• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of signal-to-noise ratio on accuracy of spectral analysis by near infrared spectroscopy

    2020-08-25 04:50:28ZHUANGXingangSHIXueshunLIUHongboLIUChangmingZHANGPengjuWANGHengfei

    ZHUANG Xin-gang, SHI Xue-shun, LIU Hong-bo, LIU Chang-ming,ZHANG Peng-ju, WANG Heng-fei

    (1. The 41st Research Institute of China Electronics Technology Group Corporation, Qingdao 266555, China;2. National Opto-Electronic Primary Metrology Laboratory, Qingdao 266555, China;3. Science and Technology on Electronic Test & Measurement Laboratory, Qingdao 266555, China)

    Abstract:As one of the important indicators of spectrometer, signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis, we first introduce the major factors affecting the spectral SNR.Taking green tea as an example, the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time, the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this, the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly, then decreases linearly, and finally tends to be flat as the spectral SNR decreases.Through calculation, in order to achieve the prediction accuracy of prediction model reaching 90% and 85%, the spectral SNR is required to be higher than 23.42 dB and 21.16 dB, respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments, especially for the technical indicators of SNR.

    Key words:near infrared spectroscopy; signal-to-noise ratio(SNR); partial least squares(PLS); spectral analysis; green tea

    0 Introduction

    During the past decades, great development has taken place on the near infrared(NIR)spectroscopy.NIR spectroscopy has developed into one of the most highly regarded high-tech analysis technologies and has been widely applied in many fields[1-4].As an indirect analysis method, NIR spectroscopy is composed of NIR spectroscopy instrument, chemometric software and analytical model.NIR spectroscopy instrument is the basis for NIR spectroscopy, which determines whether the analytical method can come into use.Different from large-scale and high-precision optical analysis instruments used in laboratory, miniaturized and portable spectrometer will be one of the important trends of spectrometry in the application.The development of miniaturization and integration of spectroscopic instruments will inevitably sacrifice the performance index of the spectrometer.In addition, the complex scattering environment in the process of online detection will inevitably affect the quality of spectra, especially the signal-to-noise ratio(SNR).SNR, as one of the evaluation parameters of the spectrometer, has an important influence on the analysis accuracy of NIR spectroscopy.Hence, a trade-off between the structural parameters, price, and analytical accuracy is required for an optimal spectral analysis scheme, in the development of spectroscopic instruments.

    In view of the influence of SNR on the accuracy of spectral analysis, only a few scholars have made preliminary research and analysis.In the application of airborne and spaceborne remote sensing, Moses et al.elucidated the effect of SNR on the accuracy of retrieved constituent in coastal waters such as total suspended solids(TSS), colored dissolved organic matter(CDOM), chlorophyll-a, etc.The results show that improving the SNR by reasonably modifying the sensor design can reduce estimation uncertainty by 10% or more[5].Banas et al.of the National University of Singapore investigated the influence of SNR on the identification of high explosive substances by applying multivariate statistical methods to the Fourier transform infrared spectral data sets[6].Li et al.of Tianjin University analyzed the relationship between SNR and quantitative analysis precision[7].However, most recent researches focus on large spectral instruments, but lacking the influence of SNR on the quality identification accuracy of portable optical fiber spectrometer from the experimental point of view.

    In this paper, the factors which influence the SNR of optical fiber spectrometer are expounded based on the results obtained by our research group in recent years.At the same time, the influence of spectral SNR on the identification accuracy of green tea origin is analyzed by experiments.The overall results will provide some references for the development of new online micro-spectral instruments and the application of spectral analysis.

    1 Experimental

    1.1 Noise model

    SNR is an important indicator to characterize the radiation sensitivity of spectrometers, which determines the ability of the spectrometer to detect weak signals.There are many factors affecting the SNR of spectrometer.Generally, the SNR of fiber-optic spectrometer based on linear array detector can be expressed by[8]

    (1)

    wherePf(λ)is the incoming radiance at the sensor in the wavelengthλ;Qe(λ)is the quantum efficiency of photodetector in the wavelengthλ;tis the integration time;Bf(λ)is stray light from the background reflecting photons in the wavelengthλ, which is determined by external environment and the spectrometer itself;Dis a dark current which is the source of dark noise;Nris readout noise, which is related to readout speed.Generally speaking, the higher the readout speed, the greater the noise.When the readout speed is constant, the readout noise can be regarded as a constant.

