精品人妻一区二区三区麻豆 | 看黄色毛片网站| 联通29元200g的流量卡| 91在线观看av| 亚洲av中文字字幕乱码综合| 国产精品乱码一区二三区的特点| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 全区人妻精品视频| 男人舔奶头视频| 蜜臀久久99精品久久宅男| 美女免费视频网站| 国产 一区精品| 十八禁网站免费在线| 欧美性猛交╳xxx乱大交人| 久久久久久久久中文| 免费看a级黄色片| 91在线精品国自产拍蜜月| 在线播放国产精品三级| 亚洲精品亚洲一区二区| 免费搜索国产男女视频| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 亚洲aⅴ乱码一区二区在线播放| 一卡2卡三卡四卡精品乱码亚洲| 成人亚洲欧美一区二区av| 亚洲av美国av| 美女高潮的动态| 亚洲经典国产精华液单| 97在线视频观看| 干丝袜人妻中文字幕| 亚洲经典国产精华液单| 国产一区二区激情短视频| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 五月玫瑰六月丁香| 校园春色视频在线观看| 日韩人妻高清精品专区| 男女视频在线观看网站免费| 亚洲中文日韩欧美视频| 日韩精品有码人妻一区| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 精品乱码久久久久久99久播| 美女高潮的动态| 免费av不卡在线播放| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 国产黄片美女视频| 久久久久久久午夜电影| 亚洲国产精品国产精品| 日本av免费视频播放| 精品卡一卡二卡四卡免费| 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠久久av| 9色porny在线观看| 又黄又爽又刺激的免费视频.| 这个男人来自地球电影免费观看 | 嫩草影院新地址| 久久久久久久大尺度免费视频| 一级毛片黄色毛片免费观看视频| 日韩成人av中文字幕在线观看| 丁香六月天网| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| av福利片在线| 亚洲精品第二区| 国产成人精品一,二区| 日韩一区二区视频免费看| 欧美 亚洲 国产 日韩一| 一区二区三区乱码不卡18| 少妇熟女欧美另类| 久久久国产欧美日韩av| 欧美一级a爱片免费观看看| 亚洲精品一二三| 国产在线免费精品| 在线天堂最新版资源| 美女主播在线视频| 在线观看国产h片| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 人妻制服诱惑在线中文字幕| 观看av在线不卡| 中文字幕av电影在线播放| 如何舔出高潮| 国产精品.久久久| 99热国产这里只有精品6| 一区二区三区四区激情视频| 另类精品久久| 日本黄色日本黄色录像| 美女主播在线视频| av卡一久久| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 美女主播在线视频| 中文精品一卡2卡3卡4更新| 最后的刺客免费高清国语| 美女视频免费永久观看网站| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 久久久久久久久大av| 黄色毛片三级朝国网站 | 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄片美女视频| av播播在线观看一区| 精品一区在线观看国产| 久久国内精品自在自线图片| 一级爰片在线观看| 日本-黄色视频高清免费观看| 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 久久精品国产a三级三级三级| 国产精品99久久久久久久久| 国产一区二区三区综合在线观看 | 亚洲精品日韩在线中文字幕| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区三区| av不卡在线播放| 18禁动态无遮挡网站| 97超碰精品成人国产| 永久网站在线| av又黄又爽大尺度在线免费看| 18禁在线无遮挡免费观看视频| 91成人精品电影| 亚洲av二区三区四区| 人人妻人人澡人人看| 久久精品久久精品一区二区三区| 免费看av在线观看网站| kizo精华| 国产精品国产三级专区第一集| 国产精品免费大片| 国产精品熟女久久久久浪| 少妇的逼水好多| 美女国产视频在线观看| 欧美3d第一页| 欧美+日韩+精品| 亚洲人成网站在线播| 久久精品国产a三级三级三级| 五月开心婷婷网| 久久午夜综合久久蜜桃| 免费黄色在线免费观看| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 女性被躁到高潮视频| 国产日韩欧美在线精品| 在线看a的网站| 五月玫瑰六月丁香| 国产淫片久久久久久久久| 夜夜爽夜夜爽视频| 2022亚洲国产成人精品| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 国产精品一区www在线观看| 久久狼人影院| 久久久久久久久大av| 久久99热这里只频精品6学生| 妹子高潮喷水视频| 亚洲欧美日韩东京热| 欧美日韩视频精品一区| av国产精品久久久久影院| 亚洲成人一二三区av| 