• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Overall Green Process from Preparation of FeCl3 Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    2016-08-05 07:45:55ZHOUJianboFUZaihuiLIUYachunXUChao
    關(guān)鍵詞:苯酚分子篩

    ZHOU Jian-bo, FU Zai-hui, LIU Ya-chun, XU Chao

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    ?

    An Overall Green Process from Preparation of FeCl3Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    ZHOU Jian-bo1, FU Zai-hui2*, LIU Ya-chun2, XU Chao1

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    AbstractFeCl3modifiedβzeolite catalyst was prepared by using a convenient solid-state ion exchange instead of a traditional ion exchange and characterized by XRD, TG-DSC, and low temperature N2adsorption methods. The catalyst is active and selective for the direct hydroxylation of benzene to phenol with hydrogen peroxide (H2O2). And its phenol selectivity can be further improved through tailoring its surface hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) to restrain the sequent oxidation of phenol. In addition, it can be recovered and reused for three times with little loss of reactivity. Hence, an overall green process from the preparation of the catalyst to its application in catalytic reaction has been establised here.

    Key wordsBenzene; FeCl3modifiedβzeolites; hydroxylation; phenol; solid-state ion exchange

    Phenol is a very important organic intermediate in the field of fine chemicals production[1]. Its traditional production process, so-called cumene process[2], is environmentally unacceptable because it generally involves multi-step syntheses and generates large quantities of waste products. Therefore, one of the foremost challenges currently facing the chemical industry is to look for a cleaner, safer, and more environmentally friendly one-step process to produce phenol. Nowadays, the methods for direct hydroxylation of benzene to phenol with H2O2in the liquid phase[3-4], with N2O[5]or O2[6]in vapor phase have attracted much attention. The methods possess the outstanding merits such as short synthesis route, higher atom efficiency and near non-pollution. So they are considered to be clean and environmentally friendly and likely replace the cumene method in the future. Among the processes, direct hydroxylation of benzene with H2O2to phenol is one of the most promising routes due to water as the only byproduct and the mature technology for production of H2O2[7]. At present, the main attention is focused on seeking the efficient oxidation catalyst for the process. Various catalysts can be applied to the process, mainly including TS zeolite and Cu, Fe, and V containing catalysts[8-10]. The Fe-containing catalyst for the process is of great interest because of its low cost and high efficiency[11].

    The preparation method of catalysts has a significant effect on the performance. The traditional methods such as the framework substitution[12], surface grafting[13], solution ion exchange[14]and impregnation[15]are usually employed to prepare transition metals modified zeolites. These methods commonly have some defects such as a tedious preparation process, low production efficiency and environmental pollution. The solid state dispersion or ion exchange of transition metal compounds on the porous metal oxides and zeolites, which has been widely reported[16], is a suitable preparation method for the unstable compounds in aqueous solution like some metal chlorides. And this modification method is convenient, efficient and environmentally friendly in comparison with the traditional methods. For example, ZnCl2modifiedβ-Al2O3and NaY catalysts prepared by this method were reported to be excellent for vapor phase O-alkylation of catechol with methanol and high regioselective Diels-Alder reaction of myrcene and acrolein, respectively[17].

    In addition, hydroxylation of benzene is a potentially successive reaction, in which phenol as primary target product is more susceptible to oxidation than the reactant benzene. As a result, the selectivity to phenol is reduced. Although the selectivity of the catalysts can often be enhanced by modification of their shape selectivity, this approach is generally ineffective in the hydroxylation of benzene. So, how to control the successive oxidation reactions to increase the phenol selectivity remains to be a challenge for chemists. A method of controlling the selectivity of a successive oxidation process, named chemical affinity selectivity, has been reported in the literature[18]. In this approach, the affinity of the catalyst surface to substrates is controlled by tailoring surface hydrophobicity/hydrophilicy, thereby enhancing the product selectivity. However, the number of related reports on this approach is still very limited.

    Tab.1 The preparation method of phenol

    In this paper, we report an overall green process, which involves the preparation of FeCl3modifiedβzeolites by use of the simple solid state reaction and their catalytic application in the direct hydroxylation of benzene with H2O2as an green oxidant, and explore to improve the selectivity for phenol through tailoring their surface’s hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) and check their catalytic stability by recycling tests.

    1Experimental

    1.1Catalysts preparation

    Hβzeolite support (the molar ratio of Si to Al for 30) was supplied by Changling Petroleum Chemical Engineering Company of Hunan Yueyang of China, and was first calcined in air at 500 ℃ for 6 h prior to use. FeCl3modifiedβcatalysts were prepared by solid state dispersion method with anhydrous ferric chloride (loading of FeCl3for 1.0 mmol.g-1) as the Fe(III) source. Mixing them up with mechanical grind, then calcining them in the nitrogen atmosphere at different temperature gave the modified catalysts (denoted as Fe-β(T)). After that, the Fe-β(500) catalyst calcined at 500 ℃ was further dealt with an appropriate amount of dimethyldiethoxysilane (DDS) in toluene solvent, and then extracted with toluene and washed with ethanol, with the obtained catalyst noted as Fe-β(500,SM).

