孔慶山,林自然,施建剛
(1. 山東大學(xué)管理學(xué)院,山東濟(jì)南250100;2. 同濟(jì)大學(xué)經(jīng)濟(jì)與管理學(xué)院,上海200092)
與批量化制造的工業(yè)產(chǎn)品不同,每一個(gè)房地產(chǎn)項(xiàng)目都是獨(dú)特的,前期策劃直接決定著項(xiàng)目的成敗,而產(chǎn)品線設(shè)計(jì)是其中公認(rèn)的難題。房地產(chǎn)作為不動(dòng)產(chǎn)有其獨(dú)特的區(qū)位特征,房地產(chǎn)項(xiàng)目與所在城市區(qū)域環(huán)境關(guān)系緊密;房地產(chǎn)作為耐用品有其獨(dú)特的產(chǎn)品特征,房地產(chǎn)產(chǎn)品兼具投資品與消費(fèi)品的雙重屬性;房地產(chǎn)作為建造品有其獨(dú)特的開發(fā)過程,房地產(chǎn)開發(fā)是一個(gè)漸進(jìn)明晰不可逆的過程,前期策劃是決定項(xiàng)目成敗的關(guān)鍵。在房地產(chǎn)開發(fā)全過程中,能最大限度地創(chuàng)造經(jīng)濟(jì)效益的是項(xiàng)目選擇和方案設(shè)計(jì)兩個(gè)階段,項(xiàng)目選擇是從全局宏觀上決定項(xiàng)目的定位,而方案設(shè)計(jì)則從微觀上進(jìn)一步創(chuàng)造和提高項(xiàng)目的開發(fā)價(jià)值[1]。房地產(chǎn)項(xiàng)目策劃是一項(xiàng)復(fù)雜的系統(tǒng)工程,既要合理安排用地,又要滿足市場需求;既要保證一定的經(jīng)濟(jì)效益,又要符合規(guī)劃要求。土地是房地產(chǎn)開發(fā)的基礎(chǔ),顧客是房地產(chǎn)開發(fā)的基點(diǎn),房地產(chǎn)項(xiàng)目需結(jié)合土地特征開發(fā)滿足目標(biāo)顧客需求的產(chǎn)品[2]。由于房地產(chǎn)項(xiàng)目的獨(dú)特性與復(fù)雜性,決定了其產(chǎn)品線設(shè)計(jì)與工業(yè)化產(chǎn)品存在巨大差異。
房地產(chǎn)項(xiàng)目通過產(chǎn)品線設(shè)計(jì)可以實(shí)現(xiàn)系列化、標(biāo)準(zhǔn)化開發(fā),從而縮短項(xiàng)目開發(fā)周期,減少項(xiàng)目試錯(cuò)成本,提高項(xiàng)目開發(fā)質(zhì)量,降低項(xiàng)目開發(fā)風(fēng)險(xiǎn),有效分割市場顧客群體,獲得更大競爭收益。正是由于房地產(chǎn)項(xiàng)目產(chǎn)品線開發(fā)的諸多優(yōu)勢,有97%的百強(qiáng)房企依靠成功項(xiàng)目的積累逐漸推行產(chǎn)品線開發(fā)[3]。在房地產(chǎn)項(xiàng)目策劃中,如何在政府規(guī)制下實(shí)現(xiàn)土地-顧客-產(chǎn)品的正確匹配是房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的關(guān)鍵,如何在既定的時(shí)間-成本-資金約束下決策產(chǎn)品配比、定價(jià)以及推盤策略,以滿足項(xiàng)目開發(fā)約束是房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的難題。房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)需解決項(xiàng)目的獨(dú)特性與產(chǎn)品的標(biāo)準(zhǔn)化之間的矛盾,即房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)需解決產(chǎn)品配比這一關(guān)鍵問題。對于不同業(yè)態(tài)配比、品質(zhì)配比或戶型配比,還需決策不同產(chǎn)品定價(jià)及相應(yīng)的推盤策略。尤其在當(dāng)前我國房地產(chǎn)調(diào)控背景下,政府對房地產(chǎn)項(xiàng)目實(shí)施嚴(yán)格價(jià)格管制,將改變房地產(chǎn)項(xiàng)目策劃的傳統(tǒng)邏輯。如何在嚴(yán)格的政府規(guī)制下倒向優(yōu)化房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)也是房地產(chǎn)開發(fā)企業(yè)直面的現(xiàn)實(shí)難題。