99国产精品免费福利视频| 国产一区二区三区av在线| 在线观看免费高清a一片| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 亚州av有码| 欧美日韩国产mv在线观看视频| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 国产精品人妻久久久影院| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 美女xxoo啪啪120秒动态图| 久久精品熟女亚洲av麻豆精品| 日日撸夜夜添| 亚洲精品国产av蜜桃| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 国产免费福利视频在线观看| 99久国产av精品国产电影| av天堂中文字幕网| 久久97久久精品| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 少妇被粗大的猛进出69影院 | 亚洲丝袜综合中文字幕| 亚州av有码| 又爽又黄a免费视频| 久久精品久久久久久噜噜老黄| 另类精品久久| 久久99一区二区三区| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 久久午夜综合久久蜜桃| 尾随美女入室| 视频中文字幕在线观看| 欧美人与善性xxx| 日韩强制内射视频| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 大又大粗又爽又黄少妇毛片口| 各种免费的搞黄视频| 99久久人妻综合| 日韩不卡一区二区三区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 欧美亚洲 丝袜 人妻 在线| 欧美xxxx性猛交bbbb| 日韩欧美 国产精品| 五月天丁香电影| 中文字幕人妻丝袜制服| 一本一本综合久久| 天天操日日干夜夜撸| 在线 av 中文字幕| 91久久精品电影网| 国产黄色视频一区二区在线观看| 亚洲av中文av极速乱| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 亚洲四区av| 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 精品国产一区二区三区久久久樱花| 嫩草影院入口| 高清午夜精品一区二区三区| 最近手机中文字幕大全| 久久人妻熟女aⅴ| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| av不卡在线播放| 午夜福利在线观看免费完整高清在| 夜夜骑夜夜射夜夜干| 熟女电影av网| 久久久久网色| 伊人亚洲综合成人网| av女优亚洲男人天堂| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说| 我的老师免费观看完整版| 在现免费观看毛片| 22中文网久久字幕| 麻豆乱淫一区二区| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 在线观看人妻少妇| 日韩av免费高清视频| 免费人成在线观看视频色| 一级a做视频免费观看| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久 | 国产爽快片一区二区三区| 亚洲精品,欧美精品| 日本欧美国产在线视频| 精品少妇内射三级| 久久久久久久久久久丰满| 亚洲av日韩在线播放| av免费在线看不卡| 只有这里有精品99| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 只有这里有精品99| 一本一本综合久久| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 国产精品99久久99久久久不卡 | 精品人妻熟女av久视频| 免费av不卡在线播放| 国产黄片视频在线免费观看| 日韩成人伦理影院| 丰满乱子伦码专区| 亚洲图色成人| 大话2 男鬼变身卡| 观看美女的网站| 国产av一区二区精品久久| 亚洲精品色激情综合| 国产深夜福利视频在线观看| 中文字幕人妻丝袜制服| 一边亲一边摸免费视频| 亚洲国产欧美日韩在线播放 | 菩萨蛮人人尽说江南好唐韦庄| 韩国高清视频一区二区三区| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 不卡视频在线观看欧美| 色哟哟·www| av线在线观看网站| 九九爱精品视频在线观看| 日产精品乱码卡一卡2卡三| 乱系列少妇在线播放| 成年美女黄网站色视频大全免费 | 老司机亚洲免费影院| 精品酒店卫生间| av天堂久久9| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 免费看不卡的av| 亚洲国产精品专区欧美| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 少妇高潮的动态图| 欧美另类一区| 伊人久久国产一区二区| 国产精品无大码| 成年人午夜在线观看视频| 国产精品.久久久| 一级a做视频免费观看| 免费看av在线观看网站| 久久免费观看电影| 国产精品久久久久成人av| 成人亚洲欧美一区二区av| 91久久精品国产一区二区成人| 尾随美女入室| 欧美另类一区| 久久这里有精品视频免费| 大片电影免费在线观看免费| 高清av免费在线| 老司机影院成人| 亚洲电影在线观看av| 午夜91福利影院| .