    1.2Catalysts characterization

    The XRD measurements of the samples were carried out with a Dangong Y-2000 diffractometer with Cu Kα radiation (λ=1.541 75 ?) , a scan speed of 2°·min-1and a 0.06° step size from 4° to 40°. Their TG-DSC measurements were performed on a NETZSCH STA409PC from 25 ℃ to 1 000 ℃ with a heating rate of 10 ℃·min-1in the N2atmosphere (flow rate 20 mL/min). The specific surface area and pore volume of the samples were measured by MICROMERIPICS ASAP 2 400 low temperature N2adsorption apparatus on the basis of the China standard GB/T 5816-1995. The actual iron content of the calcined samples was measured by the chemical titration method.

    1.3Catalytic testing

    Hydroxylation of phenol was carried out in a 150 mL double-necked round-bottom flask fitted with a water condenser and kept in an oil bath. In a typical reaction, 0.025 g of catalysts, 2 mL (22.5 mmol) of benzene and 14 mL of acetonitrile were added successively into the reactor. After the mixture was heated to the reaction temperature (65 ℃) under vigorous magnetic stirring, 2.4 mL of 30 wt.% H2O2(22.5 mmol) was added into the reactor and the reaction was proceeded for 5 h. The reaction products were analyzed by Agilent 1 100 HPLC (Eclipse C18, 4.6×250 mm, eluent methanol/water 55/45, flow rate 0.8 mL/min, UV detectorλ272 and 254 nm).

    2Results and discussion

    2.1Catalyst characterization

    The effects of calcination temperature on the crystal structure and physical properties of parent zeolite were checked by use of XRD and low temperature N2adsorption, and the obtained results were shown in Fig.1 and Tab.2, respectively. Decreasing trends in the characteristic diffraction peaks or the relative crystal degree (see Fig.1 and Tab.2) and the specific area (Sg) and porous volume (PV) of the parent zeolite with the calcination temperature of Fe-βwere observed. For example, when the calcination temperature of Fe-βincreased from 400 ℃ to 600 ℃, the crystal degree of the parent zeolite was reduced by about 80%, which is in accordance with the decrease in itsSgandPV. This indicates that structure deterioration of the zeolite has occurred in the overall solid state reaction process, which is likely due to the formation of HCl in the solid ion exchange process. In addition, the changes in itsSgandPVbefore and after the modification of FeCl3clearly indicate that FeCl3has been introduced inside the pores of Hβ. However, at too high calcination temperature (more than 600 ℃), characteristic diffraction peaks of the parent zeolite (see the Fe-β(950)) have disappeared, indicating that its crystal structure has completely disrupted. This can be further confirmed from the results that the measuredSgandPVare abnormally low (see Tab.2). From the Table, it is found that the lattice volume of all the Fe-βsamples before collapse was larger than that of the Hβand it increased with the increasing calcination temperature. This should be due to the framework incorporation of iron ions, leading to the crystal cell expansion of Hβ.

    The solid state reaction of Hβwith FeCl3was further studied by use of TG-DSC apparatus.Typical TG-DSC curves of uncalcined Fe-βand Hβcalcined at 500 ℃ were presented in Fig. 2. The significant loss of weight in the TG-DSC curves of Fe-βcould be observed in 100~600 ℃, suggesting that the solid state reaction of Hβwith FeCl3mainly occured before 600 ℃. The curves could be clearly divided into three stages (denoted as a1-b1/ a-b, b1-c1/b-c and c1-d1/c-d stages). The first stage (a1-b1/ a-b) with about 5% loss of weight, which is the fast exothermal process, appears in the low temperature range less than the melting point of FeCl3(301 ℃), corresponding to the pure solid state ion exchange process. The second stage (b1-c1/b-c) with about 1% loss of weight, which is the exothermic-endothermic balance process, just appears in the melting range of FeCl3, indicating that the melting, dispersion and ion exchange processes of FeCl3inside the pores of Hβsimultaneously were taking place in this stage. The third stage has the biggest loss of weight (about 9%) and broader and stronger exothermic peak. In this stage, the most important modified process was happening, which corresponded to the melting state ion exchange process. However, after the temperature goes beyond 600 ℃, a broadest and strongest exothermic peak within 650~1 048 ℃ for the Fe-βand 800~1 129 ℃ for the Hβcan be observed in the DSC curves of two samples, and they should correspond to the framework collapse process of the zeolite. But this peak on the Fe-βbecame shifted to the lower temperature range compared to that of Hβ, further confirming that the introduction of FeCl3easily causes the framework collapse of Hβ. Therefore, it should be reasonable to conclude that a relative low calcination temperature (500 ℃) is needed to prepare the catalysts, which can not only enhance the solid state reaction but also efficiently reduce the drop in crystal degree of the Hβ.

