• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Underwater acoustic signal extraction algorithm in a strong noise environment

    2020-08-25 04:50:30CHANGHaoYANGLiboSHIYuxuanHOUJinchao

    CHANG Hao,YANG Li-bo,SHI Yu-xuan,HOU Jin-chao

    (Department of Computer Science and Engineering,Taiyuan University,Taiyuan 030032, China)

    Abstract:In the exploration, tracking and positioning of underwater targets, it is necessary to perform frequency domain analysis and correlation calculation on the underwater acoustic signals of the target radiation.In a strong noise environment, the target signal may be overwhelmed by noise, resulting in an inability to effectively identify the target.Aiming at this problem, this paper presents a method of signal-noise separation by combining Fourier denoising with wavelet transform to realize underwater acoustic signal extraction in a strong noise environment.The combination algorithm of Fourier coefficient threshold adjustment and wavelet threshold transform is designed, and performance of the algorithm is tested.Simulation results show that the combination algorithm can effectively extract underwater acoustic signals when signal-to-noise ratio(SNR)is-15 dB, which can improve the SNR to 8.2 dB.

    Key words:underwater acoustic signal; signal-to-noise ratio(SNR);wavelet transform;signal-noise separation;threshold

    0 Introduction

    With the development of underwater acoustic technology and ocean engineering, underwater acoustic detection has become a key development area, and passive sonar has achieved rapid development due to low energy consumption and difficulty in exposing its position[1].The use of hydrophones to obtain sound field information and the use of new underwater signal reception and processing technology based on underwater acoustic sensing technology to construct a new type of passive sonar have important research significance in the field of underwater acoustics[2].Hydrophone technology has been greatly developed in recent years.On the one hand, research on scalar hydrophones using piezoelectric materials still occupies a certain position.Teng et al.developed a hydrophone with a piezoelectric tube structure in the frequency band, and a high receiving sensitivity was achieved[3].Lu et al.developed a slotted ring hydrophone with a hydrostatic pressure resistance of 30 MPa, which can meet the needs of deep sea exploration[4].On the other hand, the industry is gradually shifting its attention to the field of vector hydrophone technology, focusing on the development of related vector hydrophones and signal processing methods, and vector hydrophones based on optical fiber sensing, MEMS, etc.have emerged.Zhang et al.developed a silicon microcapacitive one-dimensional vector hydrophone to achieve the perception of underwater acoustic signals[5].Xu et al.produced a standard vector integrated hydrophone to achieve simultaneous measurement of the standard and vector acoustic signals[6].Pyo et al.developed a vector hydrophone with a diameter of only 23 mm by improving the sensor structure[7].Despite the rapid development of hydrophones and related technologies, due to the complexity of the actual underwater acoustic testing environment, the collected underwater acoustic information often contains a lot of noise, and the signal is sometimes completely submerged by noise, therefore the effective noise reduction of the signal is very important.The commonly used Fourier transform signal processing method is not obvious in the background of strong noise with a signal-to-noise ratio(SNR)lower than-10 dB[8], therefore it is necessary to select a signal processing method suitable for the actual strong noise environment.

    Here, the combination of Fourier transform based on noise and signal cross-validation and wavelet denoising is used to denoise the signal, and the performance of the combined algorithm is compared.The simulation results show that the combined algorithm is feasible.It breaks through the limitation of the traditional method in the strong noise background and non-stationary noise environment, and reduces the minimum applicable SNR to-15 dB, which can effectively realize the underwater acoustic signal extraction.

    1 Noise reduction principle and combination algorithm

    Here, the line spectrum of the known frequency of the underwater acoustic signal is measured, and the frequency band is 20-2 000 Hz.In this frequency band, the ambient sound is very sensitive, therefore the obtained underwater acoustic signal includes both the target signal and environmental noise.Since detection and orientation of the target are only interested in the target signal of the study, but environmental noise and interference need to be filtered out, therefore it is extremely important to separate the desired signal from the noise.

    The SNR refers to the proportional relationship between the active component and the noise component in the signal.It is a major indicator to measure the noise reduction performance of the algorithm and can be expressed as[1]

    (1)

    whereδSNRis the signal-to-noise ratio;Sis the target signal power, andNis the noise energy power in dB.The larger the SNR, the stronger the anti-interference ability of the system, the higher the target resolution, and the better the noise reduction performance of the algorithm.

