王兵兵,周正雄,金學(xué)榮,李江華,史仲平,康振
·生物育種與工藝優(yōu)化·
肝素C5異構(gòu)酶的表達(dá)優(yōu)化及分子改造
王兵兵1,2,周正雄1,2,金學(xué)榮1,2,李江華1,2,史仲平1,2,康振1,2
1 江南大學(xué) 生物工程學(xué)院 工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122 2 江南大學(xué) 生物工程學(xué)院 糖化學(xué)與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122
肝素和硫酸乙酰肝素是一類應(yīng)用于臨床抗凝血的糖胺聚糖。肝素葡萄糖醛酸C5異構(gòu)酶(Heparosan-N-sulfate-glucuronate 5-epimerase,C5,EC 5.1.3.17) 是肝素和硫酸乙酰肝素合成過(guò)程中重要的修飾酶,催化N-硫酸化肝素前體(N-sulfoheparosan) 的D-葡萄糖醛酸(D-GlcA) 上5號(hào)位羧基翻轉(zhuǎn)生成L-艾杜糖醛酸(L-iduronic acid,L-IdoA)。文中以大腸桿菌為宿主對(duì)斑馬魚來(lái)源的肝素葡萄糖醛酸C5異構(gòu)酶基因進(jìn)行重組表達(dá)優(yōu)化與分子改造。比較了3種不同的表達(dá)載體pET20b(+)、pET28a(+) 和pCold Ⅲ對(duì)C5表達(dá)的差異情況,其中以嗜冷啟動(dòng)型載體pCold Ⅲ表達(dá)酶活最高,達(dá)到(1 873.61±5.42) U/L。為了進(jìn)一步提高C5的可溶表達(dá)量,在N端融合促溶標(biāo)簽SET2后,可溶蛋白表達(dá)量比對(duì)照提高了50%,酶活達(dá)到 (2 409.25±6.43) U/L。在此基礎(chǔ)上,通過(guò)理性設(shè)計(jì)對(duì)底物結(jié)合口袋進(jìn)行定點(diǎn)突變,獲得最優(yōu)突變體(V153R)的酶活和比酶活分別為 (5 804.32±5.63) U/L和(145.14±2.33) U/mg,是原始酶的2.41倍和2.28倍。肝素C5異構(gòu)酶改造與表達(dá)優(yōu)化為酶法催化合成肝素奠定了基礎(chǔ)。
肝素,葡萄糖醛酸-C5-異構(gòu)化酶,異源表達(dá),理性設(shè)計(jì),底物結(jié)合口袋
肝素是一種存在于細(xì)胞表面和胞外基質(zhì)中的糖胺聚糖[1],由己糖醛酸和葡糖胺組成的二糖單位重復(fù)連接而成[2],在機(jī)體內(nèi)作為細(xì)胞識(shí)別、信號(hào)傳導(dǎo)和抗凝血等的生物學(xué)活性分子[3]。臨床上主要用于治療血栓栓塞性疾病、心肌梗死、心血管手術(shù)和術(shù)后抗凝血等。目前,肝素的生產(chǎn)方式主要包括生物提取[4]、化學(xué)合成[5]、酶法合 成[6]等。其中生物提取法獲得的肝素中混有多種糖胺聚糖,對(duì)產(chǎn)物造成污染;化學(xué)合成法生產(chǎn)周期長(zhǎng),過(guò)程繁瑣[7];而酶法合成產(chǎn)物單一,過(guò)程簡(jiǎn)單[8]。