    Fig.1    XRD patterns of Fe-β calcined at (a) 400 ℃,           Fig.2    The TG and DSC curves of Hβ (1-1 and 1-2) and    (b) 500 ℃, (c) 600 ℃ and (d) 950 ℃   uncalcined Fe-β (2-1 and 2-2)

    The measured actual iron contents of calcined catalysts are listed in Tab.2. The iron content of the catalyst decreased with the increase of calcination temperature, and the reason may be that FeCl3with a boiling point of 315℃ was volatile during the calcination process, especially when the calcination temperature became higher.

    2.2Hydroxylation of benzene

    Hydroxylation of benzene with H2O2was employed to examine the catalytic property of FeCl3modified catalysts. The obtained results are shown in Tab.2. The pure Hβwas found to be inactive for this reaction, but, after the introduction of FeCl3, it became both reactive and selective to phenol, indicating that the iron site on the Fe-βplayed a key role in the hydroxylation of benzene. And the reactivity and selectivity of the Fe-βare dependent of its preparation temperature. Among them, Fe-βcalcined at 500 ℃ gave the highest reactivity (ETOF of the Fe-β(500) for 84). However, the catalysts prepared at the higher calcination temperature showed poor ETOFs, likely, due to the structure collapses of these samples to make iron active sites embedded, as shown by the above characterized peaks.

    Noteworthy, phenol selectivity is not very excellent over the Fe-βcatalyst because of its deep oxidation. In order to improve phenol selectivity, the Fe-β(500) was further treated with DDS. The results are shown in Tab.2 as well. An obviously improved performance, in which benzene conversion only slightly decreased but phenol selectivity increased about 15%, was observed over the Fe-β(500,SM), indicating that the increase in its surface hydrophobicity should have played a significant role in restraining the deep oxidation of phenol and improving phenol selectivity in agreement with the previous report[20].

    Tab.2 Characterized and benzene hydroxylation results of Hβ and FeCl3 modified catalysts

    2.3Effects of process parameters

    Fe-β(500,SM) with the maximum ETOF was employed to examine the impact of various process parameters such as its amount, molar ratio of benzene to oxidant, reaction temperature and addition of water on its catalytic properties. The results are presented in Tables 3 and 4. A general increasing trend in reactivity with catalyst and oxidant amounts, as well as temperature was observed. Too much catalyst or H2O2or too high temperature does not necessarily lead to the increase in reactivity.In some cases, they even inversely caused slightly worse results. The impact of catalyst amount and temperature on phenol selectivity has similar change patterns. That is, the selectivity firstly ascended and then descended as these process parameters were increased. This implies that these parameters all possess an optimal value (catalyst for 0.025 g and temperature for 65 ℃) for obtaining the highest phenol selectivity. And another decreasing trend in selectivity with increasing H2O2amount is observed. Considering phenol yield and H2O2effective conversion, H2O2amount with equal molar ratio to benzene is found to be suitable. Besides, the effect of adding water on benzene hydroxylation is apparent (shown as Tab.4), and it can result in an increase in conversion but it also lead to the decrease in phenol selectivity with a significant increase in catechol and hydroquinone formed by further hydroxylation of phenol. It is well known that the mechanism of aromatics hydroxylation over the transition metal iron catalysts is a typical free radical one[20], and water is an excellent solvent of phenol hydroxylation because it can play a key role in stabilizing the hydroxyl radicals (·OH) produced by H2O2. Therefore, this can easily be comprehended why adding water could considerably enhance the sequent hydroxylation of the formed phenol.

    Tab.3 Effects of Fe-β(500,SM) and H2O2 amounts as well as reaction temperature on benzene hydroxylation

    Tab.4 Effects of H2O2 amount on benzene hydroxylation over Fe-β(500,SM)a

    aThe typical reaction conditions described in the experimental section were employed for benzene hydroxylation, the obtained products mainly included the aimed product phenol and the by-products such as quinone derivatives, unidentified products and a trace amount of catechol and hydroquninone.

    Finally, the possibility of recycling Fe-β(500,SM) was also checked under the optimal reaction conditions with acetonitrile as solvent. The recycling results showed that about 36.1% of benzene conversion and 89.0% of phenol selectivity could be maintained after three cycles. These results are similar to those over the fresh catalyst, indicating that the active sites (iron ions) on the catalyst are very stable and their leaching occurs little. This could be proved by the measured iron contents of fresh catalyst (0.62 mmol/g) and recycled catalyst (0.60 mmol/g) nearly being the same. This also implies that FeCl3is mainly exchanged in the cationic sites inside the pores of H-βwith abundant exchanged cationic sites, and these exchanged iron ions are not easily washed away in the reaction process. As a result, it can be recovered and reused for three times without observable loss of reactivity.

