• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method of remote sensing image water segmentation based on adaptive morphological elliptical structuring elements

    2020-08-25 04:50:34WENHaotianWANGXiaopeng

    WEN Hao-tian,WANG Xiao-peng

    (School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract:The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources, and water segmentation is the premise of statistics.Generally, the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation, it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately, a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly, the eigenvalue and eigenvector of the image are estimated by linear structure tensor, and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined, combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge, so that the water edge can be maintained more accurately.Finally, on this basis, the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.

    Key words:image processing; adaptive morphology; elliptical structuring elements; remote sensing images; water segmentation; gray slice

    0 Introduction

    Statistics on water area through remote sensing image analysis is an effective means to analyze water resources, which can overcome the shortcomings of time-consuming, laboriousness and large error in traditional artificial water resources measurement.At present, scholars have proposed many methods of image segmentation and edge extraction using adaptive morphology[1-3].Adaptive morphology can construct structuring elements adaptively according to the target features in the image, thus overcoming the shortcoming that the edge of the target area is changed by fixed structural elements with some single shapes and sizes in traditional morphology.There are also many scholars who apply mathematical morphology to remote sensing images[4-6].In Ref.[7], a plantation is extracted by performing a threshold on the multi-scale and multi-direction structure index feature map[8], which combines morphological operators to refine the extraction results.Lian et al.proposed an adaptive circular template algorithm for extracting the road information in a high-resolution remote sensing image, which solves the problem that the existing template matching algorithms need to manually set template sizes[9].Mylonas et al.realized the segmentation of agricultural and urban remote sensing images by combining the properties of the genetic sequential image segmentation framework with the principles of the region growing segmentation algorithms[10].Wang et al.proposed a new level set method for coastline detection in high-resolution SAR images based on the generalized Gamma distribution[11-13].In Refs.[14-15], a method of multispectral remote sensing image segmentation based on Markov random field is proposed, which calculated feature vectors for every frequency band, estimated contextual parameters for every band, using local smoothing, and finally merged the feature vectors of the frequency bands to obtain final segmentation.Han et al.proposed a hybrid active contour model based on regional information fusion to improve the river extraction accuracy in remote sensing images, which is suitable for river remote sensing image segmentation with certain contrast[16].A novel water segmentation algorithm combining multi-scale level set method with Otsu algorithm was proposed in Ref.[17], considering both global information and local information of the image, eliminating the influence of farmland and road, and improving the accuracy and efficiency of water body segmentation.

    Due to the large specific heat of the water in the infrared remote sensing image, there are obvious characteristics during the day and night.The water heats up less in the daytime, showing dark colors, and cools down more slowly at night, showing bright colors.There is less dark detail noise(building shadows, trees, etc.), which cannot reflect the performance of the proposed algorithm to suppress dark detail noise.Therefore, infrared remote sensing images are not studied in our work.The terrain of remote sensing images is complex and diverse, and the shapes, sizes and directions of the targets in the images are different.Therefore, using fixed structuring elements to perform morphological operations will lead to the change of water information in remote sensing images, including creating new targets, changing the edge position of larger targets, destroying the boundary of transition zone between original targets, losing small targets, and so on.These have an impact on the accuracy of water segmentation.To solve these problems, we first define adaptive morphological dilation and erosion by constructing adaptive elliptical structuring elements, and then combines adaptive morphological close operaton.This close operation enhances and connects the bright detail features of the image, and reduces the interference of dark detail noise in the remote sensing images, without not overstretching the target edge.

    In our work, the adaptive morphological close operation is performed on the remote sensing image, and then the gray slice is used to segment the water area.Compared with the traditional segmentation methods, this method can improve the water area segmentation accuracy of remote sensing images.

    1 Construction of adaptive elliptical structuring elements

    One of the key steps in the segmentation is to perform adaptive morphological operations on remote sensing images, therefore it is necessary to construct adaptive elliptical structuring elements.

    1.1 Linear structure tensor

    The structure tensorT[18]of any pixel(i,j)in an image is defined as

    (1)

    whereTx(i,j)andTy(i,j)are gradients inxandydirections, respectively.Since the structure tensor is sensitive to noise, Gaussian blur processing is required to enhance the robustness of structure tensor, called as linear structure tensorST, namely

    (2)

    whereGσis a Gaussian kernel function with a standard deviation ofσ, and * denotes convolution.

