• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An extraction method for pressure beat vibration characteristics of hydraulic drive system based on variational mode decomposition

    2020-08-25 04:50:32QIANDuozhouGULichenYANGShaMAZiwen

    QIAN Duo-zhou,GU Li-chen,YANG Sha,MA Zi-wen

    (School of Mechatronic Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

    Abstract:In the pump-controlled motor hydraulic transmission system, when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other, the hydraulic system will generate a strong pressure beat vibration phenomenon, which will seriously affect the smooth running of the hydraulic system.However, the modulated pressure signal also carries information related to the operating state of the hydraulic system, and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics, an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system, and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD).

    Key words:hydraulic drive system; pressure beat vibration; variational mode decomposition(VMD); characteristic extraction

    0 Introduction

    The hydraulic drive system of pump-controlled motor is commonly used for metallurgical machinery manufacturing in the field of aerospace engineering due to its high power density and volumetric efficiency.Because the plunger pump and plunger motor have high working pressure and compact structure, they are most commonly used[1].Owing to the structure of plunger pump and plunger motor, flow pulsation will be generated in the working process, resulting in pressure pulsation[2], which is a part of the three properties of plunger equipment.The study shows that when the pressure pulsation frequencies of the pump and motor are close to each other, the system itself has a certain stiffness.Therefore, the hydraulic system will produce pressure beat vibration.The pressure beat makes the pulse amplitudes of the pump and the motor superpose and then the vibration is intensified, which will affect the quality of the hydraulic system.However, the modulated pressure signal also carries information about the system status[3].Therefore, in recent years, researchers have conducted extensive research and in-depth discussion on the pressure vibration phenomenon of hydraulic system.Gao et al.defined the conditions for the vibration of air hydraulic pipeline and proposed a new technology of damping vibration reduction of pipeline system by using viscoelastic constraint layer material[4];Through simulation and test, Jiang et al.analyzed the law of hydraulic system pressure beat vibration and proved that reasonable selection of transmission ratio and number of plunger could effectively suppress the hydraulic system pressure beat vibration[5];When the condensate booster pump in the condensate system of Qinshan Nuclear Power was suspected to be vibrating, Li et al.conducted vibration test on the condensate booster pump and its attached pipelines, and determined that the condensate booster pump had slapping vibration by studying the corresponding vibration characteristics of the condensate booster pump[6].The current research on hydraulic system pressure beat vibration mainly focuses on how to suppress it, but pressure beat vibration is rarely used as a carrier to amplify the running state of the hydraulic system.

    The pressure beat signal can be regarded as the gain signal of pump and motor pressure pulsation.Because pressure beat signal contains rich information about the running state of the hydraulic system, accurate extraction of pressure vibration signal characteristics is the premise of monitoring the running state of the hydraulic system.With the development of modern industry, high-speed and high-pressure energy saving has become the development trend of hydraulic system, and variable speed pump motor system has become one of the typical representatives of hydraulic drive system[7].This brings many challenges to the characteristic extraction of the pressure beat signal.The variable speed input of the pump is realized by the frequency converter, which brings strong noise interference to the pressure vibration signal;At the same time, due to the variable speed of the pump, the pressure vibration signal of the hydraulic system is a time-varying non-stationary limit number.When the time-varying non-stationary signal is processed by the traditional time-frequency analysis method, there are some shortcomings such as mode aliasing and poor adaptability[8-9].Therefore, the required signal components cannot be decomposed from the complex signal.

    As a new time-frequency analysis method[10], variational mode decomposition can decompose multi-component signals into multiple single-component amplitude modulation(AM)and frequency modulation(FM)signals simutaneously, which avoids endpoint effect and false component problems in an iterative process.This method can effectively deal with nonlinear non-stationary signals with extreme noise, therefore it is widely used in fault diagnosis of rotating machinery[11-13].In this paper, we propose a variable mode decompesition(VMD)-based method for extracting the characteristics of hydraulic drive system.It can accurately separate the beat-vibration components from the complex pressure signals and provide technical method support for extracting the operating status information carried by the hydraulic system pressure vibration, monitoring the local status of the hydraulic system and analyzing the global characteristics of the hydraulic system.