    3Conclusions

    The solid state ion exchange method as a convenient, high-efficient and practical modification approach has been successfully employed to prepare the FeCl3modified beta zeolite catalyst (Fe-β). XRD, TG-DSC and low temperature N2adsorption measurements all confirmed that the key factor of preparing an excellent Fe-βcatalyst is to select a suitable calcination temperature. And the incorporation of iron ions into the framework ofβzeolite has occurred in the solid-state reaction process. These Fe-βcatalysts are reactive and selective in hydroxylation of benzene to phenol with H2O2. Among them, the Fe-βcalcined at 500 ℃ gives the highest ETOF (84), and its phenol selectivity can further be increased by about 15% after it is treated with DDS, suggesting that the increase in hydrophobicity on the DDS treated catalyst’s surface played a key role in restraining the successive oxidation of phenol and increasing its selectivity. Furthermore, the Fe-βcatalyst is very stable and its active iron sites are little leached away in the reaction process. As a result, it can be recovered and reused for three times without significant loss of reactivity.

    References:

    [1]HOCKING M B, INTIHAR D J. Oxidation of phenol by aqueous hydrogen peroxide catalyzed by ferric ion-catechol complexes [J]. J Chem Technol Biotechnol, 1985,35(7):365-381.

    [2]朱麗娜,李洪濤,姜道華,等.我國苯酚丙酮生產(chǎn)技術(shù)及市場[J].化工技術(shù)與開發(fā), 2014,43(1):35-37.

    [3]MIYAKE T, HAMADA M, SASAKI Y,etal. Direct synthesis of phenol by hydroxylation of benzene with oxygen and hydrogen [J]. Appl Catal A: Gen, 1995,131(1):3342.

    [4]ANTONYCAJ A, SRINIVASAN K. One-step hydroxylation of benzene to phenol over layered double hydroxides and their derived forms[J] .Catal Surv Asia, 2013,17(2):47-70.

    [5]YURANOV I, BULUSHEV D A, RENKEN A,etal. Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site[J]. Appl Catal A: Gen, 2007,319(1):128-136.

    [6]GE H Q , LENG Y, ZHOU C J,etal. Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: cyclodextrins complexes with vanadium-substituted heteropoly acids[J]. Catal Lett, 2008,124(3):324-329.

    [7]RENUKA N K. A green approach for phenol synthesis over Fe3+/MgO catalysts using hydrogen peroxide[J].Mol Catal A: Chem, 2010,316(1-2):126-130.

    [8]KROMER A, RODUNER E. Catalytic oxidation of benzene on liquid ion-exchanged Cu,H(Na)/ZSM-5 and Cu,H(Na)/Y zeolites: spin trapping of transient radical intermediates[J]. Chem Plus Chem, 2013,78(3):268-273.

    [9]GOPALAKRISHNAN S, ZAMPIERI A, W. Schwieger.Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylationof benzene to phenol with N2O[J]. Catalysis, 2008,260(1): 193-197.

    [10]高丙瑩,吳娟,何紅運. 新型 Ti-Co-β沸石的合成、表征及催化性能的研究[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2014,37(2):40-46.

    [11]IMRE B, HALASZ J, FREY K,etal. Oxidative hydroxylation of benzene and toluene by nitrous oxide over Fe-containing ZSM-5 zeolites[J]. React Kinet Catal Lett, 2001,74(2):377-383.

    [13]GANESAN V, PAL M, TIWARI M. Manganese-Schiff base complex immobilized silica materials for electrocatalytic oxygen reduction[J]. Bull Mater Sci, 2014,37(3):623-628.

    [14]SHERRY H S, WALTON H F. The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A[J]. J Phys Chem, 1967, 71(5):1457-1465.

    [15]DORADO F, ROMERO R, CANIZARES P,etal. Influence of palladium incorporation technique onn-butane hydroisomerization over HZSM-5/bentonite catalysts[J]. Appl Catal A: Gen, 2004,274(1/2):79-85.

    [16]DIMITROVA R, NEINSKA Y, MIHLYI M,etal. Reductive solid-state ion exchange as a way to vanadium introduction in BZSM and BBeta zeolites[J]. Appl Catal A: Gen, 2004,266(1):123-127.

    [17]FU Z H, YU Y, YIN D L,etal.Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2modifiedγ-Al2O3catalysts[J]. Mol Catal A Chem, 2005,232(1):69-75 .

    [18]HE J, GUO Z Y, MA H,etal. Enhancing the selectivity of benzene hydroxylation by tailoring the chemical affinity of the MCM-41 catalyst surface for the reactive molecules[J].J Catal, 2002,212(1):22-32.