    The eigenvaluesλ1andλ2as well as eigenvectorsγ1andγ2of the linear structure tensor are defined as

    (3)

    (4)

    whereλ2≥λ1;γ1represents the gradient direction of the image andγ2is the edge direction of the image.Whenλ2≈λ1?0, the gray value changes greatly inγ2andγ1directions(image corner); whenλ2?λ1≈0, the change of gray value inγ2direction is larger than inγ1direction(strong edge of image); whenλ2≈λ1≈0, the gray value changes inγ2andγ1directions are small(image flat area).

    1.2 Adaptive elliptical structuring elements

    The shape of the elliptical structuring elements are between disk and line structuring elements.As shown in Fig.1, the elliptical structuring element of any pixel(i,j)in the image isN[a(i,j),b(i,j),θ(i,j)], wherea(i,j)represents the semi-major axis length of the ellipse,b(i,j)represents the semi-minor axis length of the ellipse, andθ(i,j)is the angle betweena(i,j)andxaxis.And their expressions are

    Fig.1 Elliptical structuring elements

    (5)

    (6)

    (7)

    whereγ2,x1(i,j)andγ2,x2(i,j)are the components of the eigenvectorγ2(i,j), andMis the largest semi-major axis of the ellipses.Whenλ2≈λ1?0, the structuring element is an ellipse ofa(i,j)≈b(i,j)≈M/2; whenλ2?λ1≈0, the structuring element is ellipse ofa(i,j)≈Mandb(i,j)≈0; whenλ2≈λ1≈0, the structuring element is an ellipse ofa(i,j)≈b(i,j)≈M.

    In summary, when the structuring element is at the corner of the image, the shape is similar to the disk with the radius ofM/2; when the structuring element is at the edge of the image, the shape is similar to a line with the length ofM; when the structuring element is at the weak edge of the image, the shape is an ellipse, the length values of semi-major and semi-minor axes are calculated by Eqs.(5)and(6), respectively; when the structuring element is in the flat area of the image, the shape is similar to a disk with the radius ofM.

    2 Adaptive morphological operations of elliptical structuring elements

    The elliptical structuring elements are used to construct morphological dilation and erosion, and the close operation is to remove the dark details of the remote sensing image and maintain the water edge.

    2.1 Basic operations

    Dilation and erosion are the basic operations of morphology.The elliptical structuring elements of all pixels in the image are calculated by Eqs.(1)-(7).Dilationαand erosionβcan be performed on imagef(i,j)and defined as

    (8)

    (9)

    where ∨ and ∧ are the maximum and the minimum operators, respectively;φ(i,j)represents a pixel point andN[a(i,j),b(i,j),θ(i,j)]is the area in the imagef(i,j)at which the structuring element is located.

    Fig.2 shows a visible remote sensing image(512×512 pixels)of a satellite, which is processed by adaptive morphological dilation and erosion.In Fig.2(b), with the increase ofM, the dilation reduces or the dark details such as the water area in the lower corner are deleted.Erosion, on the contrary, reduces or the bright details are deleted.In Fig.2(c), with the increase ofM, the larger water area in the upper right area is reduced or even eliminated.

    Fig.2 Dilation and erosion

    2.2 Adaptive morphological close operation

    The adaptive morphological close operationηhas the same definition as the classical morphological close operation.The image undergoes first dilation, then erosion, and finally closing operation.The close operaton of elliptical structuring elements can enhance and connect the bright detail features of the image, reduce the interference of dark details on water without stretching the edge excessively, and maintain the edge of water area.The close operationηis defined as

    η(i,j)=β[α(i,j)] (i,j)∈α,β.

    (10)

    In order to verify the anti-noise performance of the elliptical structuring elements close operation on the dark detail, a visible remote sensing image(512×512 pixels)with more interference of dark details is selected(see Fig.3).In Fig.3, with the increase ofM, the dark details of the image decrease gradually, thus the bushes and shadows of buildings can be seen more clearly.

    Fig.3 Close operation comparison of remote sensing images

    3 Adaptive morphological image segmentation

    Since the water pixel value in the remote sensing image is generally low, the dark detail noise has a great influence on the water body segmentation.For this reason, the closing is used to suppress most of the dark detail noise of the remote sensing image and thus the water edge details are preserved.Then, the gray slice is used to segment the water of the remote sensing image.Flow chart is as follows.