    Root mean square error is very sensitive to the extra large or very small error in a set of measurements.Therefore, it can well reflect the precision of the measurement and can be expressed as

    (2)

    The SNR gain(G)refers to the difference between the input SNR and the output SNR.It is mainly used to measure the performance of the system or processing algorithm and can be expressed as

    (3)

    1.1 Basic principle of Fourier transform

    For any successively measured timing or signal, it can be represented as an infinite superposition of sinusoidal signals with different frequencies.As one of the most important algorithms in the field of digital signals, the Fourier transform algorithm can directly calculate the frequency, amplitude and phase of different sinusoidal signals contained in the measured original signal directly.The Fourier transform has a good analytical effect on the continuous stationary signal, which can reflect the time domain characteristics and frequency characteristics of the signal.The Fourier transform can transform the time domain signals that are difficult to process into the frequency domain signals that are easy to analyze and understand.Then, the transformed frequency domain signals can be further processed by some existing software toolboxes.After the processing is completed, the processed frequency domain signals can be converted into new time domain signals by using the inverse Fourier transform, thus the time-frequency domain processing of the signals is completed.The core function of Fourier filtering is frequency domain filtering.The operation of filtering out the specific band frequency in the signal is an important measure to suppress and prevent interference.Supposing there is a square integrable periodic signal, and its Fourier transform relationship is expressed as[4]

    (4)

    However, when the signal is masked by noise, the direct Fourier analysis is less than ideal, which requires further processing.

    1.2 Principle analysis of wavelet threshold denoising

    As a unique analysis method, wavelet analysis is developed based on Fourier transform.The multi-scale refinement analysis of signals can be performed through the functions of stretching and translation[9].A continuous wavelet transform of any signal can be defined as the inner product of the signal and the wavelet basis function.From the perspective of signal processing, wavelet denoising is a signal filtering problem.Wavelet transform can extract the correlation of the signal, and the processed noise is close to white noise, therefore denoising in wavelet domain is more convenient than in time domain.Since wavelet transform can flexibly select the basis function, the suitable wavelet can be selected according to the signal characteristics and denoising requirements.

    The key is to find the appropriate wavelet base and wavelet threshold.Different wavelet bases and thresholds have different processing effects on the signal.At present, the sinusoidal signal is mainly used as the target signal, and “db4” and “sym8” wavelet basis functions are selected in combination with the research.The wavelet threshold denoising algorithm processes the coefficients of the layer coefficients after wavelet decomposition, especially according to the modulu which is greater than or less than a certain threshold.

    The adaptive threshold selection rules include the following four types: “rigrsure” adaptive threshold selection uses Stein’s unbiased risk estimation principle; “heursure” uses heuristic threshold selection; “sqtwolog” threshold selection rule is sqrt(2log(length(X))); and “minimaxi” uses the mininum principle to select a threshold.Simulation studies have found that the difference between the output SNR and the mean square error under different threshold rules is not too large, therefore the next step is to select the “heursure” threshold rule for signal processing.

    1.3 Algorithm for underwater acoustic signal extraction

    Combining the characteristics of Fourier transform and wavelet transform, a new combination algorithm is obtained and its flow block diagram is shown in Fig.1.

    Fig.1 Flow block diagram of combination algorithm

    The algorithm steps are as follows:

    1)Extract the original input signal.After Fourier transform on the input signal, narrow-band filter adjustment on the transformed frequency domain signal and selection of the target frequency band of interest, a processed signal is obtained.

    2)Select the wavelet basis.Based on threshold rule, wavelet denoising is performed and the signal after the secondary processing is obtained.

    3)Fourier threshold processing.Fourier threshold processing is performed on the secondary output signal again(choose a suitable threshold), and all the amplitudes of the frequency domain coefficients below the threshold are reset to be zero, with all the above thresholds being retained.The final output is the best estimate of the useful signal.Fourier transform is combined with wavelet processing and both are nested for processing, thereby a useful estimate of the signal is obtained, which prepares for subsequent algorithm processing.