    1 Principle

    1.1 Basic principle of hydraulic system pressure vibration

    In a hydraulic drive system, the plunger pump spindle rotates the cylinder and plunger.Under the inclined angle of the inclined plate, the volume of a single plunger cavity is changed according to a sinusoidal law.The spindle rotates for one week, the cylinder body completes oil absorption and discharge once, and the mechanical energy is converted into hydraulic energy.Plunger motors operate in an opposite way.

    The volume of the plunger cavity changes periodically as the spindle rotates.In the oil absorption zone, the volume of the plunger cavity increases but the pressure decreases, which creates a vacuum to inhale the oil.In the oil discharge area, the volume of the plunger cavity decreases but the pressure increases, thus the oil is discharged.The actual flow pulsation of the pump is a complicated process with a periodic change due to the influence of oil recirculation and compressibility of the vibration absorber at the distribution port[14].Similarly, the oil flow rate of the hydraulic motor also changes periodically with the load speed.

    The Fourier transforms of the instantaneous flows of the pump and motor are completed seperately.Since the flow characteristic of the fundamental wave is very close to that of the original signal, only the fundamental wave is retained to simulate the flow rate pulsation[15].At this time, the flow pulsation can be regarded as a simple harmonic motion, and the flow expressions of pump and motor can be expressed as

    Q=Q0+qsin(4ωzt),

    (1)

    whereQis the instantaneous flow of the pump or motor;Q0is the constant flow of the pump or motor;zis the number of plungers in drainage area; andqis the fluctuation amplitude of the pump or motor flow.

    The closed space composed of pump, motor and tubing is studied.The basic principle of fluid mechanics is expressed as

    (2)

    whereQpis the instantaneous flow of the plunger pump,Qmis the instantaneous flow of the plunger motor,Ctis the leakage coefficient of the hydraulic system,p0is the steady-state working pressure of the pump-controlled motor system,Vis the volume of the closed cavity,Eis the elastic modulus of oil volume, andpis the pressure of closed oil chamber.

    Assuming that the system is in an ideal state, that is, the inflow flow of the plunger cavity is equal to the outflow flow, the ideal flow continuity equation between the pump and the motor can be expressed as

    Qp0-Qm0-Ctp0=0,

    (3)

    whereQp0is the steady-state average flow of plunger pump, andQm0is the steady-state average flow of plunger motor.

    Substituting Eqs.(1)and(3)into Eq.(2), there is

    (4)

    whereqmis the pulsation amplitude of the instantaneous flow of plunger motor;ωmis the angular velocity of motor cylinder;zmis the number of plungers in a plunger motor;qpis the pulsation amplitude of the instantaneous flow of plunger pump;ωpis the angular velocity of plunger pump;zpis the number of plungers in a plunger pump.

    It can be seen that the flow pulsations of the plunger pump and plunger motor cause pressure pulsation of the pump and motor, which results in pressure pulsation in the hydraulic system.

    According to Eq.(4), the pressure pulsation of the hydraulic system can be expressed as

    (5)

    where

    According to Eq.(5), the pressure pulsation of the hydraulic system is actually the superposition and mutual influence of the pressure pulsation signals of the plunger pump and the plunger motor.This pulsation forms new vibration periods and amplitudes.

    Due to the leakage of the hydraulic system, when the pump outputs the flow to the motor, the flow is reduced.Therefore, the frequency and amplitude of the motor pressure pulsation are slightly less than that of the pump[16].Assuming that the pressure pulsation frequency generated by the pump source is 220 Hz and the pulsation amplitude is 5.5 MPa, the pressure pulsation frequency generated by the motor is 200 Hz, and the pulsation amplitude is 5 MPa.The resultant pressure pulsation is shown in Fig.1.At this time, the pulsation amplitude of the system is 10.5 MPa and the frequency is 20 Hz.

    Fig.1 Numerical simulation waveform and superimposed waveform of pressure pulsation

    It can be seen from Fig.1 that the system pressure changes periodically with time, and the hydraulic system experiences obvious pressure vibration.The maximum pressure pulsation of the system is the sum of the pulsation amplitude of the pump and the motor, and the frequency is the difference between the two.Increased pulsation has a significant impact on hydraulic components and shortens their service life.But it also carries more understandable information about system performance.

