• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?ySy

    2018-01-10 01:22:35YANHuiJunLIBiaoJIANGNingXIADingGuo
    物理化學(xué)學(xué)報 2017年9期
    關(guān)鍵詞:第一性物理化學(xué)熱穩(wěn)定性

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo

    ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?yS

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo*

    ()

    Ni-rich layered oxides are the preferred cathode materials for high-energy-density lithium-ion batteries currently used in electric vehicles. In this paper, we present a systematic first-principles evaluation of the deintercalation process in the Li1?NiO2?yS. The partial density of states (PDOS) characters of the electrons near the Fermi level, redox behaviors, and thermal stability have been investigated within the GGA +scheme. The results show that the introduction of sulfur alleviates the lattice distortion during charging, suppresses nickel migration, and enhances the stability of oxygen according to the contribution of sulfur anion redox to the charge compensation for the overcharged Li1?NiO2?S. This study provides a new insight on improving the stability of Ni-rich cathode materials by tuning of the electrochemical behaviors based on sulfur anion redox.

    Anion doping; Sulfur redox; Structural stability; Thermal stability; Transition metal migration

    1 Introduction

    Ni-rich layered oxides with high energy density and low cost are the preferred cathode material for the high energy density lithium-ion batteries used in electric vehicle1,2. For instance, lithium-ion batteries with LiNi0.8Co0.15Al0.05O2have been successfully applied in Tesla. However, Ni-rich layered cathodes suffer from the serious safety concern, related to the structural instability and oxygen release in their overcharged states3,4. Numerous works were done to improve the electrochemical performance of the layered Ni-rich cathodes. Cation doping is a good strategy to enhance the safety of layered Ni-rich oxides and have been extensively verified by experiments5?7. Most cation doping improves structural stability and safety of Ni-rich cathodes through the increased bonding strength of TM―O bond and the decreased oxygen evolution8. Anion doping also attracts researchers' attention9,10. The cycling stability of layered Ni-rich oxides was enhanced by fluorine substitution, which protected the electrode from HF-acid attack11. Park.12suggested that sulfur doping in LiNiO2enhanced the capacity retention by improving the structural stability. Kongstudied the conflicting roles of anion doping (F, Cl and S) in LiNiO2by the first-principles calculations13. However, these works were done by assuming that the electrochemical behaviors of this conventional layered oxide are mainly from the contribution of cation redox during charge-discharge process. By contrast, the abnormally high capacities delivered by lithium-rich oxide cathodes are a result of contributions from both cationic and anionic redox processes14?16. This phenomenon has invoked us to design high capacity cathode materials with help of anionic redox. Previous research based on Li2FeS2indicated that anion sulfur participated in redox reaction in charge and discharge process17. Sulfur redox may present higher reversibility than oxygen redox since S22?is commonly adopted in some familiar sulfides, such as FeS2and CoS2. On the other hand, Li1?NiO2, the basis system of a series of Ni-rich layered oxides, undergoes phase transitions accompanied by oxygen evolution3,4. And the extent of oxygen release increases with more lithium extracted18. The irreversible phase transitions with oxygen loss are responsible for the capacity fading and safety concerns of batteries3.

    Therefore, in present work, we investigated the delithiation process of LiNiO2doped by sulfur anions. We first found that anion sulfur participated the redox process prior to oxygen during the delithiation process. The introduction of sulfur favors the structural and thermal stability of delithiated Li1?NiO2?Sby alleviating the lattice distortion, suppressing nickel migration and mitigating oxygen release.

    2 Computational details

    All the structures are optimized using the ViennaSimulation Package (VASP)19with a 520 eV energy cutoff. The generalized gradient approximation Perdew-Burke- Ernzerhof (GGA-PBE) exchange and correlation functional are selected for all the calculations20. We use the GGA +method to localize the Ni-3electrons21. The value of Hubbard U is set to be 6.3 eV for Ni-3electrons according to previous work22,23. Besides, the spin polarization is also considered. The structure optimization is carried out with convergence of 10?4eV for the total energy and 0.5 eV·nm?1for the forces acting on each atom. A supercell that contains 108 atoms is used and the 2 × 2 × 1-points in the Brillouin zone are applied24.

    The LiNiO2supercell contains 27 Ni atoms, 27 Li atoms and 54 O atoms. As the anion sulfur doping was very dilute in previous reported experiments12,13, the sulfur redox maybe difficult to be observed. In order to explore the anion sulfur redox in LiNiO2-yS, a larger doping concentration is applied in our calculated model, as exemplified by LiNiO1.89S0.11(Li27Ni27O51S3).

    3 Results and discussion

    3.1 Rational choice of the doping concentration

    In order to rationalized the sulfur doping concentration for DFT prediction, LiNiO2?ySsystems with= 0.11, 0.22, 0.33 and 0.55 were calculated and discussed. For all the simulations, sulfur dopants are uniformly distributed in the systems. The lowest energy structures of the systems with different sulfur concentration are shown in Fig.1. It is shown that LiNiO2?ySwith= 0.11, 0.22, and 0.33 all present well organized layered structure as LiNiO2(Fig.1(a?c)). However, the structure with= 0.55 (Fig.1d) is distorted due to the formation of S―S bonding, which denotes a unstable structure with large sulfur doping concentration that can exist only with S―S bonds forming to lower the total energy. Therefore, the doping concentration larger than 0.55 will not be considered any more in the following. Table 1 compares the theoretical capacity, the average delithiated voltage and the reaction enthalpy of the LiNiO2?ySsystems. The reaction enthalpy is calculated according to the reaction:

    LiNiO2 + y/8 S8→ LiNiO2?ySy + y/2 O2(1)

    (a)= 0.11, (b)= 0.22, (c)= 0.33, (d)= 0.55. The structure of LiNiO1.45S0.55is distorted due to the formation of S―S bonding.