    2 Simulation and analysis

    Here we use Matlab software to simulate the proposed algorithm.The original observation signal is superimposed by Gaussian white noise and useful signals.The target signal except noise is the part of the signal we need, therefore it is necessary to extract this part of the signal efficiently.

    First of all, we simulate and verify the influence of different wavelet basis functions on signal processing.Here, the two wavelet base functions “db4” and “sym8” are used for verification.The time domain and frequency domain results are shown in Fig.2.

    Fig.2 Different wavelet basis processing results

    The left side of Fig.2 is the time domain signal, the abscissa axis is the sampling time, and the vertical axis is the voltage amplitude.The right side is the frequency domain diagram of the signal.

    SNR and RMSE are compared and the results are shown in Table 1.

    Table 1 Performance comparison of different wavelet bases under different noise conditions

    Based on the results inFig.2 and Table 1, it can be seen that under the two wavelets of “db4” and “sym8”, the RMSE and SNR errors are very small, and the signal calculation results are not much different.Thus in the next simulation and calculation, the “db4” wavelet basis is selected.

    Then-10 dB noise is used to verify the effectivess of the proposed combination algorithm.The time domain diagrams of the original signal and the noise signal are shown in Fig.3.

    Fig.3 Original signal and noise signal

    Finally, the proposed combination algorithm is used for signal processing.

    At first, Fourier transform is performed on the noise signal and narrow-band filtering is completed.Then“db4” wavelet function and “heursure” wavelet threshold are selected to continue the signal processing.Fourier transform is performed again, and the appropriate amplitude coefficient threshold is selected(here the threshold is 50), especially all of the values below the threshold are replaced by zero.By means of inverse transform, the final time domain signal is obtained.The processing is shown in Fig.4, the horizontal axis refers to the time, and the vertical axis represents the voltage amplitude.It can be seen from the amplitude that the noise is significantly reduced and the signal tends to be stable.

    Fig.4 Time domain diagram of signal processing

    Fig.5 shows the comparison of time domain signal and frequency domain signal before and after noise reduction.

    In Fig.5, the horizontal axis refers to sampling time and the vertical axis is voltage value.Figs.5(a)and(b)are the time domain and frequency domain diagrams of noise signals, respectively.It can be seen that it is difficult to distinguish the useful signal in the frequency domain diagrams, and the noise is distributed in the whole frequency range.Random noise is filtered by Fourier transform and wavelet transform, and the single frequency information of 315 Hz is retained.It can be seen from Figs.5(c)and(d)that most of the noise has been filtered by the combination algorithm, and the time domain waveform of the signal is obtained.

    Fig.5 Time-frequency signal comparison before and after noise denosing

    Through Monte Carlo analysis, experiment is repeated for 200 times at each SNR, and signal denoising performance is analyzed and compared with all the results.

    It can be seen that the smaller the root mean square error of the signal, the better the denoising effect of the algorithm; the higher the output SNR, the higher the SNR gain, and the higher the similarity.This means better denoising performance of the algorithm.After multiple simulation verifications, a SNR of-25 dB is selected as strong noise background.As we know, the higher the SNR, the stronger the signal and the weaker the noise.The experimental SNR can be selected from-25 to 0 dB, increasing at a interval of 5 dB.

    The different performance values for different SNR ratios are shown in Table 2.

    Table 2 Performance comparison under different noise conditions

    It can be obtained from the results of Table 2.In the background of strong noise, the proposed combination algorithm has a good denoising effect, whereas the traditional Fourier filter can only be practically limited in the stationary case above 0 dB.However, when the noise becomes stronger, the mean square error increases sharply at-25 dB, thus the algorithm is not suitable.The wavelet algorithm is not very good when the signal frequency is high, and the useful signal and its noise are filtered together, which has a certain range limitation on the signal frequency.For a specific target signal and its noise characteristics, we can choose the appropriate signal processing algorithm to get higher output SNR and lower RMSE.