    1.2 Extracting principle of VMD

    VMD method is a new variable scale signal processing method proposed by Konstantin Dragomiretskiy in 2014.The method can decompose multi-component AM and FM signals into multiple single-component AM and FM signals at one time[10].It can decompose the complex signalx(t)into a series of essential mode functions, and each essential mode function fluctuates around its central frequency[17].Through non-recursive decomposition, VMD can effectively avoid many problems such as boundary effect.

    Supposing that signalx(t)are composed of several components with different center frequencies and limited bandwidths the decomposition problem of signalx(t)can be converted to the variational model for decomposition.Under the constraint that the sum of components is equal to signalx(t), the sum of the bandwidths of all elemental mode functions is minimized.Constrained variational problems can be expressed as

    (6)

    whereuk={u1,u2,…,uK} is the set of all modal functions,ωk={ω1,ω2,…,ωk} is the frequency set of all centers, ?tis the partial derivative of time with respect to a function,δ(t)is the unit impulse function, j is an imaginary unit, and * stands for convolution operator.

    To solve the above equation, by introducing a quadratic penalty function and a Lagrange multiplier, the VMD algorithm can be transformed into an unconstrained optimization problem as

    ζ({uk},{ωk},λ)=

    (7)

    where the quadratic penalty factor can guarantee the reconstruction accuracy of the signal, while the Lagrange multiplier can guarantee the strictness of the constraint condition.

    The multiplication operator is used to further solve Eq.(7)in alternating directions, and the eigen-mode functionuk(t)and its corresponding center frequencyωkare obtained by

    (8)

    (9)

    Therefore, the complete VMD algorithm is described as follows.

    4)Repeat steps 2 and 3 until iteration constraints satisfy

    (10)

    whereεis the decomposition condition parameter, usually which isε=1×10-7.

    2 Test platform

    The schematic diagram of the hydraulic test platform with variable speed of the pump-controlled motor is illustrated in Fig.2.

    1—Inverter; 2—Asynchronous motor; 3—Transfer box; 4—Speed and torque sensor; 5—Main pump; 6—oil filling pump; 7—Oil filling overflow valve; 8—Oil filling one-way valve; 9—Electromagnetic proportional overflow valve; 10—Combined sensor; 11—Flushing valve set; 12—Variable motor; 13—Gear pump; 14—Electromagnetic relief valve; 15—Globe valve; 16—Filter; 17—Cooler; 18—Drive system tank; 19—Load system tank

    The test platform mainly includes the monitoring system, power source, hydraulic transmission system and loading system.The monitoring system consists of a sensor, a data multifunction card and an industrial computer.The power source is composed of inverter 1 and asynchronous motor 2.By adjusting the control voltage of inverter 1 through the measurement and control system, the variable frequency speed regulation of asynchronous motor 2 can be realized.The plunger pump 4 and the plunger motor 11 constitute a hydraulic transmission system.Both end to end constitute a typical closed system.The plunger pump is a swap-type axial plunger pump, and the plunger motor is a swap-type axial plunger motor.The specific technical parameters are given in Table 1.The loading part of the test platform is an open hydraulic circuit composed of gear pump 12 and electromagnetic proportional relief valve 8.By controlling proportional overflow valve 8, the pressure is generated in the outlet pipeline of gear pump 12.Thus the load torque can be generated on the motor shaft.The physical map of the hydraulic test platform with variable speed of the pump-controlled motor is illustrated in Fig.3.

    Table 1 Technical parameters of plunger pump and motor

    Fig.3 Physical map of hydraulic test platform with variable speed of pump control motor

    In order to accurately obtain the pressure information during the operation of the variable speed hydraulic test platform, pressure sensors of HYDAC hda4844-a-400-y00 were installed at the inlet of the pump, the outlet of the pump, the high-pressure oil line of the system and the inlet of the motor, respectively.Installation position of a pressure sensor for high-pressure tubing is shown in Fig.4.

    Fig.4 Installation position of pressure sensor

    The main technical parameters of the pressure sensor are shown in Table 2.