    [19]FUJIMOTO K, TOKUDA Y, AEKAWA M,etal. ChemInform abstract: selective and one-pot formation of phenols by anodic oxidation[J].Tetrahedron, 1996,52(11):3889-3896

    [20]LIU C B, SHAN Y K, YANG X G,etal. Iron(II)-8-quinolinol/MCM-41-catalyzed phenol hydroxylation and reaction mechanism[J]. J Catal, 1997,168(1):35-41.

    (編輯WJ)

    DOI:10.7612/j.issn.1000-2537.2016.04.007

    收稿日期:2016-05-03

    基金項目:湖南省自然科學(xué) 項目(10JJ2007;11JJ6008);湖南省教育廳自然科學(xué) 項目(13C1127)

    *通訊作者,E-mail:fzhhnu@tom.com

    中圖分類號TQ203.2;O643.32

    文獻標(biāo)識碼A

    文章編號1000-2537(2016)04-0041-06

    FeCl3改性β沸石的制備過程及在苯的羥基化催化反應(yīng)的應(yīng)用研究

    周建波1, 伏再輝2*, 劉亞純2, 徐超1

    (1.長沙醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)院,中國 長沙410219;2.湖南師范大學(xué)化學(xué)化工研究院,中國 長沙410081)

    摘要利用固態(tài)離子交換的方法制備出FeCl3改性的β沸石固相催化劑.采用XRD, TG-DSC及低溫N2吸附法對所制的催化劑進行了表征.用H2O2作氧化劑將苯催化氧化成苯酚考察了催化劑的催化活性和選擇性.通過調(diào)節(jié)二甲基二乙氧基硅烷(DDS)表面的親水基和疏水基可以阻止苯酚進一步發(fā)生氧化反應(yīng)從而提高催化反應(yīng)的選擇性.此外,在催化劑的回收實驗中發(fā)現(xiàn)催化劑可以重復(fù)使用3次,而其催化活性沒有太大的變化.所以從催化劑的制備到催化劑的催化過程都是綠色環(huán)保的.