    3 Conclusion

    In this study, the combination algorithm is used to denoise the signal in the known strong noise environment.By means of the proposed algorithm signal processing is completed by selecting different wavelet functions and combining them with threshold value, the signal is processed.The simulation results show that the effective the correspond and it can provide some help for the processing of subsequent directional algorithm.However, due to the time-varying and complexity of the actual underwater acoustic environment, the performance of the proposed algorithm under complex hydrological conditions needs further verification and improvement.

    日本av免费视频播放| 插阴视频在线观看视频| 街头女战士在线观看网站| 一个人免费看片子| av女优亚洲男人天堂| 六月丁香七月| 视频中文字幕在线观看| 丰满乱子伦码专区| 国产精品三级大全| 有码 亚洲区| 免费av中文字幕在线| 色网站视频免费| 99热这里只有是精品在线观看| 大片电影免费在线观看免费| 成人亚洲精品一区在线观看| 99热6这里只有精品| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 国产精品偷伦视频观看了| 亚洲真实伦在线观看| 少妇人妻久久综合中文| 日本猛色少妇xxxxx猛交久久| 午夜久久久在线观看| 一级毛片 在线播放| 国产成人91sexporn| 日本vs欧美在线观看视频 | 国产精品99久久99久久久不卡 | 夫妻性生交免费视频一级片| 国产日韩欧美亚洲二区| 国产精品久久久久成人av| 婷婷色综合www| 国产免费一区二区三区四区乱码| 久久 成人 亚洲| 丰满迷人的少妇在线观看| av国产精品久久久久影院| 99九九在线精品视频 | 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 国产淫片久久久久久久久| 精品亚洲乱码少妇综合久久| 亚洲国产精品成人久久小说| 亚洲国产成人一精品久久久| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲网站| 精品久久久精品久久久| 日本爱情动作片www.在线观看| 偷拍熟女少妇极品色| 亚洲精品国产av成人精品| 在线观看国产h片| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区精品91| 国产成人精品久久久久久| 不卡视频在线观看欧美| 国产伦在线观看视频一区| 国产伦在线观看视频一区| 黄色一级大片看看| 亚洲在久久综合| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看| 午夜福利视频精品| 一区二区三区免费毛片| 欧美日韩国产mv在线观看视频| 在线观看美女被高潮喷水网站| 久久影院123| 麻豆精品久久久久久蜜桃| 精品一品国产午夜福利视频| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 男人爽女人下面视频在线观看| 国产成人精品一,二区| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 六月丁香七月| 精品一区二区三卡| 男女边摸边吃奶| av一本久久久久| 免费黄色在线免费观看| 99re6热这里在线精品视频| 午夜av观看不卡| 日本av手机在线免费观看| 在线 av 中文字幕| 在线观看免费视频网站a站| 日本免费在线观看一区| 黄片无遮挡物在线观看| 久久久久久久精品精品| 日日啪夜夜爽| 国产成人精品久久久久久| 少妇的逼好多水| 狂野欧美激情性bbbbbb| 日韩在线高清观看一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲成人手机| 免费人成在线观看视频色| 日韩欧美 国产精品| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 成年人免费黄色播放视频 | 亚洲情色 制服丝袜| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 国产男女内射视频| 人人澡人人妻人| 亚洲av电影在线观看一区二区三区| 麻豆成人av视频| 午夜免费观看性视频| 两个人免费观看高清视频 | 99热网站在线观看| 久久人人爽人人爽人人片va| 少妇猛男粗大的猛烈进出视频| 久久午夜福利片| 久久久久视频综合| 精品少妇久久久久久888优播| 中文字幕精品免费在线观看视频 | 国产精品人妻久久久影院| 亚洲国产精品一区三区| 国产黄片视频在线免费观看| 国产精品一区www在线观看| 女的被弄到高潮叫床怎么办| 91久久精品国产一区二区成人| 中文字幕精品免费在线观看视频 | 在线观看国产h片| 国产视频内射| 久久久精品免费免费高清| 免费观看av网站的网址| 九九久久精品国产亚洲av麻豆| 人人妻人人添人人爽欧美一区卜| 国产 精品1| 国产色婷婷99| 精品少妇黑人巨大在线播放| 亚洲第一区二区三区不卡| 欧美日韩精品成人综合77777| 国国产精品蜜臀av免费| 国产在视频线精品| 久久久久久久久久久丰满| 97超碰精品成人国产| 亚洲性久久影院| 内射极品少妇av片p| 少妇高潮的动态图| 亚洲中文av在线| 黄色日韩在线| 午夜av观看不卡| 亚洲精品视频女| 亚洲伊人久久精品综合| 一级a做视频免费观看| 九色成人免费人妻av| 精品少妇久久久久久888优播| 国产老妇伦熟女老妇高清| 搡老乐熟女国产| 亚洲国产精品专区欧美| 色哟哟·www| 日韩免费高清中文字幕av| 亚洲国产欧美日韩在线播放 | 永久网站在线| 欧美精品人与动牲交sv欧美| 日产精品乱码卡一卡2卡三| 亚洲伊人久久精品综合| 一级二级三级毛片免费看| 大香蕉97超碰在线| 最近2019中文字幕mv第一页| 国产精品国产三级国产专区5o| 热99国产精品久久久久久7| 免费黄色在线免费观看| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片| 免费观看av网站的网址| 国产黄色免费在线视频| 亚洲精品,欧美精品| 街头女战士在线观看网站| www.色视频.com| 中国国产av一级| 亚洲四区av| 女的被弄到高潮叫床怎么办| 高清视频免费观看一区二区| 哪个播放器可以免费观看大片| 久久青草综合色| 久久精品国产鲁丝片午夜精品| 成人免费观看视频高清| 日产精品乱码卡一卡2卡三| 亚洲国产精品一区三区| 性色av一级| a级一级毛片免费在线观看| 国产免费福利视频在线观看| 亚洲精品色激情综合| 精品一区二区三区视频在线| 人妻 亚洲 视频| 永久网站在线| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| 中文资源天堂在线| 国产精品偷伦视频观看了| 久久久久久久精品精品| 久久久久久人妻| 欧美人与善性xxx| 街头女战士在线观看网站| 多毛熟女@视频| 国产淫片久久久久久久久| 久久久久精品性色| 中文字幕精品免费在线观看视频 | 亚洲精品一二三| 免费看光身美女| 欧美+日韩+精品| 十八禁网站网址无遮挡 | 毛片一级片免费看久久久久| 水蜜桃什么品种好| 蜜桃久久精品国产亚洲av| 赤兔流量卡办理| 亚洲国产日韩一区二区| 国产av码专区亚洲av| 搡女人真爽免费视频火全软件| 9色porny在线观看| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 欧美日韩av久久| 日日啪夜夜爽| .国产精品久久| 久久久久久伊人网av| videossex国产| 亚洲精品成人av观看孕妇| 久久午夜综合久久蜜桃| a级毛片在线看网站| 日本色播在线视频| 在线播放无遮挡| 国产探花极品一区二区| 欧美最新免费一区二区三区| 一区二区三区精品91| 我要看日韩黄色一级片| 欧美少妇被猛烈插入视频| 男人狂女人下面高潮的视频| 亚洲美女搞黄在线观看| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 午夜激情福利司机影院| 国产伦在线观看视频一区| 国产伦精品一区二区三区视频9| 美女内射精品一级片tv| 久久久久久久国产电影| 80岁老熟妇乱子伦牲交| 国产在线视频一区二区| 中文天堂在线官网| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 亚洲欧美日韩卡通动漫| 三级国产精品片| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 日韩强制内射视频| 国产精品久久久久久久久免| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 春色校园在线视频观看| h视频一区二区三区| 91aial.com中文字幕在线观看| 中文字幕av电影在线播放| 成人综合一区亚洲| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 国国产精品蜜臀av免费| 热re99久久精品国产66热6| av福利片在线观看| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 国产高清不卡午夜福利| 免费播放大片免费观看视频在线观看| 精品久久久精品久久久| kizo精华| 男女啪啪激烈高潮av片| 黄色毛片三级朝国网站 | av网站免费在线观看视频| √禁漫天堂资源中文www| 成人二区视频| 你懂的网址亚洲精品在线观看| 成人特级av手机在线观看| 韩国高清视频一区二区三区| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 国产亚洲91精品色在线| 在线免费观看不下载黄p国产| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 91精品国产九色| 不卡视频在线观看欧美| 久久久久久伊人网av| 下体分泌物呈黄色| 国产在线视频一区二区| 少妇人妻 视频| 久久久久精品性色| 夜夜爽夜夜爽视频| 天天操日日干夜夜撸| 草草在线视频免费看| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 中文字幕人妻熟人妻熟丝袜美| 午夜日本视频在线| 亚洲成人手机| 又黄又爽又刺激的免费视频.