    Table 2 Main technical parameters of pressure sensor

    3 Experiment and analysis

    3.1 Acquisition of beat signal

    In engineering practice, when the frequency ratio of two vibration sources approaches 20%, the system will beep[18].In the hydraulic system, when the frequency ratio of pump and motor pump oil is similar, that is, 1≤max(i,1/i)≤1.2, the hydraulic system will have the phenomenon of pressure beat vibration.The inequality 0.83≤i≤1.2 can be obtained by calculation.Since a seven-plunger motor and a nine-plunger pump are installed on the test platform, the displacement of the pump is adjusted to 55 mL/r, the displacement of the motor is 70 mL/r, and the ratio of pump oil frequencies of pump to motor is between 0.83 and 1.2.

    By adjusting the loading of proportional overflow valve, the system pressure reaches 13 MPa, and then the motor speed slowly increases.When pump speed reaches 1 200 r/min and the motor speed is close to 885 r/min, the pressure waveform of high-pressure oil pipeline is obtained, as shown in Fig.5.It can be seen that the time domain waveform of the pressure signal of high-pressure oil circuit is disordered due to the influence of the interference signal.The signal is transformed by fast Flourier transform(FFT).The corresponding spectrum can be obtained, as shown in Fig.6.

    Fig.6 FFT spectrum of pressure signal of high pressure oil line

    Fig.5 Time domain waveform of high pressure oil circuit

    Signal spectrum components are complicated, which mainly include pump rotation frequency and each harmonic, motor rotation frequency and each harmonic, power frequency interference, noise and so on.After calculation, the rotation frequencyfof the pump is 20 Hz, and the oil pumping frequency isfp=7f=140 Hz.The rotation frequencyfrof the motor is 14.84 Hz, and the pumping frequency isfm=9fr=133.6 Hz.The beat and other aliasing components in the pressure signal cannot be distinguished by FFT.

    3.2 Decomposition of VMD

    3.2.1 Determination of VMD parameters

    The VMD method requires the preset scale numberKand the bandwidth parameters[19].Theoretically, since the center frequency of the band-limited intrinsic mode function(BIMF)component obtained by VMD decomposition is distributed from low frequency to high frequency, ifKjust reaches the optimal value from small to large, the center frequency of the last BIMF component will reach the maximum value for the first time.Therefore, we determine the value ofKby taking the observation center frequency as the maximum value for the first time, andαadoptes the VMD default value of 2 000.WhenKtakes different values, the collected pressure signals are decomposed into VMD, and the center frequency of BIMF component is obtained, as showed in Table 3.

    Table 3 BIMF component center frequency of pressure signal

    It can be seen from Table 3 that whenK=4, BIMF4 takes the maximum center frequency 390.6 Hz, which is approximately equal to 398.4 Hz(whenK=5, BIMF5 takes the maximum center frequency).At the same time, it is obvious whenK=5, there is over-decomposition, that is, modal components of the same center frequency appear(BIMF3 and BIMF4), thereforeK=4.

    3.2.2 Extraction of time-domain characteristics of pressure beat vibration

    VMD method was adopted to decompose the collected high-pressure oil circuit pressure signals.The numberKof mode decomposition was set at 4, and the penalty factor was set at 2 000.The breakdown diagram is shown in Fig.7.

    Fig.7 VMD decomposition diagram of pressure signal in high-pressure oil circuit

    It can be clearly seen that the time-domain waveform of componentu1has an obvious amplitude modulation phenomenon.The waveform is very consistent with the beat vibration curve obtained by theoretical analysis.u1is amplified, and the waveform obtained is shown in Fig.8.After FFT transformation, the spectrum diagram obtained is shown in Fig.9.

    Fig.8 Time-domain enlargement of component u1

    Fig.9 FFT spectrum of component u1

    It can be observed from Fig.8, that the period of beatings is about 0.17 s and the frequency of beatings is 5.9 Hz.The theoretical calculation shows that the difference of one pump oil frequency between the pump and motor is 6.4 Hz, which is basically consistent with the derivation conclusion that the beat wave frequency is the difference between the original two vibration frequencies in the beat theory.In Fig.9, there are obvious peak values at 133.7 Hz and 139.4 Hz.The frequency corresponds to one-time frequency of the motor and the pump respectively.The interval frequency between the motor and the pump is 5.7 Hz, which is consistent with the theoretical conclusion of beat vibration.

    It can be seen from Fig.10 that EMD decomposition fails to effectively extract the beat vibration component.