在酶法合成肝素過(guò)程中,肝素前體先經(jīng)過(guò)脫乙酰和硫酸化作用轉(zhuǎn)變?yōu)镹-硫酸化肝素前體[9],N-硫酸化肝素前體經(jīng)肝素C5異構(gòu)酶催化[10-12],其多糖鏈上的D-葡萄糖醛酸(D-glucuronic acid,D-GlcA) 異構(gòu)化為L(zhǎng)-艾杜糖醛酸(L-iduronic acid,L-IdoA),其中葡萄糖醛酸C5位的氫與介質(zhì)中的質(zhì)子發(fā)生交換[13],C5位的羧基翻轉(zhuǎn),導(dǎo)致分子構(gòu)型發(fā)生變化[14]。含有艾杜糖醛酸的多糖鏈進(jìn)一步通過(guò)后續(xù)不同硫酸化位點(diǎn)的修飾合成具有生物學(xué)功能的肝素[15]。C5異構(gòu)化作用是肝素酶法合成過(guò)程中的一步關(guān)鍵反應(yīng)[16],含有IdoA的GAGs (糖胺聚糖鏈) 才具有抗凝血和抗血脂等的功能[17],因此C5異構(gòu)化作用是后續(xù)硫酸化修飾的前提。
隨著藥理學(xué)及臨床醫(yī)學(xué)的進(jìn)展,肝素的應(yīng)用不斷擴(kuò)大。但在體外酶法合成肝素[18]的過(guò)程中,途徑所涉及的關(guān)鍵性異構(gòu)酶酶活卻很低[19-21],這嚴(yán)重限制了肝素的工業(yè)化生產(chǎn),提高C5異構(gòu)酶的催化活性對(duì)于肝素的合成及其臨床應(yīng)用具有重大意義。本研究通過(guò)優(yōu)化表達(dá)載體、N端融合促溶標(biāo)簽以及理性改造酶結(jié)構(gòu)等策略,獲得一株催化活性顯著提高的突變體V153R,其酶活與比酶活分別為 (5 804.32±5.63) U/L和 (145.14±2.33) U/mg,是野生型C5異構(gòu)酶酶活的2.41倍、比酶活的2.28倍。C5異構(gòu)酶的高活性表達(dá)為肝素的全酶法合成奠定了基礎(chǔ)。
本實(shí)驗(yàn)所有的質(zhì)粒構(gòu)建均在大腸桿菌JM109中進(jìn)行,重組菌株構(gòu)建的出發(fā)菌株為BL21(DE3)。菌株JM109、BL21(DE3),質(zhì)粒pET-28a (+)、pET-20b (+)、pCold Ⅲ均為本實(shí)驗(yàn)室保存。詳情見表1。
將密碼子優(yōu)化后的斑馬魚來(lái)源的基因(NP_998014.1) 經(jīng)PCR擴(kuò)增(所用引物見表2) 后酶切連接至pCold Ⅲ、pET20b、pET28a,構(gòu)建重組載體pCold Ⅲ-C5、pET20b-C5、pET28a-C5。將來(lái)源于大腸桿菌的麥芽糖蛋白(Maltose binding protein,MBP)、釀酒酵母的促溶標(biāo)簽SET2 (Solubility-enhancement tags) 及小泛素樣蛋白(Small ubiquitin-related modifier,SUMO) 基因經(jīng)PCR擴(kuò)增(所用引物見表2) 后一步克隆連接至pCold Ⅲ-C5構(gòu)建重組載體pCold Ⅲ-MBP-C5、pCold Ⅲ-SET2-C5、pCold Ⅲ-SUMO-C5。42 ℃熱激90 s后,轉(zhuǎn)化至JM109感受態(tài)細(xì)胞中,挑取轉(zhuǎn)化子測(cè)序,測(cè)序正確則上述重組載體構(gòu)建成功。按上述方法將測(cè)序成功的重組質(zhì)粒轉(zhuǎn)化至BL21(DE3) 感受態(tài)細(xì)胞。
表2 本文所用引物
Underlines represent the restriction site.
