• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A STOCHASTIC ALTERNATING MINIMIZATION METHOD FOR SPARSE PHASE RETRIEVAL

    2020-08-13 10:32:00CAIJianfengJIAOYulingLUXiliangYOUJuntao
    數(shù)學(xué)雜志 2020年4期

    CAI Jian-fengJIAO Yu-lingLU Xi-liangYOU Jun-tao

    (1.Department of Mathematics,The Hong Kong University of Science and Technology Kowloon,Hong Kong 999077,China)

    (2.School of Statistics and Mathematics,Zhongnan University of Economics and Law,Wuhan 430073,China)

    (3.School of Mathematics and Statistics;Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China)

    (4.Department of Mathematics,Southern University of Science and Technology,Shenzhen 518055,China)

    Abstract:Sparse phase retrieval plays an important role in many fields of applied science and thus attracts lots of attention.In this paper,we propose a stochastic alternating minimization method for sparse phase retrieval(StormSpar)algorithm which empirically is able to recover n-dimensional s-sparse signals from only O(slogn)measurements without a desired initial value required by many existing methods.In StormSpar,the hard-thresholding pursuit(HTP)algorithm is employed to solve the sparse constrained least-square sub-problems.The main competitive feature of StormSpar is that it converges globally requiring optimal order of number of samples with random initialization.Extensive numerical experiments are given to validate the proposed algorithm.

    Keywords:phase retrieval;sparse signal;stochastic alternating minimization method;hard-thresholding pursuit

    1 Introduction

    Phase retrieval is to recover the phase information from its magnitude measurements,i.e.,

    wherex∈Fnis the unknown vector,ai∈Fnare given sampling vectors which are random Gaussian vector in this paper,yiare the observed measurements,are the noise,andmis the number of measurements(or the sample size).The Fncan be Rnor Cn,and we consider the real case Fn=Rnin this work.The phase retrieval problem arises in many fields like X-ray crystallography[1],optics[2],microscopy[3]and others,see e.g.[4].Due to the lack of phase information,the phase retrieval problem is a nonlinear and ill-posed problem.

    When the measurements are overcomplete,i.e.,m>n,there are many algorithms in the literature.Earlier approaches were mostly based on alternating projections,e.g.the work of Gerchberg and Saxton[5]and Fienup[4].Recently,convex relaxation methods such as phase-lift[6]and phase-cut[7]were proposed.These methods transfer the phase retrieval problem into a semi-definite programming,which can be computationally expensive.Another convex approach named phase-max which does not lift the dimension of the signal was proposed in[8].In the meanwhile,there are other works based on solving nonconvex optimization via first and second order methods including alternating minimization[9](or Fienup methods),Wirtinger flow[6]Kaczmarz[10],Riemannian optimization[11];Gauss-Newton[12,13]etc.With a good initialization obtained via spectral methods,the above mentioned methods work with theoretical guarantees.Progresses were made by replacing the desired initialization with random initialized ones in alternating minimization[14,15],gradient descent[16]and Kaczmarz method[17,18]while keeping convergence guarantee with high probability.Also,recent analysis in[19,20]showed that some nonconvex objective functions for phase retrieval have a nice landscape—there is no spurious local minima—with high probability.As a consequence,for these objective functions,any algorithms finding a local minima are guaranteed to give a successful phase retrieval.

    For the large scale problem,the requirementm>nbecomes unpractical due to the huge measurement and computation cost.In many applications,the true signalxis known to be sparse.Then the sparse phase retrieval problem can be solved with a small number of samplings,thus possible to be applied to large scale problems.It was proved in[21]thatm=O(slogn/s)measurement is sufficient to ensure successful recovery in theory with high probability when the model is Gaussian(i.e.,the sampling vectoraiare i.i.d Gaussian and the target is real).But the exiting computational trackable algorithms requireO(s2logn)number of measurements to reconstruct the sparse signal,for example,‘1regularized PhaseLift method[22],sparse AltMin[9],GESPAR[23],Thresholding/projected Wirtinger flow[24,25],SPARTA[26]and so on.Two stage methods based on phase-lift and compressing has been introduced in[27,28],which is able to do successful reconstruction withO(slogn)measurements for some specially designed sampling matrix which exclude the Gaussian model(1.1).When a good initialization is available,the sample complexity can be improved toO(slogn)[25,29].However,it requiresO(s2logn)samples to get a desired sparse initialization in the existing literature.This gap naturally raises the following challenging question.

