• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An LFSR-based address generator using optimized address partition for low power memory BIST

    2020-08-25 04:50:26YUZhiguoLIQingqingFENGYangGUXiaofeng

    YU Zhi-guo,LI Qing-qing,F(xiàn)ENG Yang,GU Xiao-feng

    (1. Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China;2. Engineering Research Center of IoT Technology Applications of Ministry of Education,Jiangnan University, Wuxi 214122, China)

    Abstract:Power consumption in test mode is much higher than that in normal mode, which is prone to causing circuit damage and reducing the yield of chips.To reduce the power dissipation efficiently, a modified linear feedback shift register(LFSR)is designed to decrease switching activity dramatically during the generation of address sequences for memory built-in self-test(MBIST).The address models are generated by a blend of two address generators with an optimized address partition and two distinct controlled clock signals.An address generator circuit for MBIST of 64 k×32 static random access memory(SRAM)is designed to illustrate the proposed scheme.Experimental results show that when the address bus size is 16 bits, compared with the traditional LFSR, the proposed LFSR can reduce the switching activity and dynamic power by 71.1% and 68.2%, respectively, with low area overhead.

    Key words:address sequence;linear feedback shift register(LFSR);memory built-in self-test(MBIST);address generator;switching activity

    0 Introduction

    With process technology continuing to shrink, a large number of embedded memories have been integrated into system on chips(SoCs)[1], which may make memories more susceptible to defects[2-4].Due to high efficiency and simplicity, March test algorithms are widely used to detect the faults in memories[5-6].Memory built-in self-test(MBIST)has become a standard industry practice in testing numerous embedded memories[7-8].Based on efficient circuits and algorithms, MBIST effectively detects defects in random access memory(RAM)and read-only memory(ROM)and generates multiple test vectors, each of which focuses on testing a particular circuit or error.However, because of the increasing size of embedded memories, the switching activity in the address sequence dramatically increases when complex test vectors are loaded, which leads to an extreme dynamic power consumption[9].In addition, the excessive power dissipation in test mode considerably influences the reliability of SoCs[10-11].Hence, reducing the test power consumption becomes an imperative concern in the process of MBIST, in which it makes sense to design an address generator with low toggle rate in test mode.Over the years, a series of solutions have been proposed for low power MBIST.Since linear feedback shift register(LFSR)can produce a pseudo-random test pattern with a small area overhead, it is widely used to generate the address sequence in MBIST[12-13].A complete LFSR with up/down control signals was proposed in Ref.[5].While this LFSR can generate complete addresses in 2nup and 2ndown sequences, it fails to reduce the transitions effectively for address generator in MBIST.Nourani et al.proposed a low-transition linear feedback shift register(LT-LFSR)to reduce the switching activity among patterns[14].This method reduces the average and peak power of a circuit during the test, whereas the generator that adopts this method needs a longer sequence of test vectors to get high fault coverage.Vellingiri et al.combined LFSR with Bipartite LFSR and then proposed an improved LT-LFSR to deal with this problem[15].This method expresses relative superiority in reducing the number of switching activity between patterns without affecting the randomness.Wang et al.proposed a dual-speed LFSR(DS-LFSR)[16-17].It consists of two LFSRs, a slow LFSR and a normal-speed LFSR, and effectively decreases the number of transitions during the test.Afterwards, there have been some researches adopting this method for the reduction of the number of transitions.Yang et al.split the LFSR into two LFSRs in order to generate a zero-set and one-set cube in the test cube[18].An LFSR reseeding approach in Ref.[19]adopts dual-LFSR for test cubes.Test cubes in an LFSR reseeding scheme can generate proper values to cover don’t-care bits and reduce the switching activity for low-power testing successfully.Based on the modified zero-one algorithm, Krishna et al.proposed an address generator consisting of two different clock signals and a blend of LFSR and a 2-bit pattern generator[20].This method effectively decreases the switching activity between adjacent address sequences.However, it is not optimized for various address bus widths and lacks flexibility, as well as realizing a low test coverage.

    In this study, a modified LFSR-based address generator suitable for the March test algorithm is proposed.We first obtain the most suitable partition of the address bus, and then divide the address generator into two optimized and reversible generation structures with two distinct clock signals.Finally, the proposed address generator has a significant reduction in switching activity with area overhead, which is illustrated in a 64 k×32 static random access memory(SRAM).