本實(shí)驗(yàn)基于上述表達(dá)優(yōu)化的基礎(chǔ),進(jìn)一步對(duì)C5異構(gòu)酶酶分子結(jié)構(gòu)[22]理性改造提高C5異構(gòu)酶的催化活性。根據(jù)在蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù)庫(kù)(Protein data bank,PDB) 下載的斑馬魚來(lái)源的蛋白結(jié)構(gòu)(PDB: 4pxq),利用軟件Discovery Studio的CDOCKER模塊進(jìn)行分子對(duì)接,具體操作方法和參數(shù)設(shè)置根據(jù)Discovery Studio軟件的操作手冊(cè)所述。
LB培養(yǎng)基:酵母粉5 g/L,胰蛋白胨10 g/L,NaCl 10 g/L (固體培養(yǎng)基添加2%瓊脂粉)。
TB培養(yǎng)基:酵母粉24 g/L,胰蛋白胨12 g/L,K2HPO412.54 g/L,KH2PO42.31 g/L。
挑取單菌落接種于50 mg/L卡那霉素或者100 mg/L的氨芐霉素的3 mL液體LB培養(yǎng)基中,37 ℃、220 r/min過(guò)夜培養(yǎng)。按1% (/) 將種子液接種于50 mL TB培養(yǎng)基中,37 ℃、220 r/min培養(yǎng)至600為0.6–0.8,添加終濃度為0.05 mmol/L的異丙基-β-D-硫代半乳糖苷(isopropyl-β-D- thiogalactoside,IPTG),分別以30 ℃誘導(dǎo)培養(yǎng)pET系列重組菌株10 h、以15 ℃誘導(dǎo)培養(yǎng)pCold系列載體22 h,誘導(dǎo)異構(gòu)酶的表達(dá)。
將上述發(fā)酵結(jié)束后的菌液于4 ℃、7 000 r/min條件下離心10 min,棄上清收集菌體,用20 mmol/L Tris-HCl (pH 7.4) 洗滌2次,稀釋菌體至600為8.0,冰水浴超聲破碎后(功率300 W,工作4 s,間歇6 s,10 min),4 ℃、12 000 r/min離心30 min,分別收集上清和沉淀。上清液即為所需粗酶液。
用25 mL溶液A (20 mmol/L Tris-HCl,pH 7.4) 平衡Ni-His Trap FF柱后上樣已過(guò)0.22 μm濾膜的粗酶液,分別用10%、30%、100%的溶液B (20 mmol/L Tris-HCl,500 mmol/L咪唑,pH 7.4) 進(jìn)行洗脫并收集相對(duì)應(yīng)的洗脫液。對(duì)得到的洗脫液進(jìn)行脫鹽處理,所用脫鹽緩沖液為20 mmol/L Tris-HCl (pH 7.4),脫鹽柱為G10。經(jīng)基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(Matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF-MS) 鑒定所得條帶為目的異構(gòu)酶條帶。
C5異構(gòu)酶酶活測(cè)定:采用與肝素硫酸轉(zhuǎn)移酶2-OST (2-O-硫酸轉(zhuǎn)移酶,2-O-sulfotransferase) 偶聯(lián)[23-26]測(cè)酶活方法。標(biāo)準(zhǔn)反應(yīng)條件為向1.5 mL的Tris-HCl (20 mmol/L,pH 7.4) 中添加50 mmol/L PNPS (對(duì)硝基苯硫酸鹽,para-nitrophenylsulfate),0.5 mmol/L PAP (3-磷酸腺苷-5-磷酰,3′-phosphoadenosine-5′-phospho),0.5 mg AST Ⅳ(芳香磺基轉(zhuǎn)移酶,aryl sulfotransferase Ⅳ),0.4 mg N-sulfoheparosan,0.3 mg硫酸轉(zhuǎn)移酶2-OST, 0.3 mg C5異構(gòu)酶(對(duì)照組為基于上述條件下添加等量失活的C5異構(gòu)酶酶液) 于37 ℃反應(yīng)2 h后,100 ℃水浴煮沸5 min終止反應(yīng)。10 000 r/min離心10 min去除沉淀,在400的吸光度測(cè)定對(duì)硝基苯酚(PNP) 的吸光值變化[27]。酶活單位定義為:在最適反應(yīng)條件下(37 ℃,pH 7.4),每小時(shí)生成1 μmol/L的PNP所需的酶量。