    When the readout detector is determined, the factors affecting the SNR of spectral data acquisition system mainly come from three aspects.

    1)The effective incoming radiance at the detector and stray light.The greater the ratio of incoming radiance to stray light(Pf/Bf), the higher the SNR.

    2)The integration time.The SNR can be effectively improved by increasing the integration time, but the detection rate will go down.Besides, the integration time should match the size of incoming radiance.

    3)Readout noise.Readout noise is mainly determined by the circuit system.Specifically, effective incoming radiance and stray light are the main factors of the three aspects.The effective incoming radiance is mainly related to optical efficiency of the system, which depends on the parameters of the optical system, including the relative aperture, the transmittance of the incident light, and so on; Stray light comes from many sources, which can be divided into background stray light and thermal radiation stray light caused by the instrument itself.Background stray light mainly depends on the working environment of the instrument, which is mainly affected by sunlight when working outdoors.In addition, the reflection of incident light inside the optical system is also an important source of stray light.

    1.2 Sample preparation and spectra collection

    In our study, 220 real and respective green tea samples(110 Laoshan and 110 Rizhao green tea samples)were collected from Laoshan and Rizhao(Two main green tea producing areas from Shandong province).All 220 samples were randomly divided into calibration set(77 Laoshan and 77 Rizhao green tea samples)and prediction set(33 Laoshan and 33 Rizhao green tea samples).Therefore, the prediction set had 33 positive(Laoshan green tea)objects and 33 negative(Rizhao green tea)objects.

    The NIR spectra in the range of 1 050-2 500 nm were collected in the reflectance mode using an AvaSpec-NIR256/2.5TEC spectrometer(Avantes, Netherlands).The spectrometer and green tea spectra collection device are presented in Fig.1.Ten spectra were collected for each sample from different places, and each spectrum was the average of 40 scans.The raw spectral data were measured in 6.4 nm intervals, which resulted in 227 variables.For each sample, the mean of the 10 spectra was applied in the subsequent analysis.

    Fig.1 Spectrometer and green tea spectra collection device

    Then, the region of 1 300 nm to 2 300 nm was selected for further analysis since both ends of the spectra exhibited a high level of noise, as presented in Fig.2.Laoshan green tea and Rizhao green tea are colored in red and blue, respectively.For each sample, 30±0.1 g of tea leaf was filled into a 200 mL beaker and pressed to keep the surface flat, without any other pretreatment for samples.The distance between the probe and green tea was kept at 1 cm.All samples were stored in a cool and dry freezer before spectra collection.The room temperature was kept at 25 ℃, and the humidity kept an ambient level in the laboratory.

    Fig.2 Laoshan and Rizhao green tea spectroscopy

    The SNR of original spectra acquired by the spectrometer is 34.31 dB.During the experiments, Matlab was used to add random white noise to the original spectral data with different root-mean-square(RMS)values, and a new spectral database of green tea with a scope of the SNR gradient from 4.77 dB to 34.31 dB was constructed.Fig.3 shows five green tea spectra with different SNRs.It is obvious that the smoothness of spectral curve becomes worse and worse as the SNR decreases, which will cause more material absorption information to be submerged in the noise.

    Fig.3 Green tea spectral comparison chart with different SNRs

    1.3 Software

    For the spectra collection, AvaSoft(AvaSpecTEC system)was used.And all algorithms were implemented by using a selfdeveloped NIR analysis software ARCO-NIR, which was developed in Matlab programming language by Matlab 2010a(Mathworks Co., USA)under Windows 7.

    2 Results and discussion

    2.1 Influence of spectral SNR

    The variety memberships of samples were coded as a dummy label by assigning a value of 1 for Laoshan green tea and 2 for Rizhao green tea.After the original spectra were added random white noise with different RMS values, 16 regression tools between NIR spectra and green tea origins(dummy labels)were built up by partial least squares(PLS).The quality of the identification models was assessed according to the values of sensitivity, specificity and prediction accuracy.For both calibration set and prediction set, the prediction results with different SNRs are shown in Figs.4(a)and(b).