    Table 1 Comparison of the theoretical capacity, the average delithiated voltage and the reaction enthalpy in LiNiO2?ySy.

    3.2 Deintercalation of Li1?xNiO1.89S0.11

    Firstly, we determined the delithiation sequence of different lithium sites in the configuration, as depicted in Fig.2(a). All of the lithium ions can be classified as three types: closest to the sulfur ions, next-closest to the sulfur ions, and others far away from sulfur ions. We found that the lithium ions closest to the sulfur ions are extracted prior to other lithium ions in LiNiO1.89S0.11as indicated from the calculated energy with single lithium vacancy created (see Fig.2(b)). After that, the structural stability of delithiated Li1?xNiO1.89S0.11is discussed from the perspective of thermodynamics. The formation energy of Li1-xNiO1.89S0.11is defined as:

    Fig.2 (a) Nine Li sites in Li layer of Li27Ni27O51S3 (LiNiO1.89S0.11), (b) the energy of system with one Li vacancy site.

    The lithium atoms closest to the sulfur atom are labeled sites 1–3, the lithium atoms next-closest to the sulfur atom are labeled sites 4–6, and other lithium atoms far away from sulfur atom are labeled sites 7–9. The single Li vacancy was created by extracting the corresponding Li atom according to Fig.2(a).

    ΔEf(x) = E(Li1?xNiO1.89S0.11) ? xE(NiO1.89S0.11) ?(1?x) E(LiNiO1.89S0.11)(2)

    in which(Li1?xNiO1.89S0.11),(LiNiO1.89S0.11) and(NiO1.89S0.11) are the energies of systems withlithium delithiated, zero lithium delithiated and all lithium delithiated. Various Li-vacancy configurations in Li1?xNiO1.89S0.11were considered, and the evolution of corresponding formation energies was plotted in Fig.3(a). The negative formation energies indicate that the delithiated structure Li1?xNiO1.89S0.11is stable, rather than phase separation with a portion of LiNiO1.89S0.11and a portion of NiO1.89S0.11coexisting. The lowest formation energies points with different lithium contents are connected, forming the convex hull. The points on the convex hull represent the most stable phases in different lithium concentrations. For a comparison, the formation energies and the convex hull in Li1?xNiO2are also plotted in Fig.3(a). Interestingly, the formation energies of the convex hull in Li1?xNiO1.89S0.11are lower than that in Li1?xNiO2. It means that anion sulfur doping will enhance the structural stability during the delithiation process.

    The charging voltages as a function of Li concentration in Li1?xNiO1.89S0.11are calculated using the following equation:

    Fig.3 (a) Formation energies with different Li concentrations, (b) the calculated charging curves.

    V = {E(LiaNiO1.89S0.11) ? E(LibNiO1.89S0.11) ?(b ? a)E(Li)}/(b ? a)e(3)

    (a) LiNiO2, (b) LiNiO1.89S0.11.

    3.3 Redox behavior of Li1-xNiO1.89S0.11

    To further investigate sulfur redox behavior, the evolution of the average projected density of states (PDOS) during the charge process in Li1?xNiO2(Fig.S2 in Supporting Information) and Li1?xNiO1.89S0.11(Fig.S3 in Supporting Information) were calculated. In order to provide quantitative analysis, the integral of the electron density between 0 and 4 eV in conduction band was applied to study the contribution of each atom to the redox (see Fig.5). In delithiation process of Li1?xNiO2, the electron holes of nickel in conduction band increase withincreases. The electron holes of oxygen in conduction band also increases, which is attributed to the strong interaction between nickel and oxygen. Previous works also reported that the charge compensation during deintercalation was located on oxygen in LiNiO232. For Li1?xNiO1.89S0.11, the evolution of electron density of states in conduction band on nickel and oxygen are similar to Li1?xNiO2, while the electron holes on sulfur increase from 0.60 to 1.00 in initial charging process when< 0.4, and then it basically remains unchanged in the following charging process. This suggested that sulfur ions provide electrons for charge compensation during delithiation process. Moreover, we plotted the charge density differences between the LiNiO1.89S0.11and Li1?xNiO1.89S0.11(Fig.6) to determine whether sulfur is involved in redox. The charge density difference Δ1and Δ2are determined by the following definition:

    Fig.5 Evolution of integral conduction band electrons on each atom during charging process of Li1?xNiO2 and Li1?xNiO1.89S0.11.

    Δρ1 = ρ(LiNiO1.89S0.11) ? ρ(Li0.67NiO1.89S0.11)(4) Δρ2 = ρ(Li0.67NiO1.89S0.11) ? ρ(NiO1.89S0.11)(5)

    In 0 << 0.33, sulfur ions provide electrons to compensate the charge during lithium extraction (Fig.6(a)), but are not involved in redox furthermore in the following process (Fig.6(b)). This is in agreement with the integral DOS analysis. Sulfur redox will result in less electron holes on oxygen at some extent, which will enhance the stability of the overcharged Li1?xNiO1.89S0.11, since we believe sulfur redox is more stable than oxygen redox due to the existence of polysulfides.