| 在线观看免费日韩欧美大片 | 久久精品国产自在天天线| 大香蕉97超碰在线| 熟女av电影| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 伦精品一区二区三区| 亚州av有码| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av | 男女无遮挡免费网站观看| 亚洲真实伦在线观看| 午夜福利影视在线免费观看| 欧美高清成人免费视频www| 高清黄色对白视频在线免费看 | 少妇熟女欧美另类| 国产在线男女| 成人国产av品久久久| 国产精品伦人一区二区| 高清视频免费观看一区二区| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 日韩欧美 国产精品| 男女国产视频网站| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 日韩精品有码人妻一区| 久久韩国三级中文字幕| 一级av片app| 97在线视频观看| 国产美女午夜福利| 少妇被粗大的猛进出69影院 | 男人添女人高潮全过程视频| 又爽又黄a免费视频| 亚洲欧美清纯卡通| 9色porny在线观看| 乱系列少妇在线播放| 青春草国产在线视频| 偷拍熟女少妇极品色| 99热全是精品| 秋霞伦理黄片| 深夜a级毛片| 亚洲,一卡二卡三卡| 熟女人妻精品中文字幕| 久久久精品免费免费高清| 青春草视频在线免费观看| 国产视频内射| 久久精品国产鲁丝片午夜精品| 久久婷婷青草| av免费在线看不卡| 免费看日本二区| 黄色一级大片看看| 国产欧美日韩综合在线一区二区 | 午夜福利在线观看免费完整高清在| 特大巨黑吊av在线直播| 国产成人午夜福利电影在线观看| 日日啪夜夜撸| 婷婷色综合www| 国产精品久久久久久精品古装| 国产成人午夜福利电影在线观看| 精品熟女少妇av免费看| 亚洲欧美成人综合另类久久久| 好男人视频免费观看在线| 日本91视频免费播放| 亚洲av国产av综合av卡| 91精品国产国语对白视频| 欧美成人午夜免费资源| 国产有黄有色有爽视频| 国产精品不卡视频一区二区| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 亚洲精品一二三| 国产成人免费观看mmmm| 久久99热6这里只有精品| .国产精品久久| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 91aial.com中文字幕在线观看| 热99国产精品久久久久久7| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂| 欧美日韩亚洲高清精品| 亚洲国产精品一区二区三区在线| 在线看a的网站| 欧美精品一区二区免费开放| 男女国产视频网站| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 成人特级av手机在线观看| 中文字幕亚洲精品专区| 中文资源天堂在线| 看非洲黑人一级黄片| 国内精品宾馆在线| 精品视频人人做人人爽| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| 久久青草综合色| av在线app专区| 高清午夜精品一区二区三区| 一级毛片 在线播放| 人妻人人澡人人爽人人| 中文字幕免费在线视频6| 日韩亚洲欧美综合| 亚洲无线观看免费| 极品人妻少妇av视频| 成人毛片60女人毛片免费| 国产极品粉嫩免费观看在线 | 人妻一区二区av| 久久久久久久亚洲中文字幕| 男女免费视频国产| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| av网站免费在线观看视频| 亚洲成人手机| 夜夜爽夜夜爽视频| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 成人二区视频| 久久久国产精品麻豆| 亚洲欧洲日产国产| 热re99久久国产66热| 亚洲精品456在线播放app| 国产探花极品一区二区| 亚洲av男天堂| 简卡轻食公司| tube8黄色片| freevideosex欧美| 最后的刺客免费高清国语| 男人狂女人下面高潮的视频| 97超碰精品成人国产| 国产一区二区在线观看日韩| 日日爽夜夜爽网站| 国产色婷婷99| 26uuu在线亚洲综合色| 国语对白做爰xxxⅹ性视频网站| 免费看不卡的av| 又大又黄又爽视频免费| 精品久久久精品久久久| 熟女av电影| 日日撸夜夜添| 久久人人爽人人片av| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 在线观看人妻少妇| 日本av免费视频播放| 中文字幕精品免费在线观看视频 | 91在线精品国自产拍蜜月| 内射极品少妇av片p| 六月丁香七月| 国产免费一级a男人的天堂| 99热6这里只有精品| 日韩av不卡免费在线播放| 