C5異構(gòu)酶的動(dòng)力學(xué)常數(shù)測(cè)定反應(yīng)液為1.5 mL Tris-HCl (20 mmol/L,pH 7.4),其中包括50 mmol/L PNPS,0.5 mmol/L PAP,0.5 mg AST IV,0.3 mg 2-OST,0.3 mg C5及1.6–4 700 mg/L等不同濃度的N-sulfoheparosan作為底物測(cè)定C5異構(gòu)酶的酶活,根據(jù)測(cè)定值進(jìn)行米氏常數(shù)擬合。
將C5異構(gòu)酶基因分別構(gòu)建在pET20b (+)、pET28a (+) 和pCold Ⅲ 3種表達(dá)載體中,考察不同載體對(duì)C5異構(gòu)酶表達(dá)差異性的影響。在液體培養(yǎng)基中接種重組菌pET20b-C5、pET28a-C5、pCold Ⅲ-C5及空載體作為對(duì)照菌,當(dāng)600達(dá)到0.6時(shí),加入IPTG誘導(dǎo)表達(dá),收集pET系列10 h后的菌體及pCold系列22 h后的菌體,破碎細(xì)胞后利用SDS-PAGE分析胞內(nèi)上清及沉淀。如圖1A所示,C5異構(gòu)酶在3種載體中均實(shí)現(xiàn)成功表達(dá),其中pCold Ⅲ載體的上清可溶部分表達(dá)量最高,酶活最高為 (1 873.61±5.42) U/L。這可能是因?yàn)樵诘蜏貤l件下(15 ℃),嗜冷型啟動(dòng)子的轉(zhuǎn)錄強(qiáng)度高于T7啟動(dòng)子[28],且低溫使得合成的C5異構(gòu)酶可以正確折疊,可溶表達(dá)部分增加。
圖1 不同載體對(duì)C5異構(gòu)酶表達(dá)的影響
以上3種載體均實(shí)現(xiàn)了C5異構(gòu)酶的活性表達(dá),其中以pCold Ⅲ載體表達(dá)的C5異構(gòu)酶胞內(nèi)可溶表達(dá)量最高。在此基礎(chǔ)上,進(jìn)一步研究了N端融合促溶標(biāo)簽MBP、SUMO、SET2對(duì)C5異構(gòu)酶活性表達(dá)的影響。如圖2所示,在N端融合SET2后C5異構(gòu)酶可溶性表達(dá)量最高,酶活也最高,達(dá)到 (2 409.25±6.43) U/L,是融合前的1.28倍。結(jié)果表明促溶標(biāo)簽SET2可有效地促進(jìn)異構(gòu)酶的可溶表達(dá)[29]。
根據(jù)已報(bào)道的酶晶體結(jié)構(gòu)分析,經(jīng)分子對(duì)接,選擇距離底物結(jié)合口袋5 ?范圍內(nèi)的氨基酸位點(diǎn),以pCold Ⅲ-SET2-C5為模板,對(duì)V153、D155、Q185、K397、G399、N478、D529、D545進(jìn)行飽和突變。獲得催化活性顯著提高的突變體V153R,胞內(nèi)上清酶液純化后比酶活達(dá)到 (145.14±2.33) U/mg。反應(yīng)動(dòng)力學(xué)常數(shù)顯示其m值由原來(lái)的(1.922±0.131) mmol/L降低至 (0.941±0.083) mmol/L,催化常數(shù)cat/m由(16.129±0.111) 增加至(44.633±0.547) L/(s·mol);突變體G399Em值降低至 (1.525±0.273) mmol/L,催化常數(shù)cat/m增加至 (22.951±0.146) L/(s·mol)、D545Ym值降低至 (1.366±0.196) mmol/L,催化常數(shù)cat/m增加至 (27.086±0.102) L/(s·mol),說(shuō)明突變體與底物的親和力增加。