    關(guān)鍵詞苯;FeCl3改性的β分子篩;羥基化;苯酚;固態(tài)離子交換

    猜你喜歡
    苯酚分子篩
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    5種沸石分子篩的吸附脫碳對比實驗
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    毛細(xì)管氣相色譜法測定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    亞洲將引領(lǐng)全球苯酚產(chǎn)能增長
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    ZSM-5分子篩膜制備方法的研究進展
    簡述ZSM-5分子篩水熱合成工藝
    SAPO-56分子篩的形貌和粒徑控制
    4-(2,4-二氟苯基)苯酚的合成新工藝
    黄色视频不卡| 久久中文看片网| 日日摸夜夜添夜夜添小说| 欧美极品一区二区三区四区| 亚洲欧美激情综合另类| 久久久久久亚洲精品国产蜜桃av| 毛片女人毛片| 少妇裸体淫交视频免费看高清 | 国产一区二区激情短视频| 国产三级黄色录像| 国产精品日韩av在线免费观看| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区三| 少妇被粗大的猛进出69影院| 亚洲片人在线观看| 日韩 欧美 亚洲 中文字幕| av欧美777| 国产成年人精品一区二区| 国产欧美日韩精品亚洲av| 中文字幕av在线有码专区| 国内揄拍国产精品人妻在线| 两个人的视频大全免费| 大型黄色视频在线免费观看| 999久久久国产精品视频| 久久久久久九九精品二区国产 | 亚洲成人久久性| 亚洲国产高清在线一区二区三| 亚洲色图av天堂| 在线a可以看的网站| 国产亚洲精品一区二区www| av天堂在线播放| 夜夜看夜夜爽夜夜摸| 亚洲人成网站在线播放欧美日韩| 国产一级毛片七仙女欲春2| 亚洲国产高清在线一区二区三| 两个人的视频大全免费| 午夜视频精品福利| 日韩精品青青久久久久久| 精品久久久久久久久久免费视频| 精品久久久久久久人妻蜜臀av| 级片在线观看| 国产成人一区二区三区免费视频网站| 国产成人aa在线观看| 9191精品国产免费久久| 最新美女视频免费是黄的| 啦啦啦观看免费观看视频高清| 国产在线精品亚洲第一网站| 免费看日本二区| 国产激情久久老熟女| 12—13女人毛片做爰片一| 久久这里只有精品19| 99久久无色码亚洲精品果冻| 成人午夜高清在线视频| 午夜福利欧美成人| 我的老师免费观看完整版| 99久久99久久久精品蜜桃| 国产精品影院久久| 免费电影在线观看免费观看| 国产精品自产拍在线观看55亚洲| 免费人成视频x8x8入口观看| 中文字幕精品亚洲无线码一区| www.精华液| 免费一级毛片在线播放高清视频| 老熟妇乱子伦视频在线观看| 久热爱精品视频在线9| 波多野结衣高清无吗| 男人舔女人下体高潮全视频| 亚洲精品国产精品久久久不卡| 亚洲五月天丁香| aaaaa片日本免费| 日本一本二区三区精品| 又黄又爽又免费观看的视频| 亚洲中文字幕一区二区三区有码在线看 | 国内精品久久久久精免费| 婷婷丁香在线五月| 精品久久久久久久久久免费视频| 日日夜夜操网爽| 久久精品国产综合久久久| 又黄又爽又免费观看的视频| 黑人巨大精品欧美一区二区mp4| 黄色成人免费大全| 大型黄色视频在线免费观看| 五月伊人婷婷丁香| 欧美日本亚洲视频在线播放| 无遮挡黄片免费观看| 亚洲国产精品999在线| 丁香欧美五月| 男人舔女人下体高潮全视频| 丁香欧美五月| 18禁国产床啪视频网站| 日本精品一区二区三区蜜桃| 国产一区二区三区在线臀色熟女| 一个人观看的视频www高清免费观看 | 女同久久另类99精品国产91| 日本免费一区二区三区高清不卡| 丁香欧美五月| 亚洲av成人av| 少妇裸体淫交视频免费看高清 | 日本撒尿小便嘘嘘汇集6| 色av中文字幕| 午夜精品一区二区三区免费看| 看黄色毛片网站| 亚洲av中文字字幕乱码综合| 亚洲av日韩精品久久久久久密| 亚洲无线在线观看| 露出奶头的视频| 九九热线精品视视频播放| 黄色视频不卡| 亚洲欧美一区二区三区黑人| 久久人妻福利社区极品人妻图片| 亚洲av第一区精品v没综合| 国产av又大| 婷婷丁香在线五月| 午夜精品久久久久久毛片777| 亚洲aⅴ乱码一区二区在线播放 | 天堂av国产一区二区熟女人妻 | 久久久久亚洲av毛片大全| 国产欧美日韩精品亚洲av| 老鸭窝网址在线观看| 国产亚洲av嫩草精品影院| 日本一区二区免费在线视频| 最新美女视频免费是黄的| 91九色精品人成在线观看| 亚洲中文字幕日韩| av国产免费在线观看| 91麻豆精品激情在线观看国产| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 男女午夜视频在线观看| 国产欧美日韩一区二区三| 97人妻精品一区二区三区麻豆| 免费高清视频大片| www.999成人在线观看| 久久精品国产亚洲av高清一级| 热99re8久久精品国产| 丁香六月欧美| 99国产精品一区二区三区| 又粗又爽又猛毛片免费看| 床上黄色一级片| 久久午夜亚洲精品久久| 国产高清videossex| 成人国产综合亚洲| 男女午夜视频在线观看| a级毛片a级免费在线| 欧美人与性动交α欧美精品济南到| 日韩欧美在线二视频| 午夜激情av网站| 村上凉子中文字幕在线| 免费观看人在逋| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 97碰自拍视频| 亚洲熟妇中文字幕五十中出| 18禁裸乳无遮挡免费网站照片| √禁漫天堂资源中文www| 好看av亚洲va欧美ⅴa在| 好男人电影高清在线观看| 制服丝袜大香蕉在线| 日韩大码丰满熟妇| 亚洲精品国产一区二区精华液| 好看av亚洲va欧美ⅴa在| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 国内精品久久久久精免费| 亚洲电影在线观看av| 久久99热这里只有精品18| 老鸭窝网址在线观看| 国产久久久一区二区三区| 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 99久久无色码亚洲精品果冻| 色综合欧美亚洲国产小说| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 舔av片在线| 亚洲人成电影免费在线| 亚洲人成网站高清观看| 日韩中文字幕欧美一区二区| 草草在线视频免费看| 叶爱在线成人免费视频播放| 国产成人一区二区三区免费视频网站| 天堂影院成人在线观看| 国内精品一区二区在线观看| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 