    3.4 Structural stability and safety

    Li1?xNiO2, especially in high delithiated phase, exhibits a poor structural and thermal stability. The structural and thermal instability are related to particle crack and phase transition. The particle crack is attributed to the lattice distortion during cycling33. The phase transition is resulted from Ni migration at elevated temperature, accompanied with oxygen gas release4. Therefore, the effect of sulfur doping on structural stability was examined from the view of the lattice distortion and thermodynamic phase transition.

    It is shown previously that the structure of LiNiO1.89S0.11remains layered after sulfur substitution (see Fig.1). Sulfur doping in LiNiO2leads to the lattice parameter expansion due to the larger size of sulfur ions (see Table 2). Moreover, the/ratio, which is the characteristic of layered structure, increases after doping, and this is favorable for the structural reversibility during charging and discharging processes34. The evolution of the lattice parameters during charging in Li1?NiO1.89S0.11is plotted in Fig.7. For Li1?NiO2, lattice parametersandgradually decrease, whileincreases. But there is a turning point for parameterin= 0.8, indicating a shrinkage of the lattice alongdirection occurs at the end of charging process, which agrees well with experiments30. The latticeparameter increases with the deintercalationincreases due to the increscent repulsion between NiO6layers. The lattice shrinkage alongdirection will introduce inner strain in the structure, leading to particle micro cracks finally. After sulfur doping, the effect on the evolution ofandlattice parameters is small, whilelattice parameter is prominent. Firstly, the increasing amplitude ofis smaller than that in undoped system due to larger latticeparameter caused by sulfur substitution will reduce the repulsion between NiO6layers, and this will decrease the introduced inner strain during charging of Li1?NiO1.89S0.11. Furthermore, theparameter presents a monotonous ascending trend without any tuning points, implying that there is no lattice shrinkage at the end of charging, which will reduce particle cracks. Therefore, sulfur doping will reduce the lattice distortion and improve the structural stability during charging.

    It is also known that the thermal stability of Li1?NiO2is very terrible. Here, we also investigated the thermal stability of the Li1?NiO1.89S0.11. As we know, the layered Li1?NiO2will undergo the phase transition to spinel LiNi2O4, rocksalt NiO and O2gas3,4. The phase transition requires the migration of Ni ion from the Ni layer to Li layer, passing through the intermediate tetrahedral sites33. Ni4+ion is inclined to occupy the octahedral site due to its filled2gstate, while Ni3+with an additional electron inglevel is possible to migrate to tetrahedral site35. But the migration is not easy to happen at room temperature and slightly above36. Since it requires elevated temperature to induce the migration, it is possible that the spinel LiNi2O4becomes thermodynamically unstable before it is generated kinetically from the layered phase. As temperature increases, LiNi2O4becomes unstable and will convert to LiNiO2, NiO, and O2according to the temperature evolution of ternary phase diagram of Li-Ni-O236. Hence, the phase transition reaction could be described as:

    Li1–xNiO2 (layered) → (1 – x) LiNiO2 (layered) +x NiO (rocksalt) + x/2 O2(6) Li1–xNiO1.89S0.11 (layered) → (1 – x) LiNiO1.89S0.11(layered) + x NiO0.89S0.11 (rocksalt) + x/2 O2(7)

    (a) Δ1, (b) Δ2. The positive isosurface is in grey. The isosurface level is 0.07. The sulfur atoms (yellow) in Li1?xNiO1.89S0.11are marked by the dotted circle. color online.

    Fig.7 Evolution of lattice constants.

    (a), (b)andduring delithiation of Li1–xNiO2and Li1–xNiO1.89S0.11.

    We calculated the reaction enthalpies for> 0.5 according to the equation (6) or (7) (See Fig.8). The negative reaction enthalpy represents the exothermic reaction. The more the heat release, the more unstable the delithiated phase is. For Li1?NiO2, the released heat increases asincreases. It means that the delithiated phase is more and more unstable upon delithiation and will release oxygen gas finally, which is not conducive for thermal stability. However, after sulfur doping, the delithiated phase Li1?NiO1.89S0.11are more stable than Li1?NiO2due to the less heat release. Therefore, sulfur doping will enhance the thermal stability of the overcharged phase. We think the enhanced thermal stability is related to the sulfur redox. Sulfur provides a small amount of electrons to charge compensation, with less electron holes located on oxygen, thus retarding the oxygen generation. This further proves the superiority of sulfur doping in LiNiO2system.

    Fig.8 Reaction enthalpies of Li1?xNiO2 and Li1?xNiO1.89S0.11 with x > 0.5.