原因可能是由于底物帶有較強(qiáng)的負(fù)電荷,當(dāng)153位氨基酸由側(cè)鏈不帶電荷的纈氨酸變?yōu)閹в姓姾傻木彼釙r(shí),異構(gòu)酶底物結(jié)合口袋局部環(huán)境中的正電荷強(qiáng)度增加(如圖4A、4B所示),且突變后(圖4B) 相比突變前(圖4A),側(cè)鏈更長(zhǎng),距離底物更近,底物更容易進(jìn)入結(jié)合口袋;399位氨基酸突變前后如圖4C、4D所示,突變前399位甘氨酸(圖4C) 與底物只有一個(gè)氫鍵作用力,突變?yōu)楣劝彼?圖4D) 后相比突變前氫鍵作用力增加,但同時(shí)底物結(jié)合口袋負(fù)電荷強(qiáng)度也增加;545位氨基酸突變前后如圖4E、4F所示,突變前545位天冬氨酸(圖4E) 與底物沒有作用,突變?yōu)槔野彼岷?圖4F) 與底物增加了疏水作用力,同時(shí)突變后底物結(jié)合口袋局部負(fù)電荷強(qiáng)度變?nèi)?,因此以?個(gè)氨基酸位點(diǎn)可能發(fā)生多重作用力的疊加,導(dǎo)致催化活性呈現(xiàn)不同程度的提高?;谝陨辖Y(jié)果對(duì)153R、399E、545Y 3個(gè)單點(diǎn)突變體進(jìn)行了兩兩疊加突變,并未發(fā)現(xiàn)明顯效果(數(shù)據(jù)未展示)。
圖2 不同促溶標(biāo)簽對(duì)C5異構(gòu)酶表達(dá)的影響
圖3 肝素C5異構(gòu)酶純化及突變體酶活
表3 肝素異構(gòu)酶酶學(xué)性質(zhì)表
圖4 肝素C5異構(gòu)酶突變體結(jié)構(gòu)分析
C5異構(gòu)酶作為肝素酶法合成中的一個(gè)關(guān)鍵酶,催化葡萄糖醛酸異構(gòu)化為艾杜糖醛酸。本研究通過(guò)表達(dá)載體優(yōu)化、N端融合標(biāo)簽及蛋白質(zhì)理性改造成功地在大腸桿菌中實(shí)現(xiàn)了斑馬魚來(lái)源的肝素C5異構(gòu)酶的活性表達(dá)。研究表明3種載體pET28a、pET20b、pCold Ⅲ均實(shí)現(xiàn)了C5異構(gòu)酶的胞內(nèi)活性表達(dá),相比嗜冷啟動(dòng)型載體pCold Ⅲ表達(dá)的C5異構(gòu)酶活性最高。通過(guò)N端融合促溶標(biāo)簽SET2減少了無(wú)活性的包涵體的積累,進(jìn)一步提高了C5異構(gòu)酶的活性表達(dá)((2 409.25±6.43) U/L)。在此基礎(chǔ)上,為了獲得更高催化活性的C5異構(gòu)酶,我們對(duì)C5異構(gòu)酶的分子結(jié)構(gòu)進(jìn)行了理性改造,獲得了突變體V153R,其酶活與比酶活分別為 (5 804.32±5.63) U/L和 (145.14±2.33) U/mg,是野生型C5異構(gòu)酶的2.41倍和2.28倍。該研究為實(shí)現(xiàn)肝素的全酶法合成奠定了基礎(chǔ)。
[1] Feyerabend TB, Li JP, Lindahl U, et al. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells. Nat Chem Biol, 2006, 2(4): 195–196.
[2] Zhou ZX, Wang BB, Xu RR, et al. Optimized expression of heparin sulfotransferases and their application in sulfation of animal derived heparin. Chin J Biotech, 2018, 34(11): 1784–1793 (in Chinese).周正雄, 王兵兵, 胥睿睿, 等. 肝素硫酸轉(zhuǎn)移酶優(yōu)化表達(dá)及其在動(dòng)物源肝素硫酸化中的應(yīng)用. 生物工程學(xué)報(bào), 2018, 34(11): 1784–1793.