    1 MBIST and power analysis

    1.1 Structure of MBIST

    As shown in Fig.1, a typical structure of MBIST is mainly composed of a built-in self-test(BIST)controller and a data comparator.The BIST controller, consisting of a signal generator, a test vector generator, an address generator and so forth, is used to generate applicable test vectors, read commands, write commands, and analyze the outcomes.The address generator is used to generate a set of address sequences for detecting flaws in SRAM.When the start signal BIST_Test, the clock signal CLK, and the selection signal BIST_CS are valid, the BIST controller starts to test the memory, and meanwhile, the comparison between the test results and the expected results determines whether the memory has flaws or not.

    Fig.1 Structure of MBIST

    1.2 March algorithm and power analysis

    Although the March algorithm has a superior test coverage, it is generally affected by the complexity.Because of some long and complex transitions during the detection process, the amount of switching activity increases sharply, which results in a high dynamic power consumption.Dynamic power consumption can be expressed by

    (1)

    whereαTis related to toggle rate; andCload,Vddandfclkdenote total load capacitance, supply voltage and working frequency, respectively.

    In theory, we can reduce the dynamic power consumption by adjusting the parameters in Eq.(1).However, it is not easy to scale down the power consumption by decreasingCload,Vddandfclk.Therefore, the decrease ofαTbecomes an available way to reduce the power consumption.If the number of switching activities between adjacent address sequences decreases, the dynamic power consumption can be also dramatically reduced during the memory-testing process.

    2 Improved LFSR address generator

    Based on the conventional LFSR algorithm, the address generator shows a high toggle rate.Accordingly, we improve the traditional LFSR algorithm and design an address generator with a superior reduction in switching activity between adjacent address sequences.Firstly, the feedback structure of LFSR is altered to get the reversible LFSR.Secondly, we partition the reversible LFSR into anH-bit LFSR and anL-bit LFSR, and then work out the optimized partition ratio by finding the minimum value of transitions in the proposed LFSRs.After that, the clock signal H_LFSR_CLK controls theH-bit LFSR, the clock signal L_LFSR_CLK controls theL-bit LFSR, and H_LFSR_CLK is derived from L_LFSR_CLK.Finally, the two LFSRs controlled by the above clock signals will produce address sequences with a low toggle rate.

    2.1 Design of reversible LFSR

    The traditional LFSR cannot produce the complete address sequence because when all the flip-flop outputs are zero, the LFSR will maintain all-zero state(see Fig.2).Thus, as shown in Fig.3, some OR and NOR gates are inserted in the traditional LFSR to generate a full sequence.This structure is considered as thek-stage complete LFSR.

    Fig.2 Structure of traditional LFSR

    Fig.3 Structure of a k-stage complete LFSR

    For ak-stage complete LFSR, its primitive polynomials can be expressed as

    H(X,k)=M0X0+M1X1+…+MkXk,

    (2)

    G(X,k)=M0Xk+M1Xk-1+…+MkX0,

    (3)

    whereMi(i=0,1,…,k)is the value of the corresponding flip-flop output, and the values ofM0andMkare always “1”.The difference betweenH(X,k)andG(X,k)is that the sequence orders of Eqs.(2)and(3)are reversed.

    2.2 Optimized address partition

    Ak-bit LFSR generating all address in 2kclock cycles will produce 2k-1transitions at the output of each LFSR cell[12].Thus, in the process of generating a completek-bit pattern address sequence, ak-bit LFSR will switchk×2k-1times.Therefore, the number of output switching activities in anH-bit LFSR and anL-bit LFSR areH×2H-1andL×2L-1, respectively.As mentioned above, we transform thek-bit LFSR into a blend of anH-bit and anL-bit LFSR, whereH+L=k.When the highH-bit LFSR switches one time, theL-bit LFSR switchesL×2L-1times.Thus, during the generation of a full address sequence, the number of transitions in the output bits of LFSR can be defined as

    Y=H×2H-1+2H×L×2L-1.

    (4)

    In order to find the minimum value ofY, we obtain Eq.(5)by taking the derivative of both sides of Eq.(4), namely

    Y′=(H×2H-1+2H×(k-H)×2k-H-1)′.

    (5)

    Assuming thatY′=0, we have

    2k=2H(1+Hln2).