国产精品久久| 亚洲,一卡二卡三卡| 日韩成人伦理影院| 搡老乐熟女国产| 少妇被粗大的猛进出69影院 | 国产精品久久久久久精品古装| 亚洲一区二区三区欧美精品| 欧美xxxx性猛交bbbb| 22中文网久久字幕| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 美女cb高潮喷水在线观看| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频| 国产精品一区二区在线观看99| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图 | 久久人人爽人人片av| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区| 色视频在线一区二区三区| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 丁香六月天网| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 国产精品无大码| 免费在线观看成人毛片| freevideosex欧美| 国产视频内射| 久久国产乱子免费精品| 妹子高潮喷水视频| 亚洲精品日韩av片在线观看| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 国产精品国产三级国产专区5o| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| freevideosex欧美| 国产精品久久久久久精品古装| av免费观看日本| 久热久热在线精品观看| 五月伊人婷婷丁香| 狠狠精品人妻久久久久久综合| 精品久久久久久久久亚洲| 特大巨黑吊av在线直播| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 国产精品成人在线| 免费看日本二区| 午夜av观看不卡| 一级av片app| 国产精品无大码| 欧美3d第一页| 日本午夜av视频| 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 香蕉精品网在线| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 亚洲精品,欧美精品| 国产69精品久久久久777片| 亚洲精品,欧美精品| 99热这里只有是精品在线观看| 婷婷色麻豆天堂久久| 精品人妻熟女av久视频| 亚洲精品aⅴ在线观看| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 亚洲综合精品二区| 你懂的网址亚洲精品在线观看| 国产亚洲最大av| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 两个人免费观看高清视频 | 国产成人免费观看mmmm| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 在线看a的网站| 婷婷色综合www| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 久久av网站| 国产日韩一区二区三区精品不卡 | 内地一区二区视频在线| 草草在线视频免费看| 亚洲av在线观看美女高潮| 成人国产麻豆网| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 女性生殖器流出的白浆| 人人澡人人妻人| 国产精品一区二区三区四区免费观看| 国产成人免费无遮挡视频| 在线天堂最新版资源| 99久久精品国产国产毛片| 天天操日日干夜夜撸| 人妻系列 视频| 中文欧美无线码| 免费黄网站久久成人精品| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 欧美日韩视频高清一区二区三区二| 成年人免费黄色播放视频 | 成人二区视频| 亚洲情色 制服丝袜| 久久久久久久久久成人| 男男h啪啪无遮挡| 高清午夜精品一区二区三区| 亚洲国产精品成人久久小说| 男人舔奶头视频| 欧美日韩亚洲高清精品| av免费在线看不卡| 精品一品国产午夜福利视频| 亚洲国产精品一区三区| 亚洲成色77777| 丝袜脚勾引网站| 国产熟女午夜一区二区三区 | 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 国产精品久久久久成人av| 最新的欧美精品一区二区| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 蜜桃在线观看..| 久久精品久久精品一区二区三区| 欧美区成人在线视频| 亚洲欧美日韩另类电影网站| 欧美bdsm另类| 亚洲第一av免费看| 国产精品女同一区二区软件| 国产男女超爽视频在线观看| 丝袜脚勾引网站| 日韩中字成人| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂| 亚洲欧美成人精品一区二区| 91精品国产国语对白视频| 日本黄大片高清| 国产乱来视频区| 精品久久久久久久久亚洲| 又黄又爽又刺激的免费视频.| 97在线视频观看| 久久鲁丝午夜福利片| 99久久精品国产国产毛片| 一级,二级,三级黄色视频|