    Fig.10 Pressure signal EMD decomposition diagram of high-pressure oil circuit

    In Fig.11, IMF1 contains frequency components of 139.4 Hz and 280 Hz, IMF2 is mixed with frequency components of 280-699.4 Hz, and IMF3 is composed of frequency components of 532 Hz and 699.4 Hz.The frequency amplitude of pump and motor oil extracted by EMD method is far less than that of VMD method.The results show that the decomposition effect of EMD algorithm is not ideal and the modal aliasing is serious for the complex pressure signal with time-varying high noise.

    Fig.11 Spectrum diagram obtained after EMD decomposition

    The comparison verifies the validity of VMD in time domain feature extraction of pressure beat vibration of the hydraulic system.

    4 Conclusions

    1)In a pump-controlled motor hydraulic drive system, when the pulsation frequencies of the pump and motor are close to each other, the system pressure beats.Vibration makes the noise of hydraulic system increase, and the service life of components decreases.

    2)The proposed method can effectively separate the vibration components of mixed pressure signals in complex pipeline.Experimental results show that this method is better than the traditional signal processing method in extracting the characteristics of time-varying high-noise signal.

    3)The time-domain characteristics of the hydraulic system pressure vibration can be extracted effectively by VMD method.The method provides a method support for quantitative analysis of the operating state information carried by the hydraulic system pressure vibration and extraction of time-varying non-stationary signals of the hydraulic system.At the same time, it has certain application value for monitoring the operating state of the hydraulic system.