[3] Linhardt RJ, Dordick JS, Deangelis PL, et al. Enzymatic synthesis of glycosaminoglycan heparin. Semin Thromb Hemost, 2007, 33(5): 453–465.
[4] Middeldorp S. Heparin: from animal organ extract to designer drug. Thromb Res, 2008, 122(6): 753–762.
[5] Achour O, Bridiau N, Godhbani A, et al. Ultrasonic-assisted preparation of a low molecular weight heparin (LMWH) with anticoagulant activity. Carbohydr Polym, 2013, 97(2): 684–689.
[6] Schultz V, Suflita M, Liu XY, et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 Signaling through fibroblast growth factor receptor 1c. J Biol Chem, 2017, 292(6): 2495–2509.
[7] Cai C, Dickinson DM, Li LY, et al. Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org Lett, 2014, 16(8): 2240–2243.
[8] Xu YM, Cai C, Chandarajoti K, et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat Chem Biol, 2014, 10(4): 248–250.
[9] Zhang X, Wang FS, Sheng JZ. “Coding” and “Decoding”: hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis. Carbohydr Res, 2016, 428: 1–7.
[10] Hagner-McWhirter ?, Hannesson HH, Campbell P, et al. Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of theK5 capsular polysaccharide as substrates. Glycobiology, 2000, 10(2): 159–171.
[11] Li JP, Gong F, El Darwish K, et al. Characterization of the D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate. J Biol Chem, 2001, 276(23): 20069–20077.
[12] Sheng JZ, Xu YM, Dulaney SB, et al. Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem, 2012, 287(25): 20996–21002.
[13] Jacobsso I, Lindahl U, Jensen JW, et al. Biosynthesis of heparin. Substrate specificity of heparosan-sulfate D-glucuronosyl 5-epimerase. J Biol Chem, 1984, 259(2): 1056–1063.
[14] Chappell EP, Liu J. Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. Bioorg Med Chem, 2013, 21(16): 4786–4792.
[15] Wang ZY, Yang B, Zhang ZQ, et al. Control of the heparosan-deacetylation leads to an improved bioengineered heparin. Appl Microbiol Biotechnol, 2011, 91(1): 91–99.
[16] Jia J, Maccarana M, Zhang X, et al. Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem, 2009, 284(23): 15942–15950.
[17] Kuberan B, Lech MZ, Beeler DL, et al. Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol, 2003, 21(11): 1343–1346.
[18] Mu?oz E, Xu D, Avci F, et al. Enzymatic synthesis of heparin related polysaccharides on sensor chips: rapid screening of heparin-protein interactions. Biochem Biophys Res Commun, 2006, 339(2): 597–602.
[19] Crawford BE, Olson SK, Esko JD, et al. Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase. J Biol Chem, 2001, 276(24): 21538–21543.
[20] Grigorieva E, Eshchenko T, Rykova VI, et al. Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer, 2008, 122(5): 1172–1176.
[21] Raedts J, Lundgren M, Kengen SWM, et al. A novel bacterial enzyme with D-glucuronyl C5-epimerase activity. J Biol Chem, 2013, 288(34): 24332–24339.
[22] Qin Y, Ke JY, Gu X, et al. Structural and functional study of D-glucuronyl C5-epimerase. J Biol Chem, 2015, 290(8): 4620–4630.
[23] Li K, Bethea HN, Liu J. Using engineered 2--sulfotransferase to determine the activity of heparan sulfate C5-epimerase and its mutants. J Biol Chem, 2010, 285(15): 11106–11113.
[24] Zhang JH, Suflita M, Li GY, et al. High cell density cultivation of recombinantstrains expressing 2--sulfotransferase and C5-epimerase for the production of bioengineered heparin. Appl Biochem Biotechnol, 2015, 175(6): 2986–2995.
[25] Pre?choux A, Halimi C, Simorre JP, et al. C5-epimerase and 2--sulfotransferase associate in vitro to generate contiguous epimerized and 2--sulfated heparan sulfate domains. ACS Chem Biol, 2015, 10(4): 1064–1071.