    Fig.4 Flow chart of remote sensing image water segmentation based on elliptical structuring elements

    4 Simulation and analysis

    In order to verify the performance of the proposed method, three visible remote sensing images with 512×512 pixels,I1,I2andI3(see Fig.5(a)), were selected and simulated under Matlab R2017.There is a fluctuation in the pixel value of the target water inI1(radius or length of structuring elements is 5).InI2(radius or length of structuring elements is 3), the edge details of target water are more.I3(radius or length of structuring elements is 5)has multiple target water bodies.

    Fig.5(b)uses disk structuring elements to perform morphological close operation.In the first picture, it can be seen that the fluctuation of the pixel value caused by the flow of water leads to the inaccurate segmentation of water.In the second and third images, the fixed structuring elements are used to perform morphological operations on the image to make the water details lost, and the water edges are not accurately segmented.Fig.5(c)uses the direction-adaptive line structuring elements to perform the morphological close operation.It can be seen from the segmentation result that the shape of the line structuring element is too extreme, therefore the water edge in the first and third images is not smooth enough.At the same time, when the morphological close operation is performed on the second picture, dark noise is introduced into the water by the physical feature, which leads to the incorrect segmentation of the segmentation results.Fig.5(d)uses morphological filtering(close operation of disk structuring elements)+ multi-seed region growth.In the first image, the water still can not be segmented accurately after properly increasing the threshold value.The second and third images are similar to Fig.5(b), with water edge details missing.Fig.5(e)is the marker-controlled watershed segmentation.From the segmentation results, it can be seen that the marker-controlled watershed segmentation is vulnerable to noise.For example, in the first image, because of the fluctuation of the pixel value, many noises are mixed in the water body, and the segmentation results are obviously over-segmentation.Although the second image is not over-segmentation, the lower and upper edges of the water body are not segmented accurately.In the third image, the water edge location is not accurate enough.Fig.5(f)is the results using the proposed method in this paper.In the first image, the water area with pixel fluctuation can be regarded as a weak edge, and the elliptical structuring elements enhance the bright details of the coastline and reduce the pixel difference of the water area.The coastline can be regarded as a strong edge, and the semi-major axis lengths of the elliptical structuring elements are much larger than their semi-minor axis lengths(similar to the line structuring elements), maintaining the edge of the water.The inner part of the water can be regarded as a flat area, and the semi-major axis lengths of the elliptical structuring elements are approximately equal to their semi-minor axis lengths(similar to the disk structuring elements), eliminating the noise of pixel fluctuation inside the water body.In the second and third images, similar to the first image, the close operation suppresses the dark operation detail noise in the water area, and maintains the water edge.In summary, the method in this paper can segment the remote sensing water more accurately, and the error is lower.

    Fig.5 Water segmentation simulation experiment

    In order to analyze the segmentation performance of the proposed method, the number of water area pixels is counted.The image segmentation errorEis defined as

    (11)

    whereSis the number of pixels in the segmentation result image, andS0is the number of pixels in the manual segmentation image.

    Table 1 shows the image segmentation errors of the imagesI1,I2andI3.Compared with other methods, the average segmentation error of this method is less than 1.43%.

    Table 1 Comparison of segmentation errors

    Table 1 shows that the marker-controlled watershed segmentation is over-segmention due to pixel fluctuations of imageI1, and the error is the largest.The morphological filtering + multi-seed region growth does not accurately segment the water area.In the disk structuring elements method, the close operation is first performed on the remote sensing image, and then the water area is segmented by the gray slice, the error being smaller than that of the morphological filtering+multi-seed region growth.Although the shape of the direction-adaptive line structuring element is too extreme, the direction is adaptively changed with the edge of the water.The segmentation accuracy is higher than that of the disk structuring elements method.The proposed method suppresses the dark detail noise of the remote sensing image, enhances and connects the bright details with minimal error.The details of water edge inI2are complex.In marker-controlled watershed segmentation, the upper and lower edges of water are missegmented, and the error is the largest.The disk structuring elements method and the morphological filtering+multi-seed region growth eliminate the lower edge of water area when the close operation is performed on the water body, and the errors are not much different.Dark detail noise is introduced into the water body due to the physical characteristics of the direction-adaptive line structuring elements, resulting in mis-segmentation of the upper left corner in the image.The elliptical structuring elements can change their size and shape adaptively with the edge of the water, which can completely segment the water area with the least error.There are multiple water targets inI3.The marker-controlled watershed segmentation is not accurate enough to locate the edge of water edge, and the error is the maximum.There is little difference between the disk structuring elements and the morphological filtering + multi-seed region growing.From the segmentation result of the direction-adaptive line structuring elements, it can be seen that the water edge is not smooth enough.The elliptical structuring elements method can segment the water body more completely and has the least error.