    一级毛片我不卡| www.av在线官网国产| 久久久色成人| 欧美 日韩 精品 国产| 精品亚洲成a人片在线观看 | 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 老师上课跳d突然被开到最大视频| 一级毛片电影观看| 日本黄色片子视频| 搡女人真爽免费视频火全软件| 亚洲性久久影院| 综合色丁香网| 日本av免费视频播放| 日韩一本色道免费dvd| 久久久成人免费电影| 有码 亚洲区| 久久韩国三级中文字幕| 成年av动漫网址| 国产乱人偷精品视频| 午夜免费男女啪啪视频观看| 人妻夜夜爽99麻豆av| 国产精品无大码| 一本—道久久a久久精品蜜桃钙片| 成人国产麻豆网| 久久人人爽av亚洲精品天堂 | 人人妻人人澡人人爽人人夜夜| 人妻夜夜爽99麻豆av| 婷婷色综合大香蕉| 一边亲一边摸免费视频| 丰满少妇做爰视频| 免费黄色在线免费观看| 熟妇人妻不卡中文字幕| 国产成人精品福利久久| 亚洲精品久久久久久婷婷小说| 最黄视频免费看| 日韩强制内射视频| 春色校园在线视频观看| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件| 视频中文字幕在线观看| 久久久久国产精品人妻一区二区| 又黄又爽又刺激的免费视频.| 日韩国内少妇激情av| 欧美三级亚洲精品| 日本vs欧美在线观看视频 | 热99国产精品久久久久久7| 美女高潮的动态| 直男gayav资源| 国产在线视频一区二区| 国产极品天堂在线| 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| av女优亚洲男人天堂| 老熟女久久久| 国产一区二区三区综合在线观看 | 91精品伊人久久大香线蕉| 麻豆成人午夜福利视频| 新久久久久国产一级毛片| 五月开心婷婷网| 中文字幕av成人在线电影| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 日韩一区二区三区影片| 国产av一区二区精品久久 | 亚洲怡红院男人天堂| 亚洲精品国产成人久久av| av在线播放精品| 热re99久久精品国产66热6| 久久国产精品男人的天堂亚洲 | 国精品久久久久久国模美| 水蜜桃什么品种好| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 精品久久久久久电影网| 高清不卡的av网站| 嘟嘟电影网在线观看| 人妻 亚洲 视频| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 国产成人精品一,二区| 国产成人精品福利久久| 26uuu在线亚洲综合色| 中国三级夫妇交换| 日韩亚洲欧美综合| 成人美女网站在线观看视频| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 亚洲精品久久午夜乱码| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 视频区图区小说| 在线观看国产h片| 久久人人爽人人片av| 在线观看一区二区三区激情| 欧美日韩一区二区视频在线观看视频在线| 亚洲av成人精品一二三区| 丰满迷人的少妇在线观看| 国产精品久久久久久精品电影小说 | 亚洲精品成人av观看孕妇| 国产成人精品一,二区| 国产精品一区二区在线观看99| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 九九在线视频观看精品| 丰满人妻一区二区三区视频av| 国产亚洲精品久久久com| 亚洲不卡免费看| 91狼人影院| 中文欧美无线码| 一级毛片电影观看| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 日韩制服骚丝袜av| 一个人看视频在线观看www免费| 国产精品国产三级专区第一集| 国产国拍精品亚洲av在线观看| 男男h啪啪无遮挡| 亚洲av综合色区一区| 亚洲人成网站在线观看播放| 国产真实伦视频高清在线观看| av一本久久久久| 国产精品久久久久久精品电影小说 | 成人亚洲精品一区在线观看 | 久久久久网色| 成年女人在线观看亚洲视频| 欧美xxⅹ黑人| 狂野欧美激情性xxxx在线观看| 麻豆成人午夜福利视频| 日韩视频在线欧美| av网站免费在线观看视频| 欧美精品国产亚洲| 18+在线观看网站| 久久久久久久大尺度免费视频| 不卡视频在线观看欧美| 欧美日本视频| 午夜视频国产福利| 波野结衣二区三区在线| 国产免费福利视频在线观看| 身体一侧抽搐| 亚洲欧美精品自产自拍| 人体艺术视频欧美日本| 国产亚洲5aaaaa淫片| 免费播放大片免费观看视频在线观看| 国产精品秋霞免费鲁丝片| 日韩中文字幕视频在线看片 | 偷拍熟女少妇极品色| 国产精品一区二区在线不卡| 少妇丰满av| 日日啪夜夜撸| 欧美日韩在线观看h| 免费观看a级毛片全部| av国产免费在线观看| 少妇丰满av| 亚洲伊人久久精品综合| 色婷婷av一区二区三区视频| 一本—道久久a久久精品蜜桃钙片| 久久久久久伊人网av| 亚洲美女视频黄频| 男女下面进入的视频免费午夜| 亚洲国产精品专区欧美| 国内精品宾馆在线| 久久国产精品男人的天堂亚洲 | 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 黄色一级大片看看| 久久久久久伊人网av| 青青草视频在线视频观看| 晚上一个人看的免费电影| 亚洲国产日韩一区二区| 九色成人免费人妻av| 久久精品国产亚洲网站| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 久久毛片免费看一区二区三区| 国产精品国产三级专区第一集| 欧美性感艳星| 久久久久久人妻| 我的老师免费观看完整版| 777米奇影视久久| 国产乱来视频区| 亚洲经典国产精华液单| 狂野欧美激情性xxxx在线观看| 欧美极品一区二区三区四区| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 精品人妻视频免费看| 午夜福利影视在线免费观看| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 天堂俺去俺来也www色官网| 三级经典国产精品| 搡老乐熟女国产| 国产久久久一区二区三区| 在线看a的网站| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 午夜福利在线在线| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 成人国产av品久久久| 国产成人精品婷婷| 少妇 在线观看| h日本视频在线播放| 国产精品免费大片| 欧美成人精品欧美一级黄| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 三级国产精品片| .