    (6)

    Consequently, we can figure out the optimized address partition and the minimum switching activities by Eqs.(4)and(6).Table 1 shows the optimal partitions for various address bus widths.According to Table 1 and Eq.(4), we obtain a comparison of the output switching activities for different address generators using traditional LFSR, the combined LFSR in Ref.[20]and the proposed LFSR, respectively.The results are shown in Fig.4.

    Fig.4 Change of the number of transitions generated by different size of address generators using different LFSRs

    Table 1 Optimized partition for different address generators

    The number of the output switching activities of the proposed LFSR is less than those of the other two methods.As the address bus width of address generator increases, the improvement of the proposed method becomes larger.

    2.3 Design of clock signal

    To make the improved combined LFSR function efficiently, we design two distinct clock signals: H_LFSR_CLK and L_LFSR_CLK.H_LFSR_CLK is a divided clock from the clock L_LFSR_CLK, and the timing relationship between H_LFSR_CLK and L_LFSR_CLK is shown in Fig.5.In an H_LFSR_CLK cycle, the maximum number of transitions inL-bit pattern is 2L.

    Fig.5 Timing relationship between L_LFSR_CLK and H_LFSR_CLK

    3 Experiment and analysis

    Our proposed method is implemented on 64 k×32 SRAM, whose address bus width is 16 bits.According to Table 1, we split the 16-bit LFSR into a 13-bit LFSR and a 3-bit LFSR.Moreover, we add a select signal “updn” for the generation circuit to ensure that the address generator can generate two address sequences in reversed order.H_LFSR_CLK is obtained from L_LFSR_CLK utilizing a frequency divider.A circuit of address generator is designed as shown in Fig.6.

    Fig.6 Design of proposed 64 k address generator

    We stimulate the proposed LFSR, traditional LFSR and a combined LFSR in Ref.[20]with Cadence NClaunch.Simulation waveforms of the proposed method, traditional LFSR and a combined LFSR in Ref.[20]are shown in Fig.7.We can see that the proposed LFSR finishes generating a full address sequence including 65 536 addresses “FFFF, FFFE, FFFD, FFFA, …, 7FFC, 7FF8, 7FF9, 7FFB”(LFSR_13_3), and the combined LFSR produces a complete address sequence “FFFF, FFFE, FFF8, FFF9, …, 7FFF, 7FFE, FFFC, FFFD”(LFSR_14_2).However, the traditional LFSR totally generates 65 535 addresses “FFFF, FFD3, FF8B, FF3B, …, BFEE, 7FF1, FFE2, FFE9”(LFSR_tradition_16)without address “0000”.In addition, we use three counters count_tradition, count_14_2, and count_13_3 to display the output switching activity of the 16-bit conventional LFSR, the combined LFSR in Ref.[20], and our improved LFSR, respectively.In Fig.7, the count_tradition shows that the 16-bit conventional LFSR switches 524 288(hexadecimal value is “80000h”)times; the count_14_2 describes that the number of transitions in the combined LFSR is 180 244(“2c000h”); the count_13_3 records that our improved LFSR only switches 151 522(“25000h”)times for producing a complete address sequence.Compared with the traditional LFSR and the combined LFSR in Ref.[20], the switching activity of our work decreases by 71.1% and 15.9%, respectively.

    Fig.7 Waveform of 64 k×32 address generator

    The area overhead and power analysis are performed on 65-nm CMOS standard cell library using Synopsys Design Compiler and Prime Time.Table 2 shows the comparison of the power consumption and equivalent gate counts between the traditional LFSR, the LFSR in Ref.[20], and the proposed method.

    Table 2 Comparison of dynamic power consumption and equivalent gate count

    The address generator employing the traditional LFSR algorithm consumes 30.13 μW in dynamic power.The dynamic power dissipation in a combined LFSR[20]decreases to 18.34 μW.The proposed address generator in the depth of 64 k only consumes 9.587 μW, achieving 68.2% and 47.7% dynamic power saving compared to the 16-bit conventional LFSR and the combined LFSR, respectively.Furthermore, the proposed address generator circuit has a slight increase in the equivalent gate count.The equivalent gate count for the proposed address generator is about 155 equivalent gates, while the equivalent gate counts for the traditional LFSR and the combined LFSR are 89 and 128, respectively.