    Can one recover thes-sparse target from the phaseless generic Gaussian model(1.1)withO(slogn)measurements via just using random initializations?

    In this paper,we propose a novel algorithm to solve the sparse phase retrieval problems in the very limited number of measurements(numerical examples show thatm=O(slogn)can be enough).The algorithm is a stochastic version of alternating minimizing method.The idea of alternating minimization method is:during each iteration,we first given an estimation of the phase information,then substitute the approximated phase into(1.1)with the sparse constraint and solve a standard compressed sensing problem to get an updated sparse signal.But since the alternating minimization method is a local method,it is very sensitive to the initialization.Without enough measurements,it is very difficult to compute a good initial guess.To overcome this difficulty,we change the sample matrix during each iteration via bootstrap technique,see Algorithm 1 for details.The numerical experiments show that the proposed algorithm needs onlyO(slogn)measurements to recover the true signal with high probability in Gaussian model,and it works for a random initial guess.The experiments also show that the proposed algorithm is able to recover signal in a wide range of sparsity.

    The rest of this paper is organized as follows.In Section 2 we introduce the setting of problem and the details of the algorithm.Numerical experiments are given in Section 3.

    2 Algorithm

    First,we introduce some notations. For anya,b∈Rn,we denote thatis the number of nonzero entries ofx,andis the standardl2-norm,i.e.,The floor functionis the greatest integer which is less than or equal toc.

    Recall from(1.1),we denote the sampling matrix and the measurement vector by,respectively.Letx∈Rnbe the unknown sparse signal to be recovered.In the noise free case,the problem can be written as to findxsuch that

    In the noisy case,this can be written by the nonconvex minimization problem

    Now we propose the stochastic alternating minimization method for sparse phase retrieval(StormSpar)as follows.It starts with a random initial guessx0.In the‘-th step of iteration(=1,2,···),we first randomly choose some rows of the sampling matrixAto form a new matrixA‘(which is a submatrix ofA),and denoted by the corresponding rows ofytoThen we compute the phase information of,say,and to solve the standard compressed sensing subproblem

    3 Numerical Results and Discussions

    3.1 Implementation Details

    The true signalxis chosen ass-sparse with random support and the design matrixA∈Rm×nis chosen to be random Gaussian matrix.The additive Gaussian noise following the form=σ ?randn(n,1),thus the noise level is determined byσ.The parameterγis set to be,andδ=0.01.

    The estimation errorrbetween the estimatorand the true signalxis defined as

    We say it is a successful recovery when the relative estimation errorrsatisfy thatr≤1e?2 or the support is exactly recovered.The tests repeat independently for 100 times to compute a successful rate. “Aver Iter” in Tables 1 and 2 means the average number of iterations for 100 times of tests.All the computations were performed on an eight-core laptop with core i7 6700HQ@3.50 GHz and 8 GB RAM using MATLAB 2018a.

    Algorithm 1 StormSpar 1:Input:Normalized A ∈ Rm×n,y,sparsity level s, γ ∈ (0,1),small constant δ,a random initial value x0.2:for ‘=1,2,···do 3:Randomly selected bγmc rows of A and y,denote the index as i‘,to form A‘=A(i‘,:)y‘=y(i‘).4:Compute p‘=sign(A‘x‘?1),?y‘=p‘ fly‘.5:Get x‘by solving minx,kxk0≤s12kA‘x??y‘k2via Algorithm 2(HTP).6:Check stop criteria kx‘?x‘?1k ≤ δ.7:end for 8:Get the first s position of x‘a(chǎn)nd refit on it as output.