    5 Conclusion

    In order to segment water in remote sensing image accurately and efficiently, a remote sensing image water segmentation method based on adaptive morphology elliptical structuring elements is proposed.Firstly, adaptive elliptical structuring elements are constructed by linear structure tensor.Its shape is between the disk and the line, and it can change size and shape adaptively with the characteristics of the water edge.Then the dilation and erosion are defined, and the adaptive morphological close operation is combined to enhance the bright details of remote sensing images, suppresses the dark details and maintains the position of the water edge.Finally, the gray slice is used to segment the water area.The experimental results show that the proposed method has high universality and can segment the water area in remote sensing images more accurately.

    秋霞伦理黄片| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 精品国产一区二区三区久久久樱花| 另类亚洲欧美激情| kizo精华| 捣出白浆h1v1| 大陆偷拍与自拍| 成年av动漫网址| 欧美丝袜亚洲另类| 观看美女的网站| 考比视频在线观看| 性色av一级| 一本大道久久a久久精品| 中国国产av一级| 搡女人真爽免费视频火全软件| 国产成人精品久久久久久| 99久久人妻综合| videossex国产| 女人精品久久久久毛片| 精品一区二区三卡| 新久久久久国产一级毛片| 建设人人有责人人尽责人人享有的| 精品国产国语对白av| 少妇高潮的动态图| 天堂俺去俺来也www色官网| 亚洲精品日本国产第一区| 成人无遮挡网站| 久久精品久久精品一区二区三区| 少妇人妻久久综合中文| 亚洲美女搞黄在线观看| 国产一级毛片在线| 国产精品一区www在线观看| 在线观看国产h片| 久热这里只有精品99| 晚上一个人看的免费电影| 一级黄片播放器| 丰满少妇做爰视频| 日本午夜av视频| 久久精品久久久久久久性| 又黄又粗又硬又大视频| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品无大码| av在线观看视频网站免费| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 免费久久久久久久精品成人欧美视频 | 少妇人妻 视频| 如何舔出高潮| 丝袜美足系列| 最近手机中文字幕大全| 老司机影院成人| 亚洲,欧美精品.| 亚洲图色成人| 久久99热6这里只有精品| 国产精品嫩草影院av在线观看| 观看美女的网站| 综合色丁香网| 三上悠亚av全集在线观看| 午夜视频国产福利| 久久鲁丝午夜福利片| 亚洲精品美女久久av网站| 99国产精品免费福利视频| 国产又爽黄色视频| 97在线人人人人妻| 不卡视频在线观看欧美| 亚洲成色77777| 久久久久精品人妻al黑| 赤兔流量卡办理| 久久精品aⅴ一区二区三区四区 | 欧美另类一区| 国产一区二区在线观看日韩| 波多野结衣一区麻豆| 久久99蜜桃精品久久| 国产精品 国内视频| 国产成人免费观看mmmm| 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 人妻一区二区av| 最近最新中文字幕大全免费视频 | 午夜影院在线不卡| 午夜福利视频在线观看免费| 熟妇人妻不卡中文字幕| 女性被躁到高潮视频| xxxhd国产人妻xxx| 精品一区在线观看国产| 久久综合国产亚洲精品| 日韩不卡一区二区三区视频在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 欧美最新免费一区二区三区| 人成视频在线观看免费观看| 91国产中文字幕| 成人黄色视频免费在线看| 亚洲av欧美aⅴ国产| 欧美精品一区二区大全| 天堂中文最新版在线下载| 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 日本午夜av视频| 五月伊人婷婷丁香| 久久免费观看电影| 天天操日日干夜夜撸| 欧美日韩一区二区视频在线观看视频在线| 91国产中文字幕| 少妇的丰满在线观看| 一级毛片 在线播放| 