    4 Conclusion

    This paper presents an optimized address generator based on LFSR for low power MBIST.The LFSR can be split into two LFSRs with a series of optimized address partitions and drastically decreases the switching activity during the generation of a complete address sequence.As a result, the proposed address generator significantly reduces the dynamic power.Experimental results in a 16-bit address generator demonstrate a significant reduction in power consumption via the proposed method.

    bbb黄色大片| 亚州av有码| av国产免费在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品国产三级国产av玫瑰| 97超视频在线观看视频| a级毛片a级免费在线| 综合色av麻豆| 97热精品久久久久久| 丝袜美腿在线中文| 久久久国产成人免费| 一级黄片播放器| 一卡2卡三卡四卡精品乱码亚洲| 尤物成人国产欧美一区二区三区| 国产在线精品亚洲第一网站| 日韩国内少妇激情av| 亚洲va日本ⅴa欧美va伊人久久| 国产视频一区二区在线看| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 男女做爰动态图高潮gif福利片| 精品午夜福利在线看| 国内毛片毛片毛片毛片毛片| 欧美xxxx性猛交bbbb| 极品教师在线视频| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 国产爱豆传媒在线观看| 精品人妻偷拍中文字幕| 国产一区二区在线观看日韩| 免费高清视频大片| 夜夜爽天天搞| 性欧美人与动物交配| 国产高清三级在线| 91久久精品国产一区二区三区| 久久亚洲真实| 国产69精品久久久久777片| 国内久久婷婷六月综合欲色啪| 午夜视频国产福利| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看| 99热只有精品国产| 亚洲av熟女| 成人性生交大片免费视频hd| 亚洲av电影不卡..在线观看| 色综合婷婷激情| 看十八女毛片水多多多| 神马国产精品三级电影在线观看| 国产蜜桃级精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区蜜桃av| 中文字幕精品亚洲无线码一区| 中文字幕免费在线视频6| 国产探花在线观看一区二区| 国产高清不卡午夜福利| 神马国产精品三级电影在线观看| 国产私拍福利视频在线观看| 超碰av人人做人人爽久久| 两个人视频免费观看高清| 桃红色精品国产亚洲av| 国产视频内射| 可以在线观看毛片的网站| 人妻制服诱惑在线中文字幕| 内射极品少妇av片p| 日韩欧美在线乱码| 熟女电影av网| 神马国产精品三级电影在线观看| АⅤ资源中文在线天堂| 天美传媒精品一区二区| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 九色成人免费人妻av| 在线免费十八禁| 啦啦啦韩国在线观看视频| 国产免费一级a男人的天堂| 亚洲av免费在线观看| 欧美日韩乱码在线| 两人在一起打扑克的视频| 国产探花在线观看一区二区| 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看| 成人国产一区最新在线观看| 他把我摸到了高潮在线观看| 69av精品久久久久久| 在线看三级毛片| av在线老鸭窝| 国产毛片a区久久久久| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 麻豆国产97在线/欧美| 精品久久久久久久末码| 国产精品伦人一区二区| 欧美日本视频| 不卡一级毛片| 国产高清视频在线观看网站| 春色校园在线视频观看| 国产亚洲av嫩草精品影院| 91久久精品国产一区二区成人| 很黄的视频免费| 亚洲一区高清亚洲精品| 中出人妻视频一区二区| 亚洲人成网站在线播| 老司机午夜福利在线观看视频| 国产视频内射| 一级av片app| 51国产日韩欧美| 国内精品久久久久久久电影| 亚洲精品影视一区二区三区av| 亚洲成av人片在线播放无| 免费观看精品视频网站| 亚洲人与动物交配视频| 天天躁日日操中文字幕| 美女xxoo啪啪120秒动态图| 亚洲乱码一区二区免费版| 无遮挡黄片免费观看| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 一进一出好大好爽视频| 亚洲精品色激情综合| 五月玫瑰六月丁香| 国产 一区精品| 日本熟妇午夜| 搡老熟女国产l中国老女人| 国产探花极品一区二区| 91狼人影院| 国产毛片a区久久久久| 国产伦一二天堂av在线观看| 成人国产综合亚洲| 国产乱人伦免费视频| 久久香蕉精品热| 国产乱人伦免费视频| 亚洲电影在线观看av| .