    Algorithm 2 HTP solving(2.2)1:Input:Initialization:k=0,x0=0;2:for k=1,2,···do 3:Sk←{indices of s largest entries of xk?1+μ(A‘)t(?y‘?A‘xk?1)};4:Solve xk←argminsupp(x)?SkkA‘x??y‘k2.5:end for

    3.2 Examples

    Example 1First we examine the effect of sample sizemto the probability of successful recovery in Algorithm 1.The dimension of the signalxisn=1000.

    a)When we set sparsity to bes=10,25,50,Figure 1 shows how the successful rate changes in terms of the sample sizem.In this experiment,we fix a numberwhich is 115,287,575 with respect to the sparsity 10,25,50.Then we compute the probability of success whenm/Kchanges:for eachsand eachm/K=1,1.25,···,3,we run our algorithm for 100 times.It shows when the sample size is in orderO(slogn)in this setting,we can recover the signal with high possibility.

    Figure 1 The probability of success in recovery v.s.sample size m/K for Gaussian model, which is 115,287,575 with respect to sparsity s=10,25,50,signal dimension n=1000,noise level σ=0.01

    b)We compare StormSpar to some existing algorithm,i.e.,CoPRAM[31],Thresholded Wirtinger Flow(ThWF)[24]and SPArse truncated Amplitude flow(SPARTA)[26].The sparsity is set to be 30 and the model is noise free.Figure 2 shows the successful rate comparison in terms of sample size,the results are obtained by averaging the results of 100 trials.We find it that StormSpar requires more iterations and more cpu time than these algorithms which requires initialization.But StormSpar achieves better accuracy with less sample complexity.

    Example 2Figure 3 shows that StormSpar is robust to noise.We setn=1000,s=20,andThe noise we added is i.i.d.Gaussian,and the noise level is shown by signal-to-noise ratios(SNR),we plot the corresponding relative error of reconstruction in the Figure 3.The results are obtained by average of 100 times trial run.

    Example 3We compare StormSpar with a two-stage method Phaselift+BP proposed in[27],which has been shown to be more efficient than the standard SDP of[32].The dimension of data is set to ben=1000.The comparison are two-folder.First,for different sparsity level,we compare the minimum number of measurements required to give successful recovery rate higher than 95%,the result can be found in Figure 4.Second the average computational time is given in Figure 5,where.

    Figure 2 The probability of success in recovery for different algorithms in terms of changing sample size,dimension n=1000,sparsity s=30 and the model is noise free

    Figure 3 The reconstruction error v.s.SNR to measurements for Gaussian model, with sparsity s=20,signal dimension n=1000 and several noise level,i.e.SNR to measurements

    Example 4Letm=O(slogn),we test for different sparse levels and different dimensions.In Table 1,we fix dimensionn=2000,and the sample size is chosen to beThe sparsity level changes from 5 to 100,we find the algorithm can successfully recover the sparse signal in most case,and the iteration number is very stable.

    In Table 2,the sparsity level is fixed bys=10,the sample size isfor dimensionnfrom 100 to 10000.We find the algorithm can successfully recover the sparse signal in most cases,and the number of iteration dependent on the dimensionn.

    Figure 4 Comparison of Minimum number of measurements required for Gaussian model,signal dimension n=1000 and free of noise

    Figure 5 Comparison of efficiency for Gaussian model,signal dimension n=1000 and free of noise

    4 Conclusion

    In this paper,we propose a novel algorithm(StormSpar)for the sparse phase retrieval.StormSpar start with a random initialization and employ a alternating minimization method for a changing objective function.The subproblemis a standard compressed sensing problem,which can be solved by HTP method.Numerical examples show that the proposed algorithm requires onlyO(slogn)samples to recover thes-sparse signal with a random initial guess.

    Table 1 Numerical results for sparsity test,with random sampling A of size n×m,n=2000,s is the sparsity,with σ=0.01,and Aver Iter= average number of iterations for 100 times of test

    Table 1 Numerical results for sparsity test,with random sampling A of size n×m,n=2000,s is the sparsity,with σ=0.01,and Aver Iter= average number of iterations for 100 times of test

    Dimension n Sparsity s Sample m Successful Rate Aver Iter 2000 5 152 98% 109 2000 10 305 99% 229 2000 15 457 99% 359 2000 20 610 98% 395 2000 25 762 100% 407 2000 30 915 99% 403 2000 35 1068 100% 482 2000 40 1220 100% 331 2000 45 1373 100% 305 2000 50 1525 100% 324 2000 75 2288 100% 289 2000 100 3051 100% 285