国产精品久久| 亚州av有码| 日韩亚洲欧美综合| 亚洲国产日韩一区二区| 中文资源天堂在线| 亚洲最大成人中文| 日本黄大片高清| 成人特级av手机在线观看| 国产久久久一区二区三区| 国产av精品麻豆| xxx大片免费视频| 国产精品久久久久久精品古装| 欧美激情极品国产一区二区三区 | 亚洲av在线观看美女高潮| 久久久久久久久久人人人人人人| xxx大片免费视频| 免费看日本二区| 亚洲av二区三区四区| 美女国产视频在线观看| 简卡轻食公司| 人人妻人人添人人爽欧美一区卜 | 日产精品乱码卡一卡2卡三| 人人妻人人添人人爽欧美一区卜 | 国产精品久久久久久精品古装| 色综合色国产| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 久久人妻熟女aⅴ| 男女国产视频网站| 国产日韩欧美在线精品| 亚洲熟女精品中文字幕| 日本欧美国产在线视频| www.av在线官网国产| 97超视频在线观看视频| 国产乱来视频区| 欧美三级亚洲精品| 午夜免费鲁丝| 在线播放无遮挡| 美女主播在线视频| 国模一区二区三区四区视频| 亚洲图色成人| 亚洲一区二区三区欧美精品| 天天躁日日操中文字幕| 精品视频人人做人人爽| 一区二区av电影网| 国产淫片久久久久久久久| 亚洲国产精品999| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 亚洲精品aⅴ在线观看| 人人妻人人添人人爽欧美一区卜 | 久久久久久久久久久丰满| 热99国产精品久久久久久7| 久久精品久久久久久久性| 亚洲丝袜综合中文字幕| 日本黄大片高清| 97在线视频观看| 熟女人妻精品中文字幕| 国产又色又爽无遮挡免| 成人国产麻豆网| 久久97久久精品| 熟妇人妻不卡中文字幕| 不卡视频在线观看欧美| 亚洲av.av天堂| 国产成人a∨麻豆精品| 精品亚洲乱码少妇综合久久| 看十八女毛片水多多多| 大码成人一级视频| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 亚洲经典国产精华液单| 国产 一区精品| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 成人亚洲精品一区在线观看 | av在线观看视频网站免费| 久久人人爽av亚洲精品天堂 | 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 日韩三级伦理在线观看| 亚洲国产色片| 国产伦在线观看视频一区| 国产黄频视频在线观看| 色视频在线一区二区三区| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 有码 亚洲区| 国产乱来视频区| 一个人看的www免费观看视频| 26uuu在线亚洲综合色| 欧美zozozo另类| 极品少妇高潮喷水抽搐| 全区人妻精品视频| 18禁在线播放成人免费| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| av黄色大香蕉| 欧美日韩在线观看h| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 大片电影免费在线观看免费| 91精品国产国语对白视频| 极品少妇高潮喷水抽搐| 午夜福利在线在线| 欧美少妇被猛烈插入视频| 国产精品久久久久久av不卡| 亚洲欧美日韩另类电影网站 | 91精品国产九色| 看十八女毛片水多多多| 少妇被粗大猛烈的视频| 亚洲国产欧美在线一区| 狂野欧美白嫩少妇大欣赏| 午夜免费观看性视频| 日韩av不卡免费在线播放| 激情五月婷婷亚洲| 免费在线观看成人毛片| 中文资源天堂在线| 久久精品国产自在天天线| 一区二区三区免费毛片| 80岁老熟妇乱子伦牲交| 日本免费在线观看一区| 亚洲av.av天堂| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| av网站免费在线观看视频| 丰满乱子伦码专区| 性色av一级| 国产在线男女| 日韩伦理黄色片| videossex国产| 99热这里只有是精品50| 欧美精品人与动牲交sv欧美| av在线播放精品| 高清在线视频一区二区三区| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 丰满人妻一区二区三区视频av| 久久久久久久久久久丰满| 亚洲熟女精品中文字幕| 青春草国产在线视频| 蜜臀久久99精品久久宅男| av不卡在线播放| 在现免费观看毛片| 国产精品久久久久久精品电影小说 | 国产av精品麻豆| 欧美性感艳星| 免费看光身美女| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| 啦啦啦在线观看免费高清www| 久久久a久久爽久久v久久| 99热国产这里只有精品6| 最近的中文字幕免费完整| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 看免费成人av毛片| 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 国产高清三级在线| 成人亚洲精品一区在线观看 | 国产精品女同一区二区软件| 99热这里只有是精品在线观看| 国产成人freesex在线| 亚洲欧洲国产日韩| 一本久久精品| 中文字幕久久专区| 日韩av在线免费看完整版不卡| av一本久久久久| 极品教师在线视频| 日本免费在线观看一区| 成人特级av手机在线观看| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 在线观看三级黄色| 99热全是精品| 国产欧美亚洲国产| 亚州av有码| 国产爽快片一区二区三区| 国产高清不卡午夜福利| 久久久久视频综合| 内地一区二区视频在线| 插逼视频在线观看| 我的女老师完整版在线观看| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片| 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 国产精品.