国产精品久久| 国产熟女欧美一区二区| 丰满人妻一区二区三区视频av| 日韩欧美免费精品| 色视频www国产| 美女被艹到高潮喷水动态| 很黄的视频免费| 波多野结衣巨乳人妻| 国产午夜福利久久久久久| 一a级毛片在线观看| 午夜福利视频1000在线观看| or卡值多少钱| 1024手机看黄色片| 日本三级黄在线观看| 国产午夜精品论理片| 99久久久亚洲精品蜜臀av| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 日韩 亚洲 欧美在线| 老师上课跳d突然被开到最大视频| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 欧美日本亚洲视频在线播放| 亚洲精品色激情综合| 精品久久久久久久末码| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 国内精品一区二区在线观看| 九色成人免费人妻av| 免费看av在线观看网站| 亚洲中文字幕一区二区三区有码在线看| 久久久久久国产a免费观看| 成年女人毛片免费观看观看9| 亚洲经典国产精华液单| 精品久久久久久久久av| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| a在线观看视频网站| 久久精品影院6| 在线观看av片永久免费下载| 亚洲自拍偷在线| 久久久久久国产a免费观看| a级毛片免费高清观看在线播放| 国国产精品蜜臀av免费| 我要搜黄色片| 久久九九热精品免费| 校园春色视频在线观看| 日本三级黄在线观看| 最近最新中文字幕大全电影3| 日韩一区二区视频免费看| 免费在线观看日本一区| 亚洲中文日韩欧美视频| 亚洲色图av天堂| 国产乱人视频| 99热只有精品国产| 色精品久久人妻99蜜桃| 欧美日韩亚洲国产一区二区在线观看| 搡老熟女国产l中国老女人| 国产高清不卡午夜福利| 国产真实乱freesex| 午夜精品在线福利| 极品教师在线视频| 日韩欧美在线乱码| 男女啪啪激烈高潮av片| 国产成年人精品一区二区| 亚洲精华国产精华精| 校园春色视频在线观看| 亚洲国产精品合色在线| 色在线成人网| 俄罗斯特黄特色一大片| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 51国产日韩欧美| netflix在线观看网站| av中文乱码字幕在线| 色综合站精品国产| 一进一出抽搐动态| 亚洲第一电影网av| 久久久久国产精品人妻aⅴ院| 久久精品人妻少妇| 国产av不卡久久| 久久99热6这里只有精品| h日本视频在线播放| 九色成人免费人妻av| 99热这里只有精品一区| 亚洲真实伦在线观看| videossex国产| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 一a级毛片在线观看| 国产精品一区www在线观看 | 亚洲成人久久爱视频| 日本熟妇午夜| 丰满乱子伦码专区| 亚洲国产精品久久男人天堂| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 神马国产精品三级电影在线观看| 亚洲人成网站在线播放欧美日韩| 国产毛片a区久久久久| 大型黄色视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 97超级碰碰碰精品色视频在线观看| 内射极品少妇av片p| 国产精品福利在线免费观看| 高清毛片免费观看视频网站| 赤兔流量卡办理| 美女大奶头视频| 一边摸一边抽搐一进一小说| 国产精品亚洲美女久久久| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 国产精品久久久久久久电影| 舔av片在线| 久久精品国产亚洲av天美| 中文亚洲av片在线观看爽| 乱人视频在线观看| 精品久久久噜噜| 亚洲国产精品sss在线观看| 高清毛片免费观看视频网站| 国产亚洲欧美98| 俄罗斯特黄特色一大片| 直男gayav资源| 麻豆成人午夜福利视频| 亚洲狠狠婷婷综合久久图片| www.色视频.com| 听说在线观看完整版免费高清| 高清在线国产一区| 日本与韩国留学比较| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 久9热在线精品视频| 欧美国产日韩亚洲一区| 少妇人妻精品综合一区二区 | 国产男人的电影天堂91| 日韩精品有码人妻一区| 午夜a级毛片| 日本 av在线| 亚洲成人免费电影在线观看| 亚洲,欧美,日韩| 亚洲中文日韩欧美视频| 免费观看精品视频网站| 免费观看在线日韩| 国产在线男女| 久久久久久久久久黄片| 国产精品久久电影中文字幕| 一级a爱片免费观看的视频| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 色综合站精品国产| 精品人妻一区二区三区麻豆 | 3wmmmm亚洲av在线观看| 一进一出抽搐动态| 国产免费一级a男人的天堂| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 久久这里只有精品中国| 国产精品伦人一区二区| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 久久久久免费精品人妻一区二区| 色哟哟·www| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 欧美日韩综合久久久久久 | 99精品在免费线老司机午夜| www.