    Table 2 Numerical results for different dimensions,with random sampling A of size s is the sparsity,with σ=0.01,and Aver Iter=average number of iterations for 100 times of test

    Table 2 Numerical results for different dimensions,with random sampling A of size s is the sparsity,with σ=0.01,and Aver Iter=average number of iterations for 100 times of test

    Dimension n Sparsity s Sample m Successful Rate Aver Iter 100 10 230 98% 38 200 10 249 99% 46 300 10 257 100% 56 400 10 264 100% 72 500 10 270 100% 93 750 10 280 100% 123 1000 10 287 100% 157 1500 10 297 99% 192 2000 10 305 99% 229 3000 10 315 99% 298 4000 10 322 98% 508 5000 10 328 97% 748 7500 10 338 95% 1142 10000 10 345 96% 1271

    22中文网久久字幕| 欧美zozozo另类| 婷婷精品国产亚洲av在线| 日韩国内少妇激情av| 国产亚洲精品综合一区在线观看| 成人一区二区视频在线观看| 成人综合一区亚洲| 天堂网av新在线| a级一级毛片免费在线观看| 欧美潮喷喷水| 97超碰精品成人国产| 久久久久免费精品人妻一区二区| 在线播放无遮挡| 久久久久久久久中文| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 黄片wwwwww| aaaaa片日本免费| 在线看三级毛片| 国产单亲对白刺激| 国产综合懂色| 久久久久精品国产欧美久久久| 久久99热6这里只有精品| 国产69精品久久久久777片| 国产单亲对白刺激| 99久久成人亚洲精品观看| 校园春色视频在线观看| 最近2019中文字幕mv第一页| 久久久精品欧美日韩精品| 国产一区二区亚洲精品在线观看| 欧美一区二区国产精品久久精品| АⅤ资源中文在线天堂| 日韩中字成人| 自拍偷自拍亚洲精品老妇| 看非洲黑人一级黄片| 一进一出好大好爽视频| 亚洲av美国av| 国产成人福利小说| 搡老妇女老女人老熟妇| 18禁在线无遮挡免费观看视频 | 色av中文字幕| 观看免费一级毛片| 亚洲在线观看片| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 亚洲欧美成人综合另类久久久 | 搞女人的毛片| 亚洲av二区三区四区| 特级一级黄色大片| 久久久久国产精品人妻aⅴ院| 精品一区二区三区人妻视频| 国产一区二区亚洲精品在线观看| 中文字幕精品亚洲无线码一区| 联通29元200g的流量卡| 波多野结衣高清无吗| 国产一区二区激情短视频| 最近在线观看免费完整版| 亚洲三级黄色毛片| 男人舔奶头视频| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 晚上一个人看的免费电影| 亚洲精品成人久久久久久| ponron亚洲| av.在线天堂| 精品一区二区三区视频在线观看免费| 又粗又爽又猛毛片免费看| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| 亚洲欧美日韩卡通动漫| 国产av一区在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 精品国产三级普通话版| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av天美| 国产精品国产高清国产av| 3wmmmm亚洲av在线观看| 给我免费播放毛片高清在线观看| a级一级毛片免费在线观看| 亚洲精品日韩在线中文字幕 | 少妇猛男粗大的猛烈进出视频 | h日本视频在线播放| 热99在线观看视频| 一本一本综合久久| 波多野结衣巨乳人妻| 国产乱人视频| 精品免费久久久久久久清纯| 晚上一个人看的免费电影| 免费无遮挡裸体视频| 亚洲欧美成人综合另类久久久 | 欧美在线一区亚洲| 真实男女啪啪啪动态图| 男女啪啪激烈高潮av片| а√天堂www在线а√下载| 国产精品久久久久久久久免| 国产毛片a区久久久久| 午夜a级毛片| 天天躁日日操中文字幕| 久久精品国产鲁丝片午夜精品| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄 | 日韩三级伦理在线观看| 中文字幕精品亚洲无线码一区| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 国产高潮美女av| 国产精品日韩av在线免费观看| 久久久久性生活片| 内射极品少妇av片p| 