交换朋友夫妻互换小说| www.av在线官网国产| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线进入| 满18在线观看网站| 欧美国产精品一级二级三级| 美女视频免费永久观看网站| 色网站视频免费| 免费播放大片免费观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 各种免费的搞黄视频| 永久网站在线| 久久精品久久久久久噜噜老黄| 黑人欧美特级aaaaaa片| 最近2019中文字幕mv第一页| 国产成人精品一,二区| 捣出白浆h1v1| 亚洲av日韩在线播放| 亚洲欧美一区二区三区黑人 | 熟女av电影| 男的添女的下面高潮视频| 日本wwww免费看| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区 | 亚洲中文av在线| 国产成人精品在线电影| 久久国产精品大桥未久av| 天堂中文最新版在线下载| 欧美精品人与动牲交sv欧美| 亚洲一区二区三区欧美精品| 亚洲美女黄色视频免费看| 婷婷色综合大香蕉| 久久人人爽人人爽人人片va| 国产成人免费无遮挡视频| 秋霞在线观看毛片| 三上悠亚av全集在线观看| 国产成人欧美| 男女午夜视频在线观看 | 天堂中文最新版在线下载| 母亲3免费完整高清在线观看 | 丰满饥渴人妻一区二区三| 韩国高清视频一区二区三区| 午夜精品国产一区二区电影| 天天躁夜夜躁狠狠躁躁| 国产日韩欧美在线精品| 蜜桃在线观看..| 亚洲国产精品专区欧美| videossex国产| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 国产老妇伦熟女老妇高清| 男人爽女人下面视频在线观看| 99热全是精品| 亚洲精品国产av蜜桃| 久久这里有精品视频免费| 不卡视频在线观看欧美| 插逼视频在线观看| 一级,二级,三级黄色视频| 视频区图区小说| av电影中文网址| 亚洲三级黄色毛片| 永久网站在线| 色婷婷av一区二区三区视频| 女人精品久久久久毛片| 搡老乐熟女国产| 视频中文字幕在线观看| 热99国产精品久久久久久7| 一二三四在线观看免费中文在 | 在线亚洲精品国产二区图片欧美| 制服丝袜香蕉在线| 观看美女的网站| 日韩一区二区三区影片| 丝袜喷水一区| 久热这里只有精品99| 国产精品不卡视频一区二区| 免费看光身美女| 边亲边吃奶的免费视频| 国产极品天堂在线| 久久精品久久久久久噜噜老黄| 高清av免费在线| 亚洲成人手机| 999精品在线视频| 亚洲丝袜综合中文字幕| 巨乳人妻的诱惑在线观看| 久久av网站| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 亚洲国产精品999| 亚洲成色77777| 亚洲第一区二区三区不卡| 亚洲精品久久久久久婷婷小说| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 国产精品熟女久久久久浪| 丝袜脚勾引网站| 男人舔女人的私密视频| 国产精品不卡视频一区二区| 国产在线免费精品| 1024视频免费在线观看| 亚洲国产av新网站| 日韩av免费高清视频| 视频中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 色哟哟·www| 五月伊人婷婷丁香| 永久免费av网站大全| 久久久久久久久久久免费av| 赤兔流量卡办理| 精品一区二区三卡| 欧美97在线视频| 乱人伦中国视频| 男人舔女人的私密视频| 飞空精品影院首页| 人妻少妇偷人精品九色| 亚洲欧美日韩卡通动漫| 亚洲婷婷狠狠爱综合网| 久久久精品94久久精品| 欧美精品国产亚洲| 欧美另类一区| 在线 av 中文字幕| 免费人成在线观看视频色| 色94色欧美一区二区| 全区人妻精品视频| 国产成人一区二区在线| 午夜福利在线观看免费完整高清在| 亚洲一区二区三区欧美精品| 亚洲av男天堂| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 久久亚洲国产成人精品v| 国产欧美日韩综合在线一区二区| 久久韩国三级中文字幕| 黄网站色视频无遮挡免费观看| 久久久久精品性色| 成年女人在线观看亚洲视频| 美女大奶头黄色视频| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区国产| 日韩精品免费视频一区二区三区 | 成人亚洲精品一区在线观看| 91aial.com中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产精品成人在线| a级毛片在线看网站| 亚洲国产av新网站| 美女福利国产在线| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| 亚洲色图 男人天堂 中文字幕 | 一二三四在线观看免费中文在 | 日韩在线高清观看一区二区三区| 国产精品 国内视频| 国产成人免费观看mmmm| 卡戴珊不雅视频在线播放| 亚洲成人一二三区av| 80岁老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 伦理电影免费视频| 在线观看www视频免费| 少妇被粗大的猛进出69影院 | 久久久久久久久久久久大奶| 亚洲国产av影院在线观看| 国产成人免费无遮挡视频| 