    As can be seen from the diagram, a nearly linear relationship between the sensitivity, specificity, prediction accuracy and the SNRs of both calibration set and the prediction set apparently exist.Only difference is that the sensitivity, specificity and prediction accuracy of training set are basically consistent with the change of SNR.For prediction set, the variation tendency of sensitivity and specificity appears to be separated when SNR drops to 17 dB, and the value of sensitivity is significantly lower than specificity, as can be seen from Fig.4(b).The experimental results show that the spectral SNR plays a decisive role in modeling analysis.The spectrometer with high SNR is the necessary assurance to improve the accuracy of quality identification.

    Fig.4 Effect of SNR on prediction accuracy of green tea origins identification model

    It is worth reminding that the prediction accuracy of the correction set and the prediction set does not completely show a linear downward trend as the SNR decreases according to the experimental results.Taking the prediction set as an example, the prediction accuracy of the prediction model first decreases slowly, then decreases linearly, and finally tends to be flat.The first inflection point appears at the SNR of approximately 23 dB, where the prediction accuracy is approximately 90%.

    To accurately describe the relationship between the prediction accuracy and the spectral SNR quantitatively, the relationship between prediction accuracy of green tea samples and SNR is linearly fitted, as shown in Fig.5.The linear fitting formula is

    Fig.5 Fitted curve for SNR to prediction accuracy of green tea samples

    AP=a1S5+a2S4+a3S3+a4S2+a5S+a6,

    (2)

    whereAPis prediction accuracy; the values ofa1toa6are-0.000 001 346,-0.000 117 3,-0.003 716,-0.051 55,-0.316 3 and-0.162, respectively;Sis the opposite of SNR.According to the fitted curve, the minimum SNRs corresponding to different prediction accuracy values are calculated, as listed in Table 1.In particular, the minimum SNRs corresponding to the prediction accuracy of 90% and 85% are 23.42 dB and 21.16 dB, respectively.

    Table 1 The minimum SNR corresponding to different gradient prediction accuracy values

    2.2 Methods to improve SNR

    In the case where the spectrometer is determined, the following measures can be taken to improve the spectral SNR to a certain extent: 1)Multi-sampling and accumulate the average value.Multi-sampling is the most commonly used method to improve SNR in the process of spectral analysis, which can effectively eliminate white noise[9-11].Generally, the SNR increases linearly with the square root of average times[12].2)Extend the integration time.In the case where the effective incoming radiance is constant, the longer the integration time, the more the charge accumulates, and the total amount of charge is proportional to the integration time.At the same time, the noise signal also increases, which include shot noise, dark current noise, amplifier noise, and fixed noise due to dark current instability.Since they are all random noise, which exhibits no linear relationship to the integration time.As a result, when the integration time is extended tomtimes, the spectral SNR can be increased bymtimes in the premise that detector is not saturated[13-14].3)Cut the incoming light.The time-domain spectral data can be converted to frequency-domain information by cutting the incident light using an optical chopper before it enters the detector, which can turn the DC spectral electrical signal into AC signal and effectively improve the spectral SNR.Zhan et al.improved the system SNR by more than 100 times by using optical chopper to modulate the incident light, and designed a special signal processing circuit[15].4)Modulate the polarization state of incident light.Gobrecht and Han et al.built a polarization spectra acquisition system based on the traditional fiber optic spectrometer by combining the polarization spectrum modulation device with spectrometer.By separately modulating the incident light and reflected light, it can effectively suppress stray light interference scattered by the sample particles[16-18].5)Chemometric methods.The commonly used chemometric methods include smoothing, differential processing, and the like[19].Smoothing can effectively remove random noise, and differential processing is beneficial to the spectral details of the sample, but it also amplifies spectral noise[20-21].In general, the appropriate spectral pretreatment methods are selected based on the modeling results.

    3 Conclusion

    The practical application of spectral analysis requires spectral analysis instruments to develop towards the direction of miniaturization and portability, which will inevitably sacrifice spectral resolution, SNR and other technical indicators.In addition, online analysis is more easily interfered by external stray light and other factors compared with laboratory analysis, which will further reduce spectral SNR.In order to explore the influence of SNR on the accuracy of spectral analysis, the factors affecting the spectral SNR are introduced first.And then taking green tea as an example, the influence of spectral SNR on the prediction accuracy of the green tea origins identification model is analyzed by experiments.On this basis, the quantitative relationship between spectral SNR and spectral analysis accuracy is obtained according to curve fitting.At last, the common methods for improving spectral SNR are analyzed.This study provides an important reference value for the practical application of spectral analysis technology and the development of miniaturized spectrometric instruments.