    Previous study indicated that oxygen vacancy would assist TM migration in layered structures37. Given that sulfur redox will reduce the oxygen participation on charge compensation, we evaluated the doping effect on Ni migration. The delithiated supercells Li9Ni27O54(Li0.33NiO2) and Li9Ni27O51S3(Li0.33NiO1.89S0.11) were used to study Ni migration, considering that they both possess some Ni3+ions and sufficient space to allow the Ni3+ion to hop between layers. The first step of phase transition is normally regarded as Ni3+ions migrating from the octahedral sites in Ni layer to neighboring tetrahedral sites in Li layer. We compared the energy differences Δoct→tetbetween the Li9(Nitet)(Nioct)26O54[Li9(Nitet)(Nioct)26O51S3] and Li9(Nioct)27O54[Li9(Nioct)27O51S3] (See Table 3). The possible structures of Li9(Nitet)(Nioct)26O54and Li9(Nitet)(Nioct)26O51S3are shown in Fig.9. We considered three types of Ni3+with tetrahedral sites in Li9(Nitet)(Nioct)26O51S3: the tetrahedral Ni3+ion are the nearest neighbor to dopant (labeled tet-1 in Fig.9(b)), next nearest neighbor to dopant (labeled tet-2 in Fig.9(b)) and distant to dopant (labeled tet-3 in Fig.9(b)), respectively. The positive energy difference represents an endothermic character of Ni migration to tetrahedral site. The smaller the value of positive energy difference is, the more likely Ni3+ion occupys tetrahedral site. As shown in Table 3, the energy difference Δoct→tetin undoped system is about 1.24 eV, which is lower than that in all cases of sulfur doped system. Therefore, Ni3+ions have a strong preference for octahedral site after sulfur doping, which will inhibit Ni3+ion migration. From this view, sulfur doping can suppress the phase transition and enhance the structural stability.

    Table 3 Energy differences of the system with and without tetrahedral Ni3+ ion.

    Fig.9 Configurations of Li9(Nitet)(Nioct)26O54 and Li9(Nitet)(Nioct)26O51S3.

    (a) Li9(Nitet)(Nioct)26O54, (b)Li9(Nitet)(Nioct)26O51S3, the migrated Ni3+ions are divided into the nearest neighbor to dopant (tet-1), (b) next nearest neighbor to dopant (tet-2) and distant to dopant (tet-3), respectively.

    4 Conclusions

    The mechanism of redox chemistry in Li1?xNiO1.89S0.11during delithiation is discussed in details. Due to the introduction of sulfur, the electron density is drew closer to the Fermi energy, which results in the lowered delithiated voltage. Moreover, sulfur ions contribute electrons to charge compensation upon initial deintercalation, which will reduce electron holes on oxygen. Sulfur doping will also alleviate the change of lattice parameter upon delithiation, which is beneficial for structural stability. From the thermodynamics view, sulfur doping will suppress Ni migration and retard the oxygen evolution, which is favor of the thermodynamic stability during delithiation. This work will open up a new view in designing the Ni-rich cathode materials with multiple anions redox.

    Acknowledgment: The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J.2015,, 4440. doi: 10.1002/anie.201409262

    (2) Kim, D.; Lim, J. M.; Lim, Y. G.; Yu, J. S.; Park, M. S.; Cho, M.; Cho, K.2015,, 6450. doi: 10.1021/acs.chemmater.5b02697

    (3) Wu, L.; Nam, K. W.; Wang, X.; Zhou, Y.; Zheng, J. C.; Yang, X. Q.; Zhu, Y.2011,, 3953. doi:10.1021/cm201452q

    (4) Nam, K. W.; Bak, S. M.; Hu, E.; Yu, X.; Zhou, Y.; Wang, X.; Wu, L.; Zhu, Y.; Chung, K. Y.; Yang, X. Q.2013,, 1047. doi:10.1002/adfm.201200693

    (5) Yang, Z. G.; Hua, W. B.; Zhang, J.; Chen, J. H.; He, F. R.; Zong, B. H.; Guo, X. D.2016,(5), 1056. [楊祖光, 滑緯博, 張 軍, 陳九華, 何鳳榮, 鐘本和, 郭孝東. 物理化學(xué)學(xué)報, 2016,(5), 1056.] doi: 10.3866/PKU.WHXB201603092

    (6) Huang, Y. Y.; Zhou, H. H.; Chen, J. T.; Gao, D. S.; Su, G. Y.2005,(7), 725. [黃友元, 周恒輝, 陳繼濤, 高德淑, 蘇光耀. 物理化學(xué)學(xué)報, 2005,(7), 725.] doi: 10.3866/PKU.WHXB20050706

    (7) Hou, X. Q.; Jiang, W. J.; Qi, L.; Han, L. J.2007,(Supp), 40. [侯憲全, 江衛(wèi)軍, 其 魯, 韓立娟. 物理化學(xué)學(xué)報, 2007,(Supp), 40.] doi: 10.3866/PKU.WHXB2007Supp10

    (8) Tatsumi, K.; Sasano, Y.; Muto, S.; Yoshida, T.; Sasaki, T.; Horibuchi, K.; Takeuchi, Y.; Ukyo, Y.2008,, 045108. doi: 10.1103/PhysRevB.78.045108

    (9) Woo, S. U.; Park, B. C.; Yoon, C. S.; Myung, S. T.; Prakash, J.; Sun, Y. K.2007,, A649. doi: 10.1149/1.2735916

    (10) Yan, H.; Li, B.; Yu, Z.; Chu, W.; Xia, D.2017,(13), 7155. doi: 10.1021/acs.jpcc.7b01168

    (11) Yue, P.; Wang, Z.; Guo, H.; Xiong, X.; Li, X.2013,, 1. doi: 10.1016/j.electacta.2013.01.018

    (12) Park, S. H.; Sun, Y. K.; Park, K. S.; Nahm, K. S.; Lee, Y. S.; Yoshio, M.2002,, 1721. doi: 10.1016/S0013-4686(02)00023-3

    (13) Kong, F.; Liang, C.; Longo, R. C.; Yeon, D. H.; Zheng, Y.; Park, J. H.; Doo, S. G.; Cho, K.2016,, 6942. doi: 10.1021/acs.chemmater.6b02627

    (14) Li, B.; Yan, H.; Zuo, Y.; Xia, D.2017,(7), 2811. doi: 10.1021/acs.chemmater.6b04743

    (15) Li, B.; Shao, R.; Yan, H.; An, L.; Zhang, B.; Wei, H.; Ma, J.; Xia, D.; Han, X.2016,, 1306. doi: 10.1002/adfm.201670054

    (16) Li, B.; Yan, H.; Ma, J.; Yu, P.; Xia, D.; Huang, W.; Chu, W.; Wu, Z.2014,, 5112. doi: 10.1002/adfm.201400436

    (17) Barker, J.; Kendrick, E.2011,, 6960.