很黄的视频免费| 国产1区2区3区精品| 黄色 视频免费看| 亚洲片人在线观看| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 国产av一区在线观看免费| 亚洲一区中文字幕在线| 国产亚洲精品第一综合不卡| 久久久水蜜桃国产精品网| 久久性视频一级片| 日本三级黄在线观看| 成人永久免费在线观看视频| 久久精品人妻少妇| 免费高清视频大片| 男人的好看免费观看在线视频 | 国产精品综合久久久久久久免费| 在线免费观看的www视频| 可以在线观看的亚洲视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出抽搐动态| 国产精品一区二区三区四区免费观看 | 久热爱精品视频在线9| 99在线人妻在线中文字幕| 国产视频内射| 国产精品亚洲一级av第二区| 两个人视频免费观看高清| 最新美女视频免费是黄的| 国产精品影院久久| 日本一二三区视频观看| 欧美精品啪啪一区二区三区| 久久精品综合一区二区三区| 亚洲精品国产一区二区精华液| 两个人的视频大全免费| 日本免费a在线| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 国内少妇人妻偷人精品xxx网站 | 欧美久久黑人一区二区| 亚洲乱码一区二区免费版| 亚洲精品久久国产高清桃花| 亚洲一区二区三区不卡视频| 天堂动漫精品| √禁漫天堂资源中文www| 嫩草影视91久久| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 亚洲国产精品久久男人天堂| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 岛国在线观看网站| 国产一区在线观看成人免费| 亚洲七黄色美女视频| 亚洲欧美日韩高清专用| 欧美中文综合在线视频| 黑人操中国人逼视频| 精品一区二区三区视频在线观看免费| 色噜噜av男人的天堂激情| 国产精品av久久久久免费| 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| 12—13女人毛片做爰片一| 亚洲男人天堂网一区| 俺也久久电影网| 久久国产精品人妻蜜桃| 三级国产精品欧美在线观看 | 日韩高清综合在线| 最近最新中文字幕大全免费视频| 久久这里只有精品19| 男女那种视频在线观看| 国产黄片美女视频| 国产精品,欧美在线| a级毛片在线看网站| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 88av欧美| 在线观看免费午夜福利视频| 精品高清国产在线一区| 日韩免费av在线播放| 国产黄色小视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清| av国产免费在线观看| 丝袜人妻中文字幕| 国产激情欧美一区二区| 在线视频色国产色| 亚洲精华国产精华精| 看免费av毛片| 国产男靠女视频免费网站| 亚洲熟妇熟女久久| 免费在线观看成人毛片| 国产免费男女视频| 亚洲成人中文字幕在线播放| 十八禁人妻一区二区| 午夜福利欧美成人| 制服丝袜大香蕉在线| 亚洲第一电影网av| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 校园春色视频在线观看| 国产精品一区二区精品视频观看| 精品国产美女av久久久久小说| 久久性视频一级片| 一本精品99久久精品77| 亚洲欧美精品综合一区二区三区| 男女下面进入的视频免费午夜| 露出奶头的视频| 亚洲欧美激情综合另类| 国产免费男女视频| 婷婷六月久久综合丁香| 欧美成人性av电影在线观看| 久久久水蜜桃国产精品网| 久久久久国内视频| 欧美一级a爱片免费观看看 | 嫩草影院精品99| 在线观看免费午夜福利视频| 精品久久久久久久久久久久久| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 操出白浆在线播放| 在线观看舔阴道视频| 国产一区二区三区视频了| ponron亚洲| 舔av片在线| 蜜桃久久精品国产亚洲av| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 亚洲一码二码三码区别大吗| 观看免费一级毛片| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 悠悠久久av| 极品教师在线免费播放| 国产精品久久电影中文字幕| 一边摸一边做爽爽视频免费| 日韩欧美一区二区三区在线观看| 青草久久国产| 黄色丝袜av网址大全| 亚洲精品中文字幕在线视频| 变态另类丝袜制服| 国产69精品久久久久777片 | 精品福利观看| 免费高清视频大片| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av | 成人国产一区最新在线观看| 成人手机av| 国语自产精品视频在线第100页| 国内毛片毛片毛片毛片毛片| 亚洲专区字幕在线| 一个人免费在线观看电影 | 美女大奶头视频| 在线看三级毛片| 亚洲 国产 在线| 一级作爱视频免费观看| 午夜视频精品福利| 免费在线观看黄色视频的| 999久久久精品免费观看国产| 又大又爽又粗| 久久国产精品影院| 久久精品成人免费网站| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 欧美乱色亚洲激情| 免费观看人在逋| 国产亚洲精品av在线| 国产三级黄色录像| 欧美最黄视频在线播放免费| 国产av不卡久久| 两个人看的免费小视频| 1024香蕉在线观看| 国产区一区二久久| 波多野结衣高清无吗| 后天国语完整版免费观看| 全区人妻精品视频| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 国产亚洲精品综合一区在线观看 | 亚洲一区中文字幕在线| 日日干狠狠操夜夜爽| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 国产1区2区3区精品| 天堂√8在线中文| xxx96com| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 国产 在线| 日本免费a在线| 亚洲真实伦在线观看| 美女黄网站色视频| 亚洲黑人精品在线| 精品久久久久久久久久久久久| 成人亚洲精品av一区二区| 国产单亲对白刺激| 婷婷亚洲欧美| 日韩欧美一区二区三区在线观看| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 午夜a级毛片| 在线观看午夜福利视频| 国产探花在线观看一区二区| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| x7x7x7水蜜桃| 