    女人被躁到高潮嗷嗷叫费观| 国产在视频线精品| 国产男女内射视频| 精品卡一卡二卡四卡免费| 亚洲图色成人| 天天躁日日躁夜夜躁夜夜| 在线观看免费高清a一片| 国产精品女同一区二区软件| 成人影院久久| 国产亚洲午夜精品一区二区久久| 国产精品欧美亚洲77777| 国产成人啪精品午夜网站| 亚洲av男天堂| 色婷婷av一区二区三区视频| 看非洲黑人一级黄片| 国产麻豆69| 少妇被粗大猛烈的视频| 99热国产这里只有精品6| 国产有黄有色有爽视频| 九草在线视频观看| 在线精品无人区一区二区三| 久久久精品免费免费高清| 国产成人系列免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品一区蜜桃| 老熟女久久久| 久久久久久人人人人人| 精品国产超薄肉色丝袜足j| 天堂俺去俺来也www色官网| 青春草国产在线视频| 国产无遮挡羞羞视频在线观看| 激情视频va一区二区三区| 欧美人与性动交α欧美软件| 亚洲精品国产av成人精品| 精品久久久精品久久久| 久久精品国产综合久久久| av国产久精品久网站免费入址| 国产免费视频播放在线视频| 亚洲,一卡二卡三卡| 亚洲情色 制服丝袜| 人人妻人人添人人爽欧美一区卜| 久久热在线av| 搡老乐熟女国产| 人人澡人人妻人| 丁香六月欧美| 精品第一国产精品| 国产一区二区 视频在线| 精品第一国产精品| 综合色丁香网| 日本爱情动作片www.在线观看| 久久综合国产亚洲精品| 国产99久久九九免费精品| 啦啦啦视频在线资源免费观看| 久久 成人 亚洲| 青春草亚洲视频在线观看| 狂野欧美激情性xxxx| 成人国产av品久久久| 91精品三级在线观看| 国产欧美亚洲国产| 亚洲精品美女久久av网站| 性高湖久久久久久久久免费观看| 久久女婷五月综合色啪小说| 免费女性裸体啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 国产av码专区亚洲av| 男女下面插进去视频免费观看| 久久久亚洲精品成人影院| 日本一区二区免费在线视频| av网站在线播放免费| 黄片播放在线免费| 亚洲情色 制服丝袜| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 三上悠亚av全集在线观看| 久热这里只有精品99| 欧美黑人欧美精品刺激| 波野结衣二区三区在线| 狠狠婷婷综合久久久久久88av| 亚洲精品aⅴ在线观看| 亚洲精品久久久久久婷婷小说| 哪个播放器可以免费观看大片| 色吧在线观看| 伦理电影免费视频| 日本av手机在线免费观看| 91精品国产国语对白视频| 精品国产国语对白av| 女性被躁到高潮视频| 狂野欧美激情性bbbbbb| 久久精品久久久久久久性| 午夜精品国产一区二区电影| 乱人伦中国视频| 久久久国产欧美日韩av| 两个人免费观看高清视频| 考比视频在线观看| 精品人妻熟女毛片av久久网站| 99国产精品免费福利视频| 人人妻人人澡人人爽人人夜夜| av.在线天堂| 欧美在线一区亚洲| 日韩一本色道免费dvd| 亚洲美女黄色视频免费看| 久久久久精品久久久久真实原创| 国产麻豆69| 亚洲欧洲日产国产| 日本av手机在线免费观看| 啦啦啦中文免费视频观看日本| 黄色毛片三级朝国网站| 亚洲婷婷狠狠爱综合网| 超碰成人久久| 激情视频va一区二区三区| 国产日韩欧美亚洲二区| 欧美人与善性xxx| 在线天堂中文资源库| 19禁男女啪啪无遮挡网站| 欧美xxⅹ黑人| 免费人妻精品一区二区三区视频| 亚洲欧美成人综合另类久久久| 大码成人一级视频| 精品一区在线观看国产| 亚洲国产看品久久| 另类精品久久| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 亚洲国产精品999| 看免费成人av毛片| 国产成人精品在线电影| 国产成人精品无人区| 久久性视频一级片| bbb黄色大片| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线不卡| 嫩草影院入口| 在现免费观看毛片| 国产精品熟女久久久久浪| 精品少妇一区二区三区视频日本电影 | 夫妻性生交免费视频一级片| 欧美日韩一区二区视频在线观看视频在线| 一级,二级,三级黄色视频| 国产一区二区在线观看av| 男女国产视频网站| 亚洲欧美一区二区三区久久| 一级a爱视频在线免费观看| www.