    (18) Lee, K. K.; Yoon, W. S.; Kim, K. B.; Lee, K. Y.; Hong, S. T.2001,, 321. doi: 10.1016/S0378-7753(01)00548-1

    (19) Kresse, G.; Furthmüller, J.1996,, 11169. doi: 10.1103/PhysRevB.54.11169

    (20) Kresse, G.; Joubert, D.1999,, 1758. doi: 10.1103/PhysRevB.59.1758

    (21) Anisimov VI, V. I.; Zaanen, J.; Andersen, O. K.1991,, 943. doi: 10.1103/PhysRevB.44.943

    (22) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G.2004,, 35. doi: 10.1103/PhysRevB.70.235121

    (23) Ma, J.; Yan, H.; Li, B.; Xia, Z.; Huang, W.; An, L.; Xia, D.2016,, 13421. doi:10.1021/acs.jpcc.6b04338

    (24) Monkhorst, H. J.1976,, 5188. doi: 10.1103/PhysRevB.13.5188

    (25) Chen, H.; Freeman, C. L.; Harding, J. H.2011,, 085108. doi: 10.1103/PhysRevB.84.085108

    (26) Rougier, A.; Delmas, C.; Chadwick, A. V.1995,, 123. doi: 10.1016/0038-1098(95)00020-8

    (27) Chung, J. H.; Proffen, T.; Shamoto, S.; Ghorayeb, A. M.; Croguennec, L.; Tian, W.; Sales, B. C.; Jin, R.; Mandrus, D.; Egami, T.2005,, 064410. doi: 10.1103/PhysRevB.71.064410

    (28) Marianetti, C. A.; Morgan, D.; Ceder, G.2001,, 224304. doi: 10.1103/PhysRevB.63.224304

    (29) Ouyang, C. Y.; Shi, S. Q.; Lei, M. S.2009,, 370. doi: 10.1016/j.jallcom.2008.06.123

    (30) Ohzuku, T.; Ueda, A.; Nagayama, M.1993,, 1862. doi: 10.1149/1.2220730

    (31) Aydinol, M. K.; Kohan, A. F.; Ceder, G.; Cho, K.; Joannopoulos, J.1997,, 1354. doi: 10.1103/PhysRevB.56.1354

    (32) Uchimoto, Y.; Sawada, H.; Yao, T.2001,, 326. doi: 10.1016/S0378-7753(01)00624-3

    (33) Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D.-H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K.2014,, 1300787. doi: 10.1002/aenm.201300787

    (34) Naghash, A. R.; Lee, J. Y.2001,, 2293. doi: 10.1016/S0013-4686(01)00452-2

    (35) Reed, J.; Ceder, G.2004,, 4513. doi:10.1021/cr020733x

    (36) Wang, L.; Maxisch, T.; Ceder, G.2007,, 543. doi: 10.1021/cm0620943

    (37) Qian, D.; Xu, B.; Chi, M.; Meng, Y. S.2014,, 14665. doi: 10.1039/c4cp01799d

    陰離子硫氧化還原與Li1?xNiO2?yS的結(jié)構(gòu)穩(wěn)定性:第一性原理研究

    鄢慧君 李 彪 蔣 寧 夏定國*

    (北京大學(xué)工學(xué)院,先進(jìn)電池材料理論與技術(shù)北京市重點實驗室,北京 100871)

    高鎳層狀氧化物是電動汽車高能量密度鋰離子電池正極材料的首選。本文通過第一性原理計算模擬了Li1?NiO2?S材料的脫鋰過程。通過GGA +計算分析了體系費(fèi)米能級處的電子結(jié)構(gòu),充電過程中的氧化還原機(jī)制和熱穩(wěn)定性。在Li1?NiO2?S脫鋰過程中,首次發(fā)現(xiàn)硫參與電荷補(bǔ)償,抑制過渡金屬的遷移,降低晶格扭曲幅度和提高體系中氧的穩(wěn)定性。這種基于硫陰離子氧化還原對鋰離子電池陰極材料電化學(xué)行為的調(diào)制有助于設(shè)計高穩(wěn)定性的高鎳正極材料。

    陰離子摻雜;硫氧化還原;結(jié)構(gòu)穩(wěn)定性;熱穩(wěn)定性;過渡金屬遷移

    O641

    10.3866/PKU.WHXB201705041

    March 30, 2017;

    April 20, 2017;

    May 4, 2017.

    . Email: dgxia@pku.edu.cn; Tel: +86-10-62767962.

    The project was supported by the New Energy Project for Electric Vehicle of National Key Research and Development Program, China (2016YFB0100200) and National Natural Science Foundation of China (51671004).