国产黄色视频一区二区在线观看| 在线观看人妻少妇| 亚洲成av片中文字幕在线观看 | 18+在线观看网站| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 日本与韩国留学比较| 最后的刺客免费高清国语| 在线免费观看不下载黄p国产| 日韩电影二区| 成年美女黄网站色视频大全免费| 日韩av不卡免费在线播放| 日本黄大片高清| 少妇人妻久久综合中文| 精品一区在线观看国产| av电影中文网址| 日本91视频免费播放| 夫妻性生交免费视频一级片| 日日撸夜夜添| 国产免费一区二区三区四区乱码| h视频一区二区三区| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 大片免费播放器 马上看| 一边摸一边做爽爽视频免费| 久久这里有精品视频免费| 美女大奶头黄色视频| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| tube8黄色片| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| videos熟女内射| 亚洲中文av在线| 爱豆传媒免费全集在线观看| 久久韩国三级中文字幕| 纯流量卡能插随身wifi吗| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 色吧在线观看| 欧美人与性动交α欧美软件 | 最新的欧美精品一区二区| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 亚洲精品第二区| 在线精品无人区一区二区三| 日本wwww免费看| 咕卡用的链子| 少妇人妻精品综合一区二区| 国产不卡av网站在线观看| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 成人免费观看视频高清| 国产欧美另类精品又又久久亚洲欧美| 王馨瑶露胸无遮挡在线观看| 免费黄色在线免费观看| 深夜精品福利| 又大又黄又爽视频免费| 美女内射精品一级片tv| 欧美日韩亚洲高清精品| 色94色欧美一区二区| 99香蕉大伊视频| 卡戴珊不雅视频在线播放| 久久久a久久爽久久v久久| 免费观看在线日韩| 精品久久国产蜜桃| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 日日爽夜夜爽网站| 国产在线一区二区三区精| 超色免费av| 9191精品国产免费久久| 午夜影院在线不卡| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 性色av一级| 国产在线免费精品| av福利片在线| 我要看黄色一级片免费的| 免费黄频网站在线观看国产| 精品熟女少妇av免费看| 一级毛片电影观看| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 免费在线观看黄色视频的| 国产精品久久久久成人av| 国产又色又爽无遮挡免| 日韩av不卡免费在线播放| 9色porny在线观看| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 国产精品欧美亚洲77777| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 久久久国产一区二区| 超碰97精品在线观看| 波野结衣二区三区在线| xxx大片免费视频| 久久人人爽人人片av| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 少妇人妻 视频| 精品久久久精品久久久| 国产色婷婷99| 国产极品天堂在线| 啦啦啦视频在线资源免费观看| av在线app专区| 国产淫语在线视频| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 中文字幕最新亚洲高清| 丁香六月天网| 欧美精品一区二区免费开放| 亚洲综合精品二区| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 欧美性感艳星| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 三级国产精品片| 日韩熟女老妇一区二区性免费视频| xxx大片免费视频| 侵犯人妻中文字幕一二三四区| 寂寞人妻少妇视频99o| 我要看黄色一级片免费的| 日本黄大片高清| 日韩欧美精品免费久久| 在线精品无人区一区二区三| 亚洲av男天堂| 九色亚洲精品在线播放| 国产探花极品一区二区| 一级毛片 在线播放| 韩国av在线不卡| av.