婷婷色综合大香蕉| 毛片女人毛片| 久久久久免费精品人妻一区二区| 香蕉av资源在线| 最近在线观看免费完整版| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 亚洲五月天丁香| 老女人水多毛片| av在线蜜桃| a级毛片a级免费在线| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 欧美日本视频| 免费av毛片视频| 给我免费播放毛片高清在线观看| 搞女人的毛片| 亚州av有码| 简卡轻食公司| 久久久久国产网址| 国产亚洲91精品色在线| 国产精品伦人一区二区| 色哟哟哟哟哟哟| 国产激情偷乱视频一区二区| 永久网站在线| 久久久精品欧美日韩精品| 麻豆乱淫一区二区| 观看免费一级毛片| 黄色欧美视频在线观看| 寂寞人妻少妇视频99o| 国产私拍福利视频在线观看| 久久久久久大精品| 综合色丁香网| 国产成人影院久久av| 日本黄色片子视频| 亚洲一区高清亚洲精品| av在线老鸭窝| 久久久久久久久久成人| 12—13女人毛片做爰片一| 亚洲美女视频黄频| АⅤ资源中文在线天堂| 18禁裸乳无遮挡免费网站照片| 国产日本99.免费观看| 日韩大尺度精品在线看网址| 网址你懂的国产日韩在线| 亚洲av中文av极速乱| 国产高清视频在线观看网站| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 国产欧美日韩精品亚洲av| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 热99在线观看视频| 国产精品一二三区在线看| 亚洲最大成人中文| 久久久久久久午夜电影| 直男gayav资源| 我的老师免费观看完整版| 嫩草影院精品99| 午夜精品国产一区二区电影 | 日本五十路高清| 欧美zozozo另类| 国产高清三级在线| 少妇丰满av| 亚洲四区av| 国产成人一区二区在线| 少妇的逼好多水| 女人被狂操c到高潮| 亚洲专区国产一区二区| av在线天堂中文字幕| 精品久久久久久成人av| 国产av在哪里看| 国产成人a∨麻豆精品| 国产高清三级在线| 久久精品久久久久久噜噜老黄 | 97热精品久久久久久| 麻豆一二三区av精品| 日韩精品有码人妻一区| 99热6这里只有精品| 看十八女毛片水多多多| 舔av片在线| av黄色大香蕉| 3wmmmm亚洲av在线观看| 精品无人区乱码1区二区| 黄色日韩在线| 男女之事视频高清在线观看| 精品久久久噜噜| 日本与韩国留学比较| 一区二区三区免费毛片| 国产精品亚洲美女久久久| 久久久久久久久大av| 少妇人妻精品综合一区二区 | 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 国产免费男女视频| 亚州av有码| 性欧美人与动物交配| 插逼视频在线观看| 91久久精品国产一区二区三区| 直男gayav资源| 97碰自拍视频| 日本一二三区视频观看| 天天一区二区日本电影三级| or卡值多少钱| 日本在线视频免费播放| 午夜影院日韩av| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 亚洲自偷自拍三级| 99久国产av精品| 国产一级毛片七仙女欲春2| 我要搜黄色片| 国产精品野战在线观看| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 丝袜喷水一区| 美女免费视频网站| 99热这里只有是精品在线观看| 亚洲电影在线观看av| 久久久精品欧美日韩精品| 久久人妻av系列| 亚洲乱码一区二区免费版| 日韩欧美精品免费久久| 日韩欧美在线乱码| 深夜精品福利| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 国产欧美日韩一区二区精品| 亚洲专区国产一区二区| 日日摸夜夜添夜夜爱| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕 | 亚洲在线自拍视频| 国产精品av视频在线免费观看| 久久精品夜色国产| 国产高清视频在线播放一区| 久久天躁狠狠躁夜夜2o2o| 91在线观看av| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 欧美日韩在线观看h| 1024手机看黄色片| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验 | 国产亚洲av嫩草精品影院| 搞女人的毛片| 免费看美女性在线毛片视频| 在线播放无遮挡| 精品午夜福利在线看| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 午夜老司机福利剧场| 看免费成人av毛片| 免费看美女性在线毛片视频| 少妇的逼水好多| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 久久久午夜欧美精品| 日本一二三区视频观看| 亚洲色图av天堂| 久久久精品欧美日韩精品| 成人综合一区亚洲| 天堂动漫精品| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 