久久久| 久久久久人妻精品一区果冻| 免费看光身美女| 欧美一区二区亚洲| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 久久婷婷青草| 欧美一区二区亚洲| 国产毛片在线视频| 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 九色成人免费人妻av| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av中文字字幕乱码综合| 欧美国产精品一级二级三级 | 成人亚洲精品一区在线观看 | 又黄又爽又刺激的免费视频.| 啦啦啦在线观看免费高清www| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版| 少妇熟女欧美另类| 免费人妻精品一区二区三区视频| 91精品国产九色| 亚洲欧美日韩无卡精品| 午夜精品国产一区二区电影| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看 | 秋霞伦理黄片| 国国产精品蜜臀av免费| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 看非洲黑人一级黄片| 最近最新中文字幕大全电影3| 日韩制服骚丝袜av| 日韩一区二区视频免费看| 夫妻午夜视频| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 亚洲真实伦在线观看| 一本一本综合久久| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 免费黄网站久久成人精品| 日韩精品有码人妻一区| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲网站| 永久免费av网站大全| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 亚洲欧美精品专区久久| 国产久久久一区二区三区| 精品久久久久久电影网| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 一级毛片aaaaaa免费看小| 色哟哟·www| 国产一区二区三区综合在线观看 | 欧美一级a爱片免费观看看| 舔av片在线| 国产毛片在线视频| videossex国产| 高清午夜精品一区二区三区| 一级黄片播放器| 久久99蜜桃精品久久| 99久久人妻综合| 日韩大片免费观看网站| 在线播放无遮挡| 观看美女的网站| 美女脱内裤让男人舔精品视频| 中文字幕精品免费在线观看视频 | 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 免费观看性生交大片5| 高清午夜精品一区二区三区| av女优亚洲男人天堂| av免费观看日本| 欧美成人午夜免费资源| 国产精品三级大全| 尾随美女入室| 最后的刺客免费高清国语| 久久久久国产网址| 91精品伊人久久大香线蕉| 精品国产一区二区三区久久久樱花 | 最近2019中文字幕mv第一页| 日韩伦理黄色片| 97在线人人人人妻| 男女国产视频网站| 精品少妇黑人巨大在线播放| 大香蕉97超碰在线| 交换朋友夫妻互换小说| 中文字幕免费在线视频6| 色婷婷av一区二区三区视频| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 韩国高清视频一区二区三区| 男人舔奶头视频| 老熟女久久久| 十分钟在线观看高清视频www | 久久这里有精品视频免费| 久久ye,这里只有精品| 久久av网站| 男女边吃奶边做爰视频| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| 妹子高潮喷水视频| 国产免费一级a男人的天堂| 精品久久久久久久末码| 不卡视频在线观看欧美| 国产精品三级大全| 老师上课跳d突然被开到最大视频| 国产 一区精品| 三级国产精品片| 深夜a级毛片| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 久久精品夜色国产| 成年美女黄网站色视频大全免费 | 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜 | 老司机影院毛片| 女人十人毛片免费观看3o分钟| 伦理电影大哥的女人| 欧美性感艳星| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 永久免费av网站大全| 亚洲国产色片| 大话2 男鬼变身卡| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 午夜福利视频精品| 九草在线视频观看| 精品久久久久久久末码| 成人免费观看视频高清| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| 国产精品一区二区在线不卡| 亚洲最大成人中文| 久久ye,这里只有精品| 精品一区二区三卡| 最近最新中文字幕免费大全7| 青春草视频在线免费观看| 中文精品一卡2卡3卡4更新| tube8黄色片| 亚洲国产欧美在线一区| 精品一区二区三卡| 在线观看国产h片| 国产午夜精品一二区理论片| 成人特级av手机在线观看| 内射极品少妇av片p| 国产亚洲91精品色在线| 老师上课跳d突然被开到最大视频| 麻豆国产97在线/欧美| 久久婷婷青草| 久久久久视频综合| av在线老鸭窝| 国产一区二区在线观看日韩| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 国产无遮挡羞羞视频在线观看| 一区在线观看完整版| 中文在线观看免费www的网站| 久久久久久伊人网av| 国产深夜福利视频在线观看| 中文精品一卡2卡3卡4更新| 又黄又爽又刺激的免费视频.| 日本wwww免费看| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产综合精华液| 精品一区二区三卡| 99热网站在线观看| 亚洲国产成人一精品久久久| 男女下面进入的视频免费午夜| 国产69精品久久久久777片| 精品人妻视频免费看| 亚洲精品中文字幕在线视频 | 中文字幕制服av| 少妇丰满av|