色视频.com| 91精品国产九色| 嫩草影视91久久| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 男女之事视频高清在线观看| netflix在线观看网站| 亚洲自偷自拍三级| 男女那种视频在线观看| 精品国产三级普通话版| 亚洲欧美精品综合久久99| 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 搡老熟女国产l中国老女人| 国产男人的电影天堂91| 精品久久久噜噜| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 国产成人aa在线观看| 在线天堂最新版资源| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 又爽又黄a免费视频| 18禁黄网站禁片免费观看直播| 国产美女午夜福利| 国产精品综合久久久久久久免费| 久久午夜亚洲精品久久| 熟女电影av网| 成人无遮挡网站| 久久久久久久久久成人| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| 日本黄色片子视频| 免费看a级黄色片| 人妻少妇偷人精品九色| 国内少妇人妻偷人精品xxx网站| 亚洲欧美清纯卡通| av.在线天堂| 一个人观看的视频www高清免费观看| 国产成人一区二区在线| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 美女黄网站色视频| 国产大屁股一区二区在线视频| 日韩精品有码人妻一区| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 日本撒尿小便嘘嘘汇集6| ponron亚洲| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 中亚洲国语对白在线视频| 免费无遮挡裸体视频| а√天堂www在线а√下载| 91狼人影院| 日韩强制内射视频| 欧美日韩国产亚洲二区| 国产精品女同一区二区软件 | 男女视频在线观看网站免费| 成年版毛片免费区| 毛片一级片免费看久久久久 | 亚洲性夜色夜夜综合| 麻豆一二三区av精品| 欧美黑人欧美精品刺激| 精品久久久噜噜| 亚洲国产欧洲综合997久久,| 欧美潮喷喷水| 久久久久久国产a免费观看| 中文字幕久久专区| 变态另类丝袜制服| 国产av麻豆久久久久久久| 十八禁网站免费在线| 日本一本二区三区精品| 亚洲18禁久久av| 国产高清三级在线| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 床上黄色一级片| 亚洲三级黄色毛片| 有码 亚洲区| 国产精品电影一区二区三区| 少妇的逼好多水| 黄色欧美视频在线观看| 哪里可以看免费的av片| 日韩一区二区视频免费看| 久久精品影院6| 免费观看精品视频网站| 91久久精品国产一区二区三区| 免费一级毛片在线播放高清视频| 久久精品综合一区二区三区| 18+在线观看网站| 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 久久久久久久精品吃奶| 一个人看的www免费观看视频| 91久久精品国产一区二区成人| 久久久久国产精品人妻aⅴ院| 69人妻影院| 亚洲最大成人中文| 国产精品久久视频播放| 999久久久精品免费观看国产| 毛片女人毛片| 91久久精品电影网| 99热6这里只有精品| 欧美又色又爽又黄视频| 极品教师在线视频| 在线观看一区二区三区| 国产久久久一区二区三区| 国产蜜桃级精品一区二区三区| 欧美色欧美亚洲另类二区| 亚洲中文字幕一区二区三区有码在线看| 国模一区二区三区四区视频| 日本成人三级电影网站| 欧美zozozo另类| 欧美日本视频| 91在线精品国自产拍蜜月| 又黄又爽又免费观看的视频| www.www免费av| 色哟哟哟哟哟哟| 国产精品一区www在线观看 | 国产在视频线在精品| 亚洲自偷自拍三级| 色综合婷婷激情| 国产精品女同一区二区软件 | 他把我摸到了高潮在线观看| 99国产精品一区二区蜜桃av| www.