小说图片视频综合网站| 听说在线观看完整版免费高清| 国产综合懂色| 婷婷色综合大香蕉| 亚洲精品456在线播放app| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看| 精品久久久久久久久久免费视频| 欧洲精品卡2卡3卡4卡5卡区| aaaaa片日本免费| 99热精品在线国产| 99视频精品全部免费 在线| 国产精品久久久久久精品电影| 国产精华一区二区三区| 免费av观看视频| 深夜精品福利| 久久久精品大字幕| 日韩欧美三级三区| 男女那种视频在线观看| 日韩制服骚丝袜av| 99热这里只有精品一区| 精品久久久久久久久亚洲| aaaaa片日本免费| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 中国美白少妇内射xxxbb| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 久久中文看片网| 亚洲久久久久久中文字幕| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 亚洲自偷自拍三级| 人妻丰满熟妇av一区二区三区| 人人妻,人人澡人人爽秒播| 日日摸夜夜添夜夜爱| 搞女人的毛片| 欧美日韩乱码在线| 亚洲最大成人中文| 丝袜美腿在线中文| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 久久久精品94久久精品| 日韩欧美在线乱码| 俄罗斯特黄特色一大片| 日韩成人伦理影院| 俄罗斯特黄特色一大片| 国产免费男女视频| 久久6这里有精品| 91在线观看av| 我要搜黄色片| 亚洲最大成人中文| 欧美一区二区亚洲| 亚洲图色成人| 欧美高清成人免费视频www| 国产精品人妻久久久久久| 最好的美女福利视频网| 亚洲五月天丁香| 91狼人影院| 亚洲自偷自拍三级| 99久国产av精品| 日本黄色视频三级网站网址| 18禁在线播放成人免费| 青春草视频在线免费观看| 波多野结衣高清无吗| 精品免费久久久久久久清纯| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 亚洲四区av| 少妇熟女aⅴ在线视频| 有码 亚洲区| 国产淫片久久久久久久久| 精品久久久噜噜| 成人三级黄色视频| 免费看av在线观看网站| eeuss影院久久| 欧美极品一区二区三区四区| 国产高清激情床上av| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 成年av动漫网址| 搡女人真爽免费视频火全软件 | 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 国产精品一及| 亚洲欧美日韩高清在线视频| 国产一区二区亚洲精品在线观看| 国产亚洲精品综合一区在线观看| 免费观看人在逋| 亚洲性久久影院| 欧美性感艳星| 黄色一级大片看看| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 91午夜精品亚洲一区二区三区| 少妇人妻精品综合一区二区 | 日韩欧美一区二区三区在线观看| 亚洲国产精品国产精品| 色吧在线观看| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 国产在线男女| 乱人视频在线观看| 国内精品一区二区在线观看| 国模一区二区三区四区视频| 国内精品美女久久久久久| 别揉我奶头~嗯~啊~动态视频| 日韩欧美 国产精品| 亚洲国产精品成人久久小说 | 噜噜噜噜噜久久久久久91| 久久久欧美国产精品| 日韩强制内射视频| 成人永久免费在线观看视频| 卡戴珊不雅视频在线播放| 免费无遮挡裸体视频| videossex国产| 日本黄色视频三级网站网址| 可以在线观看的亚洲视频| 12—13女人毛片做爰片一| 最近2019中文字幕mv第一页| 欧美日韩在线观看h| 成人亚洲精品av一区二区| 国产不卡一卡二| 欧美极品一区二区三区四区| 色吧在线观看| 啦啦啦观看免费观看视频高清| 精品久久久久久久久av| 色5月婷婷丁香| 天美传媒精品一区二区| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 在线观看免费视频日本深夜| av在线播放精品| 日韩在线高清观看一区二区三区| 久久精品影院6| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱 | 久久6这里有精品| av在线亚洲专区| 有码 亚洲区| 99热这里只有是精品50| 国产精品,欧美在线| 久久久a久久爽久久v久久| 香蕉av资源在线| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 韩国av在线不卡| 91av网一区二区| 亚洲国产精品久久男人天堂| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 久久午夜福利片| 国内精品美女久久久久久| 热99re8久久精品国产| 日本与韩国留学比较| 99热这里只有精品一区| 天堂动漫精品| 久久亚洲国产成人精品v| 精品免费久久久久久久清纯| 中文亚洲av片在线观看爽| 