免费无遮挡裸体视频| avwww免费| 午夜精品在线福利| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 久久天躁狠狠躁夜夜2o2o| 丁香六月欧美| 床上黄色一级片| 国产探花在线观看一区二区| 国产三级黄色录像| 亚洲av中文字字幕乱码综合| 午夜福利免费观看在线| 午夜日韩欧美国产| 久久中文字幕一级| 欧美乱色亚洲激情| 成人午夜高清在线视频| 国产精品99久久99久久久不卡| 日韩高清综合在线| 人妻夜夜爽99麻豆av| 给我免费播放毛片高清在线观看| 国产99白浆流出| 黄片大片在线免费观看| 熟女电影av网| 桃红色精品国产亚洲av| 老司机靠b影院| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 俺也久久电影网| 精品国产超薄肉色丝袜足j| 欧美成狂野欧美在线观看| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网| 国产日本99.免费观看| 亚洲国产精品999在线| 中出人妻视频一区二区| 母亲3免费完整高清在线观看| 久久久国产成人免费| 99久久99久久久精品蜜桃| videosex国产| 一级毛片精品| 欧美黄色片欧美黄色片| 国产精品永久免费网站| 久久精品影院6| 可以在线观看毛片的网站| 国产精品爽爽va在线观看网站| 成人永久免费在线观看视频| 色精品久久人妻99蜜桃| 国产高清视频在线播放一区| 欧美中文日本在线观看视频| 香蕉av资源在线| 一级毛片女人18水好多| 最近视频中文字幕2019在线8| 亚洲国产精品合色在线| 国产精华一区二区三区| 亚洲精品在线观看二区| 午夜成年电影在线免费观看| 国产高清视频在线观看网站| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 国产午夜福利久久久久久| 黄色片一级片一级黄色片| 色在线成人网| 中文在线观看免费www的网站 | 久久热在线av| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 日韩大码丰满熟妇| 欧美日韩黄片免| 岛国在线免费视频观看| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 老汉色av国产亚洲站长工具| 亚洲av片天天在线观看| 免费高清视频大片| 国产av一区在线观看免费| 国产91精品成人一区二区三区| 精品国内亚洲2022精品成人| 久久中文字幕人妻熟女| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av高清一级| 又紧又爽又黄一区二区| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| 少妇的丰满在线观看| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| 天天躁夜夜躁狠狠躁躁| a在线观看视频网站| 看免费av毛片| 99国产精品99久久久久| 久久精品91蜜桃| 最近最新免费中文字幕在线| 亚洲色图av天堂| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| 日本免费a在线| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| xxx96com| 长腿黑丝高跟| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 成人手机av| 国产精品久久久久久久电影 | 又紧又爽又黄一区二区| 高清毛片免费观看视频网站| 亚洲人成网站在线播放欧美日韩| 午夜免费激情av| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 中文资源天堂在线| 久久精品影院6| 国产精品野战在线观看| 美女黄网站色视频| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 成人三级做爰电影| 精品一区二区三区视频在线观看免费| 91国产中文字幕| 天天一区二区日本电影三级| 免费观看人在逋| 老司机深夜福利视频在线观看| 给我免费播放毛片高清在线观看| 国产亚洲精品第一综合不卡| 熟女少妇亚洲综合色aaa.| 国产精品九九99| 成年免费大片在线观看| 18禁国产床啪视频网站| 香蕉久久夜色| 岛国在线免费视频观看| 国产爱豆传媒在线观看 | 欧美日韩福利视频一区二区| 免费在线观看亚洲国产| 99热这里只有是精品50| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一区av在线观看| tocl精华| 久久婷婷成人综合色麻豆| 亚洲九九香蕉| 日韩国内少妇激情av| 91麻豆精品激情在线观看国产| 可以免费在线观看a视频的电影网站| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 少妇粗大呻吟视频| 国产麻豆成人av免费视频| 亚洲专区国产一区二区| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 国产午夜福利久久久久久| 久久中文字幕人妻熟女| 亚洲国产中文字幕在线视频| 在线观看www视频免费| 久9热在线精品视频| 97碰自拍视频| 黄色片一级片一级黄色片| 一进一出好大好爽视频| 男女那种视频在线观看| 亚洲av熟女| 欧美+亚洲+日韩+国产| 国产区一区二久久| 免费高清视频大片| 啦啦啦韩国在线观看视频| 人成视频在线观看免费观看| 久久欧美精品欧美久久欧美| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 久9热在线精品视频| 两个人免费观看高清视频| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放 | 少妇的丰满在线观看| avwww免费| netflix在线观看网站| 亚洲七黄色美女视频| 老司机深夜福利视频在线观看| 国产精品久久久久久久电影 | 国产黄a三级三级三级人| 午夜成年电影在线免费观看| 国产在线观看jvid| 香蕉国产在线看| 国产一区二区三区视频了| 日本撒尿小便嘘嘘汇集6| 国产高清激情床上av| 久久 成人 亚洲| 两个人视频免费观看高清| 久久香蕉精品热| e午夜精品久久久久久久| 亚洲美女视频黄频| 国产精品电影一区二区三区| 欧美日韩乱码在线| 变态另类成人亚洲欧美熟女| 女警被强在线播放| 国产高清激情床上av| 麻豆一二三区av精品| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| e午夜精品久久久久久久| 免费看a级黄色片|