自偷自拍.com| 午夜免费男女啪啪视频观看| 夫妻性生交免费视频一级片| 在线观看免费日韩欧美大片| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| 高清欧美精品videossex| 免费看av在线观看网站| 精品亚洲成a人片在线观看| 在线精品无人区一区二区三| 色精品久久人妻99蜜桃| 亚洲成国产人片在线观看| 久久 成人 亚洲| 久久人人爽人人片av| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 大话2 男鬼变身卡| 久久久精品国产亚洲av高清涩受| 成人三级做爰电影| 日本av手机在线免费观看| 久久人人爽人人片av| 成年动漫av网址| 欧美激情极品国产一区二区三区| 欧美精品人与动牲交sv欧美| 国产97色在线日韩免费| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 丁香六月天网| 午夜福利一区二区在线看| 亚洲中文av在线| 人成视频在线观看免费观看| 欧美精品一区二区免费开放| 日韩av免费高清视频| 99久国产av精品国产电影| 男人舔女人的私密视频| 日韩电影二区| 亚洲人成77777在线视频| 成人黄色视频免费在线看| 男女高潮啪啪啪动态图| 亚洲精品日本国产第一区| 老熟女久久久| 91精品三级在线观看| 又大又爽又粗| 国产亚洲欧美精品永久| av国产久精品久网站免费入址| 国产亚洲av高清不卡| 热99久久久久精品小说推荐| 久久人妻熟女aⅴ| 成人国产麻豆网| 黄片播放在线免费| 不卡av一区二区三区| 亚洲av在线观看美女高潮| 欧美黄色片欧美黄色片| 午夜福利在线免费观看网站| 午夜av观看不卡| 国产男女内射视频| 亚洲精品日本国产第一区| 丁香六月天网| 午夜福利免费观看在线| 日韩大码丰满熟妇| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频| 久热爱精品视频在线9| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 母亲3免费完整高清在线观看| 亚洲av福利一区| 高清欧美精品videossex| 自线自在国产av| 亚洲欧美成人精品一区二区| 又大又爽又粗| 国产男女内射视频| 高清欧美精品videossex| 国产乱人偷精品视频| 大香蕉久久网| 视频区图区小说| 黄片播放在线免费| 亚洲色图综合在线观看| 久久青草综合色| 免费看av在线观看网站| 中文字幕人妻丝袜一区二区 | 最近中文字幕高清免费大全6| 丰满饥渴人妻一区二区三| 在线精品无人区一区二区三| 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 久久ye,这里只有精品| 国产 精品1| 久久精品熟女亚洲av麻豆精品| 国产熟女欧美一区二区| 99热网站在线观看| netflix在线观看网站| 免费黄网站久久成人精品| 国产精品.久久久| 最近中文字幕高清免费大全6| 高清不卡的av网站| 亚洲国产欧美日韩在线播放| 高清视频免费观看一区二区| 久久性视频一级片| 国产亚洲午夜精品一区二区久久| 水蜜桃什么品种好| 久久国产精品男人的天堂亚洲| 伦理电影大哥的女人| 午夜老司机福利片| 嫩草影院入口| 亚洲av在线观看美女高潮| 国产免费现黄频在线看| 久久久久精品久久久久真实原创| 久久综合国产亚洲精品| 在线观看www视频免费| 99国产精品免费福利视频| 欧美人与性动交α欧美精品济南到| 黄色怎么调成土黄色| 在线观看www视频免费| 欧美黑人欧美精品刺激| 久久久亚洲精品成人影院| www.熟女人妻精品国产| 亚洲欧美激情在线| 黄片小视频在线播放| 如日韩欧美国产精品一区二区三区| 国产日韩一区二区三区精品不卡| 啦啦啦啦在线视频资源| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频 | 国产欧美亚洲国产| 色婷婷av一区二区三区视频| 咕卡用的链子| 一级爰片在线观看| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 中文乱码字字幕精品一区二区三区| 久久国产精品男人的天堂亚洲| 精品福利永久在线观看| 国产精品欧美亚洲77777| 国产 精品1| 国产成人一区二区在线| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 悠悠久久av| 老司机影院毛片| 大码成人一级视频| 无限看片的www在线观看| 久久久久精品性色| 国产一卡二卡三卡精品 | 伦理电影免费视频| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 日韩大码丰满熟妇| 国产99久久九九免费精品| 在线观看www视频免费| 宅男免费午夜| 欧美日韩福利视频一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 成年女人毛片免费观看观看9 | 不卡视频在线观看欧美| 久久99精品国语久久久| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 