色视频.com| 精品99又大又爽又粗少妇毛片 | 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 可以在线观看毛片的网站| 我要看日韩黄色一级片| 国产精品国产高清国产av| 国产精品久久久久久av不卡| 国产精品久久久久久久电影| 能在线免费观看的黄片| 免费看a级黄色片| 精品日产1卡2卡| 久久这里只有精品中国| 免费观看精品视频网站| 国产精品女同一区二区软件 | 午夜精品久久久久久毛片777| 嫩草影视91久久| 成年女人毛片免费观看观看9| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| 琪琪午夜伦伦电影理论片6080| 久久久久免费精品人妻一区二区| 男女视频在线观看网站免费| 身体一侧抽搐| 久久99热6这里只有精品| 亚洲精品成人久久久久久| 亚洲国产精品久久男人天堂| 亚洲精品色激情综合| 免费一级毛片在线播放高清视频| 国产黄色小视频在线观看| 波野结衣二区三区在线| 午夜爱爱视频在线播放| 色在线成人网| 国内久久婷婷六月综合欲色啪| 欧美精品国产亚洲| 在线观看舔阴道视频| 亚洲七黄色美女视频| 女同久久另类99精品国产91| 成人av在线播放网站| 精品人妻1区二区| 亚洲av不卡在线观看| 久久久久久伊人网av| 日韩一区二区视频免费看| 制服丝袜大香蕉在线| 国语自产精品视频在线第100页| 国产亚洲精品久久久com| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| 最新中文字幕久久久久| 99热精品在线国产| 69人妻影院| 亚洲国产高清在线一区二区三| 午夜激情欧美在线| 少妇被粗大猛烈的视频| 亚洲欧美日韩高清在线视频| 深爱激情五月婷婷| 国产视频一区二区在线看| 99精品久久久久人妻精品| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 亚洲自偷自拍三级| 熟妇人妻久久中文字幕3abv| 亚洲精品久久国产高清桃花| ponron亚洲| 女的被弄到高潮叫床怎么办 | 色综合婷婷激情| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6 | 最近中文字幕高清免费大全6 | 啪啪无遮挡十八禁网站| 99久久九九国产精品国产免费| 女人十人毛片免费观看3o分钟| 日本成人三级电影网站| 精品无人区乱码1区二区| 亚洲av中文av极速乱 | 国产一区二区三区av在线 | 精品日产1卡2卡| 五月玫瑰六月丁香| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av| 日日啪夜夜撸| 精品久久久久久久久久久久久| 精品久久久久久久久av| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 免费看a级黄色片| 一本精品99久久精品77| 美女xxoo啪啪120秒动态图| 变态另类成人亚洲欧美熟女| 免费在线观看成人毛片| 久久99热这里只有精品18| 国产精品野战在线观看| 女人十人毛片免费观看3o分钟| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 九色成人免费人妻av| 亚洲欧美日韩东京热| 久久久国产成人免费| 国产不卡一卡二| 欧美潮喷喷水| 欧美成人a在线观看| 国产爱豆传媒在线观看| 校园春色视频在线观看| 久久久久久久午夜电影| 麻豆成人av在线观看| 麻豆精品久久久久久蜜桃| 免费av毛片视频| 18+在线观看网站| 性色avwww在线观看| 国产男靠女视频免费网站| 高清在线国产一区| 俄罗斯特黄特色一大片| 999久久久精品免费观看国产| 99久国产av精品| 国产成人福利小说| 色综合色国产| 欧美xxxx性猛交bbbb| 国产主播在线观看一区二区| 免费一级毛片在线播放高清视频| 久久天躁狠狠躁夜夜2o2o| 此物有八面人人有两片| 久久精品国产鲁丝片午夜精品 | 欧美最新免费一区二区三区| 热99re8久久精品国产| 婷婷六月久久综合丁香| 日韩欧美在线乱码| 男插女下体视频免费在线播放| 免费看a级黄色片| 亚洲在线观看片| 一夜夜www| 国产免费一级a男人的天堂| 精品久久久久久成人av| 亚洲狠狠婷婷综合久久图片| 亚洲国产高清在线一区二区三| 老司机午夜福利在线观看视频| 精品久久久久久久久av| 三级男女做爰猛烈吃奶摸视频| 很黄的视频免费| 国产私拍福利视频在线观看| 亚洲性久久影院| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 国产伦精品一区二区三区四那| 97热精品久久久久久| 国产男靠女视频免费网站| 淫妇啪啪啪对白视频| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 蜜桃久久精品国产亚洲av| 亚洲av日韩精品久久久久久密| 中文亚洲av片在线观看爽| 精品午夜福利视频在线观看一区| 国产黄a三级三级三级人| 一个人看的www免费观看视频| 久久99热6这里只有精品| 天堂√8在线中文| 国产乱人伦免费视频| 很黄的视频免费| 亚洲熟妇中文字幕五十中出| 成人国产综合亚洲| 51国产日韩欧美| 高清日韩中文字幕在线| 欧美日韩瑟瑟在线播放| 熟女人妻精品中文字幕| 精品一区二区免费观看| 91狼人影院| 成人性生交大片免费视频hd|