自 Dean[4]提出產(chǎn)品線定價(jià)問題開始,近 70 年來,產(chǎn)品線理論研究主要針對標(biāo)準(zhǔn)化的工業(yè)產(chǎn)品,相關(guān)學(xué)者圍繞產(chǎn)品線質(zhì)量與定價(jià)[5-8]、產(chǎn)品線擴(kuò)張與壓縮[9-13]、產(chǎn)品線導(dǎo)入時(shí)序[14-18]、產(chǎn)品線通用部件[19-24]等問題展開研究,取得了豐碩的研究成果。然而,這些理論研究沒有考慮項(xiàng)目的獨(dú)特性與復(fù)雜性,因此無法支撐房地產(chǎn)項(xiàng)目決策。本文將探索房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的理論模型,研究在政府的土地規(guī)制和價(jià)格規(guī)制以及項(xiàng)目的時(shí)間-成本-資金約束下的產(chǎn)品線設(shè)計(jì)模型方法,解決房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)中的產(chǎn)品配比、定價(jià)以及推盤策略問題,以期指導(dǎo)房地產(chǎn)策劃實(shí)踐,豐富產(chǎn)品線理論研究成果。
假設(shè)在房地產(chǎn)項(xiàng)目中存在m種備選產(chǎn)品,分n期開發(fā)銷售,其中第i種產(chǎn)品在第j期的單位銷售價(jià)格和銷售面積分別為pij和sij。已知房地產(chǎn)項(xiàng)目規(guī)劃用地面積為S并給定容積率r和建筑密度d,可獲知政府限價(jià)為PGi,周邊類比項(xiàng)目產(chǎn)品最低銷售價(jià)格Pli和最高銷售價(jià)格Pui;設(shè)定項(xiàng)目總時(shí)間約束為T、項(xiàng)目總成本約束為C、項(xiàng)目總貨值約束為V。
房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)需立足于地塊狀況,根據(jù)政府規(guī)制和市場狀況決策不同產(chǎn)品的配比與定價(jià),以及分期開發(fā)銷售策略,在滿足項(xiàng)目開發(fā)約束的同時(shí)保證產(chǎn)品市場競爭力以實(shí)現(xiàn)項(xiàng)目利潤最大化。因此,房地產(chǎn)項(xiàng)目的目標(biāo)函數(shù)包括項(xiàng)目利潤目標(biāo)z1和價(jià)格目標(biāo)z2兩部分,需要決策每種產(chǎn)品在每一期的銷售價(jià)格pij和銷售面積sij。
其中,項(xiàng)目利潤目標(biāo)函數(shù)z1為產(chǎn)品銷售收入減去土地購置成本和建造成本;CL為項(xiàng)目的土地購置成本;ci為第i種產(chǎn)品的單位建造成本,均為已知條件。產(chǎn)品價(jià)格目標(biāo)z2中使用產(chǎn)品價(jià)格與政府限價(jià)比值的最小化來保證產(chǎn)品有足夠的市場競爭力。通過項(xiàng)目利潤目標(biāo)和產(chǎn)品價(jià)格目標(biāo)之間的相互權(quán)衡,可以保證房地產(chǎn)項(xiàng)目既不會(huì)只通過提高產(chǎn)品價(jià)格來實(shí)現(xiàn)項(xiàng)目利潤最大化,也不會(huì)只通過降低價(jià)格來實(shí)現(xiàn)產(chǎn)品市場競爭力。