五月天丁香电影| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 免费在线观看黄色视频的| 国产av国产精品国产| 三上悠亚av全集在线观看| 一级毛片黄色毛片免费观看视频| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 欧美97在线视频| 天堂中文最新版在线下载| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 人体艺术视频欧美日本| 99香蕉大伊视频| 最近手机中文字幕大全| 一级爰片在线观看| 日韩av不卡免费在线播放| 亚洲,一卡二卡三卡| 男女午夜视频在线观看| 麻豆av在线久日| 亚洲 欧美一区二区三区| 涩涩av久久男人的天堂| 国产精品 国内视频| 欧美久久黑人一区二区| 久久久久久人妻| 精品国产乱码久久久久久男人| 女人精品久久久久毛片| 热99国产精品久久久久久7| 精品一区二区三卡| 午夜av观看不卡| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 亚洲成色77777| 久久久久视频综合| 国产精品嫩草影院av在线观看| 亚洲欧美色中文字幕在线| 叶爱在线成人免费视频播放| 熟女少妇亚洲综合色aaa.| 国产精品一区二区精品视频观看| 97在线人人人人妻| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 七月丁香在线播放| 不卡av一区二区三区| 成年av动漫网址| 亚洲国产精品一区二区三区在线| 国产成人欧美在线观看 | www.熟女人妻精品国产| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 91老司机精品| 国产精品偷伦视频观看了| www.熟女人妻精品国产| 在线亚洲精品国产二区图片欧美| 成人亚洲欧美一区二区av| 777米奇影视久久| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 国产不卡av网站在线观看| 国产黄频视频在线观看| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 久久久久人妻精品一区果冻| 国产野战对白在线观看| 亚洲精品久久久久久婷婷小说| 两个人看的免费小视频| 成年av动漫网址| 老鸭窝网址在线观看| 丁香六月欧美| 精品亚洲成国产av| 日韩大码丰满熟妇| 好男人视频免费观看在线| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| 叶爱在线成人免费视频播放| 999久久久国产精品视频| 亚洲成人免费av在线播放| 精品人妻熟女毛片av久久网站| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美| 日韩,欧美,国产一区二区三区| 成人黄色视频免费在线看| 9色porny在线观看| 亚洲av成人不卡在线观看播放网 | 欧美另类一区| 男人爽女人下面视频在线观看| 热99久久久久精品小说推荐| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 另类精品久久| 国产在线免费精品| 成年女人毛片免费观看观看9 | 免费黄频网站在线观看国产| 男女之事视频高清在线观看 | 美女大奶头黄色视频| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品人与动牲交sv欧美| 一级毛片 在线播放| 9热在线视频观看99| 午夜免费男女啪啪视频观看| 国产精品一国产av| 黄色毛片三级朝国网站| 国产乱来视频区| videosex国产| 久久久国产一区二区| 老司机在亚洲福利影院| 国产成人午夜福利电影在线观看| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx| 少妇人妻精品综合一区二区| 午夜免费观看性视频| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 宅男免费午夜| 精品一区二区免费观看| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 免费在线观看黄色视频的| 亚洲国产欧美网| 午夜福利一区二区在线看| 视频在线观看一区二区三区| 亚洲成人手机| 国产av一区二区精品久久| av片东京热男人的天堂| 精品久久久精品久久久| 久久亚洲国产成人精品v| 在线观看免费午夜福利视频| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 色吧在线观看| 韩国高清视频一区二区三区| 欧美激情高清一区二区三区 | 欧美97在线视频| 