    國家重點研發(fā)計劃“新能源汽車”重點專項(2016YFB0100200)和國家自然科學(xué)基金(51671004)資助項目

    猜你喜歡
    第一性物理化學(xué)熱穩(wěn)定性
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    Chemical Concepts from Density Functional Theory
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
    中國塑料(2016年7期)2016-04-16 05:25:52
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    可聚合松香衍生物的合成、表征和熱穩(wěn)定性?
    男人舔女人下体高潮全视频| 两人在一起打扑克的视频| 成年女人毛片免费观看观看9| 日韩欧美国产在线观看| 久久国产精品影院| 九九久久精品国产亚洲av麻豆 | 91久久精品国产一区二区成人 | 欧美成人免费av一区二区三区| 亚洲av成人精品一区久久| 欧美乱码精品一区二区三区| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 欧美成人一区二区免费高清观看 | 此物有八面人人有两片| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 最新在线观看一区二区三区| 国产淫片久久久久久久久 | 超碰成人久久| 亚洲一区二区三区色噜噜| 好男人电影高清在线观看| 少妇人妻一区二区三区视频| 91麻豆精品激情在线观看国产| 欧美午夜高清在线| 最近最新中文字幕大全免费视频| 久99久视频精品免费| 美女高潮的动态| 高清在线国产一区| 色老头精品视频在线观看| 悠悠久久av| 亚洲国产精品sss在线观看| 男人舔女人下体高潮全视频| or卡值多少钱| 毛片女人毛片| bbb黄色大片| 美女高潮的动态| www.熟女人妻精品国产| 国产伦一二天堂av在线观看| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av| 国产一区二区三区视频了| 免费看a级黄色片| 精品国产三级普通话版| 亚洲国产欧美人成| 性色avwww在线观看| 亚洲人成伊人成综合网2020| www.精华液| 国产69精品久久久久777片 | 国产伦人伦偷精品视频| 亚洲男人的天堂狠狠| 欧美日韩瑟瑟在线播放| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| av在线天堂中文字幕| 免费看十八禁软件| 成年女人毛片免费观看观看9| 亚洲国产日韩欧美精品在线观看 | 两人在一起打扑克的视频| 亚洲中文日韩欧美视频| 亚洲 欧美 日韩 在线 免费| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 岛国在线免费视频观看| 国产视频内射| 国产精品 欧美亚洲| h日本视频在线播放| 国产爱豆传媒在线观看| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 日韩av在线大香蕉| 欧美日韩一级在线毛片| 亚洲av电影不卡..在线观看| 精品一区二区三区av网在线观看| 日本熟妇午夜| 国内少妇人妻偷人精品xxx网站 | 成熟少妇高潮喷水视频| 亚洲av中文字字幕乱码综合| 亚洲成人精品中文字幕电影| 色综合站精品国产| 日韩av在线大香蕉| 久久久久国产一级毛片高清牌| 高潮久久久久久久久久久不卡| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 国产一区在线观看成人免费| 欧美成人一区二区免费高清观看 | 国产高潮美女av| 草草在线视频免费看| 久久久久久久午夜电影| 1024手机看黄色片| 国产av一区在线观看免费| 在线观看舔阴道视频| 日本黄色视频三级网站网址| 日本 av在线| 亚洲国产欧美人成| 操出白浆在线播放| 亚洲天堂国产精品一区在线| 色老头精品视频在线观看| 18禁观看日本| 国产私拍福利视频在线观看| 成在线人永久免费视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品综合一区在线观看| 悠悠久久av| 丰满的人妻完整版| 国产高清有码在线观看视频| 国产日本99.免费观看| 久久人妻av系列| 婷婷亚洲欧美| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 少妇熟女aⅴ在线视频| 国内少妇人妻偷人精品xxx网站 | 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 国产不卡一卡二| 日本 av在线| 色噜噜av男人的天堂激情| 欧美日本视频| 中文字幕av在线有码专区| 欧美精品啪啪一区二区三区| 在线观看66精品国产| 午夜两性在线视频| 日韩精品青青久久久久久| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 精品国产美女av久久久久小说| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 成人国产一区最新在线观看| 日韩欧美国产一区二区入口| 久久天堂一区二区三区四区| 深夜精品福利| 国产精品 国内视频| 色视频www国产| 成人欧美大片| 精品福利观看| 曰老女人黄片| 欧美绝顶高潮抽搐喷水| 亚洲专区国产一区二区| 亚洲中文字幕日韩| 成人av一区二区三区在线看| 国产一区在线观看成人免费| 97超视频在线观看视频| 岛国视频午夜一区免费看| 最近最新免费中文字幕在线| 两性夫妻黄色片| 久久久色成人| 精品欧美国产一区二区三| 久久久国产成人免费| 国产真实乱freesex| 99久久国产精品久久久| 性欧美人与动物交配| 99热6这里只有精品| 亚洲国产色片| 亚洲欧美激情综合另类| 欧美黄色淫秽网站| 免费看日本二区| 欧美一级毛片孕妇| 特大巨黑吊av在线直播| 99久久综合精品五月天人人| 美女扒开内裤让男人捅视频| 日本三级黄在线观看| 国产精品一区二区免费欧美| 国产欧美日韩精品一区二区| 搡老熟女国产l中国老女人| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 欧美在线一区亚洲| 级片在线观看| 国产一区二区三区视频了| 亚洲,欧美精品.| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| ponron亚洲| 国产一区二区三区在线臀色熟女| 久久草成人影院| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 嫩草影院入口| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站| 热99re8久久精品国产| 窝窝影院91人妻| 亚洲欧美日韩无卡精品| 亚洲av第一区精品v没综合| 国产视频内射| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久| 国产淫片久久久久久久久 | 亚洲成人久久性| 国产精品香港三级国产av潘金莲| 男人和女人高潮做爰伦理| 亚洲欧洲精品一区二区精品久久久| 岛国在线观看网站| 午夜福利欧美成人| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 全区人妻精品视频| 国产精品久久久av美女十八| 日本 欧美在线| 午夜成年电影在线免费观看| 国产亚洲精品综合一区在线观看| 欧美黑人欧美精品刺激| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 国产高潮美女av| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 91老司机精品| 亚洲精品在线美女| 亚洲中文av在线| 精品一区二区三区四区五区乱码| 99久久精品一区二区三区| 两个人的视频大全免费| 亚洲性夜色夜夜综合| 色尼玛亚洲综合影院| 黄色成人免费大全| 日本精品一区二区三区蜜桃| 国产精品 欧美亚洲| 一级黄色大片毛片| АⅤ资源中文在线天堂| 亚洲欧美日韩东京热| 欧美日韩瑟瑟在线播放| 久久中文看片网| 免费在线观看亚洲国产| 国产毛片a区久久久久| 国产一区二区在线观看日韩 | 亚洲精品在线观看二区| 长腿黑丝高跟| 成人三级做爰电影| 国产欧美日韩精品一区二区| 最近在线观看免费完整版| 18禁裸乳无遮挡免费网站照片| 美女 人体艺术 gogo| 精品99又大又爽又粗少妇毛片 | www日本黄色视频网| 波多野结衣高清作品| 午夜激情欧美在线| 窝窝影院91人妻| 亚洲中文字幕一区二区三区有码在线看 | 欧美黄色淫秽网站| 99精品在免费线老司机午夜| 一区二区三区国产精品乱码| av天堂中文字幕网| 久久精品91蜜桃| 日本五十路高清| 丰满的人妻完整版| 国产成人精品无人区| 日本在线视频免费播放| 国产99白浆流出| 久久久久久国产a免费观看| 美女cb高潮喷水在线观看 | 亚洲成人中文字幕在线播放| 久久久精品欧美日韩精品| 精品日产1卡2卡| 国产精品野战在线观看| 巨乳人妻的诱惑在线观看| 久久精品91无色码中文字幕| 真人做人爱边吃奶动态| 久久久水蜜桃国产精品网| 国产69精品久久久久777片 | 久久久久久大精品| www国产在线视频色| 午夜视频精品福利| 亚洲欧美日韩卡通动漫| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 国产黄色小视频在线观看| 成年免费大片在线观看| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 午夜激情欧美在线| 一二三四在线观看免费中文在| 久久中文看片网| 青草久久国产| 亚洲av成人一区二区三| 麻豆国产97在线/欧美| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 91av网站免费观看| 亚洲在线自拍视频| 色在线成人网| 无人区码免费观看不卡| 精品福利观看| 久久精品综合一区二区三区| 精品日产1卡2卡| 国产免费男女视频| or卡值多少钱| 久久伊人香网站| 国产一区二区三区视频了| 天天添夜夜摸| 国产 一区 欧美 日韩| 一区二区三区激情视频| 舔av片在线| 欧美中文综合在线视频| 最新中文字幕久久久久 | 精品久久久久久久末码| 欧美激情久久久久久爽电影| 欧美午夜高清在线| 日本黄色片子视频| 久久欧美精品欧美久久欧美| 午夜免费激情av| 国产精品野战在线观看| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| 99热这里只有精品一区 | www.999成人在线观看| 成人性生交大片免费视频hd| 日本熟妇午夜| 国产精品一区二区三区四区久久| 女人被狂操c到高潮| 亚洲午夜精品一区,二区,三区| 久久这里只有精品中国| 亚洲成av人片免费观看| 午夜日韩欧美国产| 午夜免费观看网址| 首页视频小说图片口味搜索| av天堂在线播放| 男女视频在线观看网站免费| 真人做人爱边吃奶动态| 草草在线视频免费看| 美女cb高潮喷水在线观看 | 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 亚洲国产欧美一区二区综合| 美女被艹到高潮喷水动态| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 狂野欧美激情性xxxx| 成人国产综合亚洲| 宅男免费午夜| 亚洲在线观看片| 亚洲自拍偷在线| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 美女午夜性视频免费| 午夜精品在线福利| 91在线观看av| 国产精品一及| 很黄的视频免费| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 男人舔奶头视频| 成人无遮挡网站| 麻豆一二三区av精品| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 亚洲国产精品久久男人天堂| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 亚洲av成人精品一区久久| 国产一级毛片七仙女欲春2| 十八禁人妻一区二区| 黑人操中国人逼视频| 色综合亚洲欧美另类图片| 国产日本99.免费观看| 在线a可以看的网站| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 欧美不卡视频在线免费观看| 90打野战视频偷拍视频| www.