在线天堂| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 久久久久人妻精品一区果冻| 亚洲av在线观看美女高潮| 日韩av在线免费看完整版不卡| 精品少妇内射三级| 亚洲三级黄色毛片| 国产精品成人在线| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 99热网站在线观看| 色婷婷久久久亚洲欧美| 久久久久国产网址| 久久久久久久精品精品| 日韩在线高清观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 免费观看av网站的网址| 久久久精品94久久精品| 久久久久久久国产电影| 久久99一区二区三区| 国产成人免费无遮挡视频| 伦精品一区二区三区| av片东京热男人的天堂| 亚洲欧美日韩另类电影网站| 日本免费在线观看一区| 九色成人免费人妻av| 韩国高清视频一区二区三区| 日本免费在线观看一区| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 成人国语在线视频| 一本久久精品| 婷婷色综合www| 三上悠亚av全集在线观看| 免费大片黄手机在线观看| 制服诱惑二区| 免费av中文字幕在线| 91精品国产国语对白视频| 久久人人爽人人片av| 日韩欧美一区视频在线观看| 日本av免费视频播放| 亚洲人与动物交配视频| 伊人亚洲综合成人网| 美女内射精品一级片tv| 亚洲国产看品久久| 超色免费av| 丰满迷人的少妇在线观看| 美女国产高潮福利片在线看| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| a 毛片基地| 满18在线观看网站| 亚洲精品日本国产第一区| 99视频精品全部免费 在线| 美女内射精品一级片tv| 久久久久久久久久成人| 亚洲av.av天堂| 欧美xxxx性猛交bbbb| 国产av一区二区精品久久| 99热国产这里只有精品6| 下体分泌物呈黄色| 一级毛片黄色毛片免费观看视频| 日日摸夜夜添夜夜爱| 久久久久久久亚洲中文字幕| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 少妇高潮的动态图| 高清欧美精品videossex| 亚洲精品日韩在线中文字幕| 成年av动漫网址| 777米奇影视久久| kizo精华| 午夜91福利影院| a级毛片在线看网站| 亚洲国产成人一精品久久久| 欧美精品国产亚洲| 精品人妻熟女毛片av久久网站| av电影中文网址| freevideosex欧美| 亚洲图色成人| 欧美国产精品一级二级三级| 五月开心婷婷网| a级毛片黄视频| 波多野结衣一区麻豆| av在线老鸭窝| 青青草视频在线视频观看| 99精国产麻豆久久婷婷| 大香蕉97超碰在线| 成人手机av| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 久热久热在线精品观看| 亚洲成国产人片在线观看| 国产成人午夜福利电影在线观看| 精品卡一卡二卡四卡免费| 国产永久视频网站| 久热久热在线精品观看| 精品国产一区二区久久| 久久久国产欧美日韩av| 国产精品秋霞免费鲁丝片| 熟妇人妻不卡中文字幕| 国产精品 国内视频| 中文字幕精品免费在线观看视频 | 日韩大片免费观看网站| 丝瓜视频免费看黄片| 免费在线观看黄色视频的| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 九色亚洲精品在线播放| 国产成人精品无人区| a 毛片基地| 一级片免费观看大全| 女人被躁到高潮嗷嗷叫费观| 少妇的逼好多水| 亚洲精品美女久久av网站| 久久久久网色| 国产极品粉嫩免费观看在线| 成年女人在线观看亚洲视频| 啦啦啦视频在线资源免费观看| 日韩熟女老妇一区二区性免费视频| 久久精品国产综合久久久 | 亚洲国产精品一区三区| 午夜视频国产福利| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 18禁观看日本| 亚洲欧美成人综合另类久久久| 999精品在线视频| av免费观看日本| 久久久久久人人人人人| 男人操女人黄网站| 久热久热在线精品观看| 亚洲欧洲国产日韩| 午夜福利乱码中文字幕| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 人妻人人澡人人爽人人| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 日韩在线高清观看一区二区三区| 少妇的丰满在线观看| 午夜影院在线不卡| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 看免费av毛片| 精品国产露脸久久av麻豆| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 成人无遮挡网站| 九草在线视频观看| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 国产成人91sexporn| 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 日韩视频在线欧美| 精品一区在线观看国产| 亚洲精华国产精华液的使用体验| 久久午夜综合久久蜜桃| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 亚洲中文av在线| 一区二区三区乱码不卡18| 亚洲精品日韩在线中文字幕| 国产色爽女视频免费观看| 成人漫画全彩无遮挡| 国产免费现黄频在线看| 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 在线免费观看不下载黄p国产| 最新的欧美精品一区二区| 欧美丝袜亚洲另类| 欧美人与性动交α欧美精品济南到 | 免费大片黄手机在线观看| 大片免费播放器 马上看| 免费高清在线观看日韩|