国产精品嫩草影院av在线观看| 在线观看av片永久免费下载| 国产精品久久久久久久久免| 免费电影在线观看免费观看| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 九九在线视频观看精品| 成人性生交大片免费视频hd| 91av网一区二区| av黄色大香蕉| 麻豆国产97在线/欧美| 91在线观看av| 精品久久久久久久末码| 国产免费一级a男人的天堂| 日本撒尿小便嘘嘘汇集6| 在线观看一区二区三区| 亚洲精华国产精华液的使用体验 | 搞女人的毛片| 精华霜和精华液先用哪个| 国产单亲对白刺激| 最好的美女福利视频网| 国产中年淑女户外野战色| 日本免费一区二区三区高清不卡| 欧美色视频一区免费| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 深爱激情五月婷婷| 亚洲欧美成人精品一区二区| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| 亚洲熟妇中文字幕五十中出| 中文字幕人妻熟人妻熟丝袜美| 一进一出好大好爽视频| 亚洲图色成人| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 欧美又色又爽又黄视频| 日韩 亚洲 欧美在线| 亚洲成人久久性| 欧美色视频一区免费| 国产av一区在线观看免费| 亚洲电影在线观看av| 日韩强制内射视频| 国产av麻豆久久久久久久| 国产国拍精品亚洲av在线观看| 一本精品99久久精品77| 免费不卡的大黄色大毛片视频在线观看 | 日日干狠狠操夜夜爽| 色5月婷婷丁香| 一级毛片久久久久久久久女| 国产精品一区二区三区四区免费观看 | 亚洲最大成人手机在线| 国产精品1区2区在线观看.| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 听说在线观看完整版免费高清| 欧美+日韩+精品| 成人漫画全彩无遮挡| 成人欧美大片| 激情 狠狠 欧美| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 97在线视频观看| 国产激情偷乱视频一区二区| 精品久久久久久久久av| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 俺也久久电影网| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 日韩欧美精品v在线| 成人鲁丝片一二三区免费| eeuss影院久久| 午夜久久久久精精品| 久久久久久久久久黄片| 国产色婷婷99| 亚洲最大成人av| 色5月婷婷丁香| av在线播放精品| 亚洲人成网站在线播放欧美日韩| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在 | 长腿黑丝高跟| 99久久成人亚洲精品观看| 变态另类丝袜制服| 18+在线观看网站| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 久久婷婷人人爽人人干人人爱| 级片在线观看| 香蕉av资源在线| 中文字幕人妻熟人妻熟丝袜美| 丰满的人妻完整版| 又爽又黄a免费视频| 久久久久久久午夜电影| 日本一本二区三区精品| 亚洲av成人av| 一级毛片aaaaaa免费看小| 亚洲av美国av| 日韩欧美在线乱码| 一夜夜www| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 国产欧美日韩精品亚洲av| 久久久成人免费电影| 直男gayav资源| 色综合亚洲欧美另类图片| av黄色大香蕉| 亚洲av美国av| 黄色欧美视频在线观看| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 亚洲av第一区精品v没综合| 三级经典国产精品| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 欧美丝袜亚洲另类| 久久这里只有精品中国| 久久久久久久亚洲中文字幕| 变态另类丝袜制服| 91在线观看av| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av| 男人的好看免费观看在线视频| 我的老师免费观看完整版| 在线免费观看不下载黄p国产| 美女大奶头视频| 99久久成人亚洲精品观看| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线观看播放| 69人妻影院| 欧美日韩一区二区视频在线观看视频在线 | 色哟哟哟哟哟哟| 九九爱精品视频在线观看| 淫秽高清视频在线观看| 国产一级毛片七仙女欲春2| 亚洲欧美精品综合久久99| 国产精品三级大全| 中文亚洲av片在线观看爽| 人妻久久中文字幕网| 亚洲国产欧美人成| 国产精品久久久久久久电影| 亚洲av电影不卡..在线观看| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 老熟妇仑乱视频hdxx| a级毛色黄片| 少妇被粗大猛烈的视频| 直男gayav资源| 色哟哟·www| 欧美绝顶高潮抽搐喷水|