房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)模型中約束條件包括政府規(guī)制和項(xiàng)目約束兩部分,政府規(guī)制包括容積率約束、建筑密度約束和政府限價(jià)約束。其中,容積率約束為總建筑面積與總用地面積的比值,;建筑密度約束為建筑總占地面積與總用地面積的比值,通常不同產(chǎn)品的建筑高度都是給定的,為便于計(jì)算,使用建筑層數(shù)fi來代表建筑高度;政府限價(jià)給定了pij的上界,同時(shí),使用類比項(xiàng)目產(chǎn)品的最高售價(jià)和最低售價(jià)的價(jià)格區(qū)間約束來確保購房者有足夠的支付意愿購買產(chǎn)品,同時(shí)也可以保證產(chǎn)品的市場競爭力,最終價(jià)格約束為項(xiàng)目約束包括時(shí)間約束T、成本約束C和資金約束V三部分。在時(shí)間約束中,總建筑面積與施工速度的比值要小于設(shè)定的總時(shí)間約束,在成本約束中,每種產(chǎn)品的建造面積與單位建造成本的乘積和要小于設(shè)定的總成本約束在資金約束中,每種產(chǎn)品的銷售價(jià)格與銷售面積的乘積和要滿足設(shè)定的總貨值約束和分期貨值約束
房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)模型包含項(xiàng)目利潤目標(biāo)函數(shù)和產(chǎn)品價(jià)格目標(biāo)函數(shù),容積率約束、建造密度約束和政府限價(jià)約束,項(xiàng)目的時(shí)間約束、成本約束和資金約束,最終模型構(gòu)建如下:
Kohli 等[25]已證明產(chǎn)品線設(shè)計(jì)為 NP-hard 問題,通常采用啟發(fā)式算法或非確定性算法進(jìn)行求解分析得到近似最優(yōu)解。由于可以模擬自然進(jìn)化過程搜索最優(yōu)解,遺傳算法在產(chǎn)品線設(shè)計(jì)中逐漸得到關(guān)注[26-27]。房地產(chǎn)項(xiàng)目的產(chǎn)品線設(shè)計(jì)是一個(gè)復(fù)雜的多目標(biāo)規(guī)劃問題,本文首先使用理想點(diǎn)法找到各個(gè)單目標(biāo)規(guī)劃問題較優(yōu)的下界,分別在不考慮z1的情況下求解出z2在約束條件下的最優(yōu)值和不考慮z2的情況下求解出z1在約束條件下的最優(yōu)值然后,將和分別作為兩個(gè)單目標(biāo)規(guī)劃模型的下界,利用比值對目標(biāo)函數(shù)量綱一化來消除計(jì)量單位影響,避免因數(shù)值量級(jí)差距過大帶來的影響;最后,根據(jù)決策者對項(xiàng)目利潤和產(chǎn)品價(jià)格之間的權(quán)衡得出目標(biāo)權(quán)重λ1和λ2,使用平方和加權(quán)法構(gòu)造評(píng)價(jià)函數(shù)轉(zhuǎn)化為單目標(biāo)規(guī)劃模型minz3,利用MATLAB遺傳算法工具箱多次求解得到近似最優(yōu)解。
算例選自第九屆全國大學(xué)生房地產(chǎn)策劃大賽總決賽賽題,項(xiàng)目地塊位于福州倉山區(qū),用地性質(zhì)為居住用地,用地面積102 000㎡,建筑面積150 000㎡,建筑密度30%,綠地率41.53%,該地塊掛牌交易成交價(jià)為32.59 億元。項(xiàng)目指標(biāo)和測算數(shù)據(jù)如表1 所示。整體項(xiàng)目設(shè)置了總貨值60億元的銷售目標(biāo),第一年需完成30億元的分期貨值目標(biāo),項(xiàng)目時(shí)間要求3 個(gè)月開工,6 個(gè)月開盤,9 個(gè)月封頂,1 年資金流回正。本項(xiàng)目擬分3 期開發(fā)銷售,產(chǎn)品銷售價(jià)格逐期上漲,根據(jù)已知條件構(gòu)建該房地產(chǎn)項(xiàng)目的產(chǎn)品線設(shè)計(jì)模型如下:
表1 項(xiàng)目指標(biāo)測算數(shù)據(jù)Tab.1 The measure data of the project index
首先,在不考慮z1的情況下求解z2;然后,在不考慮z2的情況下求解z1。設(shè)定初始種群規(guī)模為200,交叉概率為0.8,精英保留率為5%,使用輪盤賭準(zhǔn)則進(jìn)行選擇。使用MATLAB 遺傳算法工具箱運(yùn)行求解5 次的計(jì)算結(jié)果如表2 所示,比對得出2 880 173 471元=5.641604元。
表2 單目標(biāo)規(guī)劃模型求解結(jié)果Tab.2 The solution of the single-objective planning
使用MATLAB遺傳算法工具箱求解該模型時(shí),設(shè)定初始種群規(guī)模為200,交叉概率為0.8,精英保留率為5%,使用輪盤賭準(zhǔn)則進(jìn)行選擇,結(jié)果如圖1所示。運(yùn)行結(jié)果表明,在第8代收斂到近似最優(yōu)解。運(yùn)行5次的計(jì)算結(jié)果如表3所示。對比得出第2種方案為最優(yōu)解,此時(shí)=0.000 084,房地產(chǎn)項(xiàng)目的整體利潤達(dá)到z2=2 855 102 115元。房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)中的產(chǎn)品配比為高層住宅產(chǎn)品共開發(fā)33 734 ㎡和低層住宅產(chǎn)品共開發(fā)116 266 ㎡。在第一期,以均價(jià)27 284元·m-2開發(fā)銷售高層住宅產(chǎn)品19 433 ㎡,以均價(jià)49 344元·m-2開發(fā)銷售低層住宅產(chǎn)品81 057 ㎡;在第二期,以均價(jià)27 350元·m-2開發(fā)銷售高層住宅產(chǎn)品11 284 ㎡,以均價(jià)49 346元·m-2開發(fā)銷售低層住宅產(chǎn)品20 655 ㎡;在第三期,以均價(jià)27 818元·m-2開發(fā)銷售高層住宅產(chǎn)品3 017 ㎡,以均價(jià)49 819元·m-2開發(fā)銷售低層住宅產(chǎn)品14 554 ㎡。該方案既可以滿足政府規(guī)制約束,也可以實(shí)現(xiàn)項(xiàng)目開發(fā)目標(biāo)。
圖1 遺傳算法運(yùn)行結(jié)果Fig.1 Running results of genetic algorithm
遺傳算法常被用于求解類似復(fù)雜問題的滿意解,相對于粒子群算法而言,遺傳算法經(jīng)過交叉、變異、精英保留等操作,全局搜索能力較強(qiáng),能夠盡快跳出局部最優(yōu)而搜索全局最優(yōu),因此使用遺傳算法來求解本模型是比較適當(dāng)?shù)?,這一點(diǎn)在具有普遍代表性的算例中得到驗(yàn)證。在算例中,遺傳算法收斂速度快,迭代次數(shù)少,基本在第8 代時(shí)已經(jīng)收斂,經(jīng)過多次計(jì)算得到的最優(yōu)值和次優(yōu)值之間差距極小,收斂精度較高。因而使用遺傳算法來求解模型的近似最優(yōu)解并不影響模型的實(shí)踐應(yīng)用和有效性。
房地產(chǎn)項(xiàng)目策劃和開發(fā)充滿著不確定性,為了便于計(jì)算求解,本文預(yù)先擬定房地產(chǎn)項(xiàng)目開發(fā)商對盈利目標(biāo)和價(jià)格目標(biāo)的重視程度分別為λ1=0.7 和λ2=0.3。為了分析該參數(shù)變動(dòng)對最終結(jié)果的影響,首先取λ1=0和λ2=1.0,之后使參數(shù)λ1和λ2以步長0.1分別遞增和遞減,隨著參數(shù)的變動(dòng)最優(yōu)值的變化如表4 所示。通過對最終結(jié)果的分析可以看出,開發(fā)商對盈利目標(biāo)和價(jià)格目標(biāo)的重視程度對最終結(jié)果影響顯著,因此,在實(shí)際房地產(chǎn)項(xiàng)目策劃中需要仔細(xì)論證房地產(chǎn)項(xiàng)目開發(fā)商對盈利目標(biāo)和價(jià)格目標(biāo)的重視程度。