[26] Sterner E, Li LY, Paul P, et al. Assays for determining heparan sulfate and heparin-sulfotransferase activity and specificity. Anal Bioanal Chem, 2014, 406(2): 525–536.
[27] Paul P, Suwan J, Liu J, et al. Recent advances in sulfotransferase enzyme activity assays. Anal Bioanal Chem, 2012, 403(6): 1491–1500.
[28] Qing GL, Ma LC, Khorchid A, et al. Cold-shock induced high-yield protein production in. Nat Biotechnol, 2004, 22(7): 877–882.
[29] Klermund L, Riederer A, Groher A, et al. High-level soluble expression of a bacterial-acyl-D-glucosamine 2-epimerase in recombinant. Protein Expr Purif, 2015, 111: 36–41.
Expression optimization and molecular modification of heparin C5 epimerase
Bingbing Wang1,2, Zhengxiong Zhou1,2, Xuerong Jin1,2, Jianghua Li1,2, Zhongping Shi1,2, and Zhen Kang1,2
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China 2 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education,School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
Heparin and heparan sulfate are a class of glycosaminoglycans for clinical anticoagulation. Heparosan N-sulfate-glucuronate 5-epimerase (C5, EC 5.1.3.17) is a critical modifying enzyme in the synthesis of heparin and heparan sulfate, and catalyzes the inversion of carboxyl group at position 5 on D-glucuronic acid (D-GlcA) of N-sulfoheparosan to form L-iduronic acid (L-IdoA). In this study, the heparin C5 epimerase genefrom zebrafish was expressed and molecularly modified in. After comparing three expression vectors of pET-20b (+), pET-28a (+) and pCold Ⅲ, C5 activity reached the highest ((1 873.61±5.42) U/L) with the vector pCold Ⅲ. Then we fused the solution-promoting label SET2 at the N-terminal for increasing the soluble expression of C5. As a result, the soluble protein expression was increased by 50% compared with the control, and the enzyme activity reached (2 409±6.43) U/L. Based on this, site-directed mutations near the substrate binding pocket were performed through rational design, the optimal mutant (V153R) enzyme activity and specific enzyme activity were (5 804±5.63) U/L and (145.1±2.33) U/mg, respectively 2.41-fold and 2.28-fold of the original enzyme. Modification and expression optimization of heparin C5 epimerase has laid the foundation for heparin enzymatic catalytic biosynthesis.
heparin, glucuronic acid-C5-epimerase, heterologous expression, rational design, substrate binding pocket
10.13345/j.cjb.190516
November 18, 2019;
January 21, 2020
Supported by:National Natural Science Foundation of China (No. 31670092), National Key R&D Program of China (No. 2018YFA0901401), Fundamental Research Funds for the Central Universities (No. JUSRP51707A), National First-class Discipline Program of Light Industry Technology and Engineering (No. LITE2018-16).
Zhen Kang. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: zkang@jiangnan.edu.cn
Zhongping Shi. Tel: +86-510-85329031; Fax: +86-510-85918309; E-mail: zpshi@jiangnan.edu.cn
國(guó)家自然科學(xué)基金(No. 31670092),國(guó)家重點(diǎn)研發(fā)計(jì)劃 (No. 2018YFA0901401),江南大學(xué)自主科研計(jì)劃重點(diǎn)項(xiàng)目(No. JUSRP51707A),國(guó)家輕工技術(shù)與工程一流學(xué)科自主課題(No. LITE2018-16) 資助。
2020-05-08
https://kns.cnki.net/kcms/detail/11.1998.Q.20200508.1434.004.html
王兵兵, 周正雄, 金學(xué)榮, 等. 肝素C5異構(gòu)酶的表達(dá)優(yōu)化及分子改造. 生物工程學(xué)報(bào), 2020, 36(7): 1450–1458.
Wang BB, Zhou ZX, Jin XR, et al. Expression optimization and molecular modification of heparin C5 epimerase. Chin J Biotech, 2020, 36(7): 1450–1458.
(本文責(zé)編 郝麗芳)