国产精品一国产av| 亚洲国产精品成人久久小说| 亚洲中文av在线| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费| 国精品久久久久久国模美| 国产成人一区二区在线| 中文字幕最新亚洲高清| videos熟女内射| 香蕉国产在线看| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 中文字幕色久视频| 国产一级毛片在线| 老鸭窝网址在线观看| 日日摸夜夜添夜夜爱| 久久毛片免费看一区二区三区| 女人精品久久久久毛片| 国产熟女午夜一区二区三区| 精品久久久精品久久久| 尾随美女入室| 中文字幕色久视频| 亚洲图色成人| 国产精品成人在线| 无限看片的www在线观看| 国产探花极品一区二区| 久久久国产一区二区| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 亚洲欧美一区二区三区国产| 欧美最新免费一区二区三区| 91老司机精品| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 亚洲成人av在线免费| 黄片播放在线免费| 一区福利在线观看| 日日撸夜夜添| 女人被躁到高潮嗷嗷叫费观| 亚洲一区二区三区欧美精品| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 桃花免费在线播放| 啦啦啦啦在线视频资源| 中文天堂在线官网| 一区二区三区乱码不卡18| 啦啦啦 在线观看视频| 男女高潮啪啪啪动态图| 欧美在线黄色| 少妇人妻久久综合中文| 少妇人妻精品综合一区二区| 亚洲av日韩在线播放| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 午夜激情久久久久久久| 97在线人人人人妻| 99香蕉大伊视频| 少妇人妻精品综合一区二区| 满18在线观看网站| av不卡在线播放| 国产精品av久久久久免费| 日日爽夜夜爽网站| 国产伦理片在线播放av一区| 男女边吃奶边做爰视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久电影网| 老司机靠b影院| 午夜av观看不卡| 欧美日韩av久久| 99精国产麻豆久久婷婷| 看免费av毛片| 人妻一区二区av| svipshipincom国产片| 午夜影院在线不卡| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 哪个播放器可以免费观看大片| 在线免费观看不下载黄p国产| 久久99一区二区三区| 一区二区三区乱码不卡18| 美女高潮到喷水免费观看| 校园人妻丝袜中文字幕| 蜜桃在线观看..| 一边亲一边摸免费视频| 波多野结衣av一区二区av| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 亚洲国产欧美一区二区综合| 9热在线视频观看99| 国产女主播在线喷水免费视频网站| 亚洲欧美清纯卡通| 免费高清在线观看日韩| av卡一久久| 国产成人精品在线电影| 国产免费一区二区三区四区乱码| 伦理电影大哥的女人| 亚洲 欧美一区二区三区| 日本黄色日本黄色录像| 人人妻人人添人人爽欧美一区卜| 亚洲成人国产一区在线观看 | 多毛熟女@视频| 考比视频在线观看| 一级毛片电影观看| 国产不卡av网站在线观看| 亚洲精品乱久久久久久| 日本欧美视频一区| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 国产成人精品久久久久久| 丰满少妇做爰视频| 香蕉丝袜av| 日本欧美国产在线视频| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 国产成人精品久久久久久| 五月天丁香电影| 欧美在线一区亚洲| 97人妻天天添夜夜摸| 天天躁夜夜躁狠狠久久av| 国产日韩欧美视频二区| 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 纯流量卡能插随身wifi吗| 日本午夜av视频| 午夜精品国产一区二区电影| 性少妇av在线| av在线老鸭窝| 精品久久蜜臀av无| 国产成人系列免费观看| 日韩大片免费观看网站| 搡老岳熟女国产| 国产亚洲午夜精品一区二区久久| kizo精华| 最近中文字幕高清免费大全6| 岛国毛片在线播放| 美女福利国产在线| 国产av精品麻豆| 亚洲四区av| 国产精品 国内视频| 亚洲熟女毛片儿| 91国产中文字幕| 晚上一个人看的免费电影| 少妇人妻 视频| 丝袜喷水一区| 在线观看三级黄色| 两个人免费观看高清视频| 99精品久久久久人妻精品| 三上悠亚av全集在线观看| 99久久精品国产亚洲精品| 国产xxxxx性猛交|