表3 房地產(chǎn)項(xiàng)目最優(yōu)值計(jì)算結(jié)果Tab.3 Calculation results of optimal value of real estate project
表4 房地產(chǎn)開發(fā)商目標(biāo)偏好下的最優(yōu)值Tab.4 The optimal values under the preference of real estate developer’s goal
房地產(chǎn)項(xiàng)目策劃既是一門科學(xué),也是一門藝術(shù)。房地產(chǎn)項(xiàng)目策劃是一項(xiàng)復(fù)雜的系統(tǒng)工程,既要合理安排用地,又要滿足市場需求;既要保證一定的經(jīng)濟(jì)效益,又要符合規(guī)劃要求。房地產(chǎn)項(xiàng)目的前期策劃是決定項(xiàng)目成敗的關(guān)鍵,但目前缺乏有效的模型方法支撐科學(xué)決策。如何在政府規(guī)制下實(shí)現(xiàn)土地-顧客-產(chǎn)品的正確匹配是房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的關(guān)鍵;如何在既定的時(shí)間-成本-資金約束下決策產(chǎn)品配比、定價(jià)以及推盤策略,以滿足項(xiàng)目開發(fā)約束,是房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的難題。由于房地產(chǎn)項(xiàng)目的獨(dú)特性與復(fù)雜性,決定了其產(chǎn)品規(guī)劃設(shè)計(jì)與一般工業(yè)產(chǎn)品存在巨大差異,而已有的產(chǎn)品線模型方法難以支撐房地產(chǎn)項(xiàng)目決策,且傳統(tǒng)按照經(jīng)驗(yàn)人工強(qiáng)排的方法難以支撐科學(xué)決策。本文在政府規(guī)制與項(xiàng)目約束下構(gòu)建了房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的多目標(biāo)規(guī)劃模型,模型綜合考慮了房地產(chǎn)項(xiàng)目的利潤和價(jià)格競爭力目標(biāo),通過使用目標(biāo)偏好系數(shù)來刻畫不同偏好對最終結(jié)果的影響,并針對目標(biāo)偏好系數(shù)的變化進(jìn)行敏感性分析,為模型方法的使用提供了多種選擇。模型約束條件中既包含容積率約束、建筑密度約束和政府限價(jià)約束,又包括時(shí)間約束、成本約束和資金約束,同時(shí)考慮了競品價(jià)格的影響,以保證項(xiàng)目產(chǎn)品的競爭力。本文最終借助遺傳算法計(jì)算得出模型的近似最優(yōu)解,并通過一個(gè)具有代表性的房地產(chǎn)項(xiàng)目測試了該模型方法的有效性。
本文研究豐富了產(chǎn)品線的理論成果,將產(chǎn)品線研究領(lǐng)域由專注于工業(yè)化產(chǎn)品拓寬至項(xiàng)目化產(chǎn)品,考慮地產(chǎn)項(xiàng)目的獨(dú)特性與復(fù)雜性,探索房地產(chǎn)項(xiàng)目產(chǎn)品線設(shè)計(jì)的理論模型與實(shí)際應(yīng)用。但是本文研究仍有不足,由于模型的復(fù)雜性沒能得出解析解,無法深入分析項(xiàng)目化產(chǎn)品線內(nèi)部的交互關(guān)系及運(yùn)作機(jī)理,這些不足有待深入研究。