熟女人妻精品国产| 88av欧美| 国产单亲对白刺激| 国产高潮美女av| 国产黄色小视频在线观看| 天堂网av新在线| 一a级毛片在线观看| 欧美成狂野欧美在线观看| 亚洲 欧美 日韩 在线 免费| 91在线精品国自产拍蜜月 | 亚洲精品456在线播放app | 老熟妇仑乱视频hdxx| tocl精华| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 久久九九热精品免费| 99久久99久久久精品蜜桃| 亚洲激情在线av| 在线免费观看不下载黄p国产 | 久久久精品大字幕| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 国产精品久久久人人做人人爽| 成年免费大片在线观看| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 日本黄色片子视频| 午夜福利高清视频| 后天国语完整版免费观看| 一进一出抽搐gif免费好疼| 免费大片18禁| 亚洲国产精品合色在线| 午夜福利免费观看在线| 成人永久免费在线观看视频| 九九热线精品视视频播放| 亚洲无线观看免费| 久久精品综合一区二区三区| 中文资源天堂在线| 国产精品日韩av在线免费观看| 校园春色视频在线观看| 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线 | 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 99久久无色码亚洲精品果冻| 国产午夜精品论理片| 国产黄色小视频在线观看| 真人做人爱边吃奶动态| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品免费一区二区三区在线| 国产69精品久久久久777片 | 亚洲五月天丁香| 亚洲中文日韩欧美视频| 亚洲激情在线av| 免费在线观看日本一区| 久久99热这里只有精品18| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 午夜福利免费观看在线| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 99视频精品全部免费 在线 | 色综合欧美亚洲国产小说| 999精品在线视频| 亚洲国产精品成人综合色| 久久精品国产综合久久久| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 岛国视频午夜一区免费看| 日本在线视频免费播放| www日本黄色视频网| 香蕉国产在线看| 岛国在线观看网站| av在线天堂中文字幕| 手机成人av网站| 午夜福利免费观看在线| 美女扒开内裤让男人捅视频| 欧美又色又爽又黄视频| 久久久国产成人免费| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 色综合欧美亚洲国产小说| 99视频精品全部免费 在线 | 中亚洲国语对白在线视频| 日本一本二区三区精品| 丁香欧美五月| 国模一区二区三区四区视频 | 中文字幕熟女人妻在线| tocl精华| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 人妻丰满熟妇av一区二区三区| 在线免费观看的www视频| 美女被艹到高潮喷水动态| 色吧在线观看| 黑人操中国人逼视频| av视频在线观看入口| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 国产精品香港三级国产av潘金莲| 久久久久性生活片| 无遮挡黄片免费观看| 亚洲aⅴ乱码一区二区在线播放| 黄色丝袜av网址大全| 国产精品久久久久久久电影 | 国产三级在线视频| 午夜影院日韩av| 俄罗斯特黄特色一大片| 国产极品精品免费视频能看的| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 亚洲国产日韩欧美精品在线观看 | 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 国产精品电影一区二区三区| 成人国产一区最新在线观看| 老鸭窝网址在线观看| 欧美日韩福利视频一区二区| 国产免费男女视频| 精品乱码久久久久久99久播| 高清毛片免费观看视频网站| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 男人和女人高潮做爰伦理| 久久热在线av| 2021天堂中文幕一二区在线观| 亚洲av熟女| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 国产三级黄色录像| 国产精品永久免费网站| 日韩精品青青久久久久久| 俺也久久电影网| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| 国产av一区在线观看免费| 国产精品久久久人人做人人爽| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 成人欧美大片| 亚洲中文av在线| 亚洲男人的天堂狠狠| 久久香蕉国产精品| 色综合婷婷激情| 国产欧美日韩一区二区三| 两个人看的免费小视频| 美女午夜性视频免费| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 国产午夜精品论理片| 久久久国产精品麻豆| 免费av不卡在线播放| 亚洲精品久久国产高清桃花| 亚洲欧美精品综合一区二区三区| 国产美女午夜福利| 亚洲精品在线观看二区| 午夜久久久久精精品| 99热只有精品国产| 啦啦啦观看免费观看视频高清| 久久中文看片网| 国产单亲对白刺激| 亚洲国产欧洲综合997久久,| 免费在线观看日本一区| 天堂√8在线中文| 无限看片的www在线观看| 91av网站免费观看| 午夜福利在线观看免费完整高清在 | 免费观看的影片在线观看| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 精品人妻1区二区| 女警被强在线播放| 色噜噜av男人的天堂激情| 日本三级黄在线观看| 久久天堂一区二区三区四区| 国产综合懂色| 免费大片18禁| 色老头精品视频在线观看| 久久中文字幕一级| 老汉色∧v一级毛片| 国产美女午夜福利| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| av视频在线观看入口| 黄色日韩在线| 一个人免费在线观看电影 | 宅男免费午夜| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 成年版毛片免费区| 俺也久久电影网| 999久久久精品免费观看国产| 在线观看日韩欧美| 两个人的视频大全免费| 可以在线观看的亚洲视频| 每晚都被弄得嗷嗷叫到高潮| 97超级碰碰碰精品色视频在线观看| 国产成年人精品一区二区| 色老头精品视频在线观看| 无人区码免费观看不卡| 免费电影在线观看免费观看| 国产精品乱码一区二三区的特点| 亚洲国产色片| 在线永久观看黄色视频| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 久久精品国产清高在天天线| 不卡av一区二区三区| 99久久国产精品久久久| 精品乱码久久久久久99久播| 欧美激情久久久久久爽电影| 亚洲人成伊人成综合网2020| 亚洲18禁久久av| 婷婷亚洲欧美| 97超级碰碰碰精品色视频在线观看| 天堂动漫精品| 国产精品1区2区在线观看.| 97超级碰碰碰精品色视频在线观看| 亚洲熟妇中文字幕五十中出| 国产精品亚洲美女久久久| cao死你这个sao货| 校园春色视频在线观看| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线|