中国国产av一级| 国产黄片视频在线免费观看| 丝袜喷水一区| 亚洲美女黄色视频免费看| 亚洲国产精品成人久久小说| 国产精品99久久久久久久久| 久久久久久久久大av| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 天天操日日干夜夜撸| 美女内射精品一级片tv| 成人午夜精彩视频在线观看| 国产成人91sexporn| 国产无遮挡羞羞视频在线观看| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 国产av码专区亚洲av| 精品卡一卡二卡四卡免费| 少妇高潮的动态图| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 在线播放无遮挡| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 国产精品蜜桃在线观看| 国产真实伦视频高清在线观看| 国产日韩欧美视频二区| 亚洲精品自拍成人| 久久久久网色| 精品熟女少妇av免费看| 亚洲欧美清纯卡通| 在线天堂最新版资源| 国产在视频线精品| 在线天堂最新版资源| 午夜福利影视在线免费观看| 插逼视频在线观看| 亚洲va在线va天堂va国产| av天堂中文字幕网| videossex国产| 国产高清不卡午夜福利| 99九九在线精品视频 | 各种免费的搞黄视频| 精品亚洲成国产av| 十分钟在线观看高清视频www | 中文天堂在线官网| a 毛片基地| 国产精品一区二区性色av| 大片免费播放器 马上看| 麻豆成人午夜福利视频| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 久久这里有精品视频免费| 精品午夜福利在线看| av线在线观看网站| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 国产欧美亚洲国产| 久久久久视频综合| 秋霞在线观看毛片| av.在线天堂| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频 | 亚洲精品国产色婷婷电影| 日本91视频免费播放| 五月伊人婷婷丁香| 建设人人有责人人尽责人人享有的| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 久久久久国产网址| 国产视频首页在线观看| 中文字幕久久专区| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 久久久久久伊人网av| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 99热这里只有精品一区| 日韩伦理黄色片| 国产深夜福利视频在线观看| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 日韩三级伦理在线观看| 日韩精品免费视频一区二区三区 | 丁香六月天网| 各种免费的搞黄视频| 在线观看免费视频网站a站| 丰满乱子伦码专区| 午夜福利,免费看| 国精品久久久久久国模美| av有码第一页| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 一二三四中文在线观看免费高清| 久久狼人影院| 国产男女内射视频| 亚洲精品一二三| 国产av国产精品国产| 成人毛片a级毛片在线播放| 亚洲精品第二区| 国产精品国产三级专区第一集| 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 午夜福利,免费看| 午夜老司机福利剧场| 两个人的视频大全免费| 人妻系列 视频| av播播在线观看一区| 亚洲国产欧美日韩在线播放 | 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 欧美最新免费一区二区三区| 六月丁香七月| h日本视频在线播放| 久久6这里有精品| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 欧美老熟妇乱子伦牲交| 99九九线精品视频在线观看视频| 在线观看免费视频网站a站| 日本wwww免费看| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 六月丁香七月| 黄色日韩在线| 热re99久久国产66热| 伦理电影大哥的女人| 美女内射精品一级片tv| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 欧美xxⅹ黑人| av不卡在线播放| 国产女主播在线喷水免费视频网站| 国产中年淑女户外野战色| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 97超视频在线观看视频| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 欧美区成人在线视频| 丝袜脚勾引网站| 哪个播放器可以免费观看大片| av在线app专区| 国产高清不卡午夜福利| 99久久综合免费| 免费观看av网站的网址| 国产 精品1| 哪个播放器可以免费观看大片| 精品人妻一区二区三区麻豆| 色哟哟·www| 国产精品99久久久久久久久| 亚洲va在线va天堂va国产| 久久久午夜欧美精品|