• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction

    2018-01-11 07:15:35YUJingHuaLIWenWenZHUHong
    物理化學學報 2017年9期
    關(guān)鍵詞:物理化學伏安載量

    YU Jing-Hua LI Wen-Wen ZHU Hong

    ?

    Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction

    YU Jing-Hua LI Wen-Wen ZHU Hong*

    ()

    A series of nanocatalysts consisting of acid treated carbon nanotubes (CNTs) with different diameters (8–15, 20–30, 30–50, >50 nm) supporting platinum (Pt) nanoparticles (Pt/CNTs) were synthesizeda microwave-assisted ethylene glycol method. The as-synthesized catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Their catalytic performances in the oxygen reduction reaction (ORR) were evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The experimental results showed that the diameter of the CNTs influences the particle size, loading, and dispersion of Pt NPs. Furthermore, the Pt/CNTs having different CNT diameters displayed different catalytic activities in the ORR. The catalyst Pt/CNT8, which was prepared by using CNTs with diameters ranging between 8?15 nm as the support, exhibited the highest Pt loading, catalytic activity, and stability in the ORR. The mass activity of Pt/CNT8was determined to be 0.188 A?mg?1at 0.9 V, which is folds higher than that of the commercially available JM Pt/C catalyst. After testing the stability for 5000 potential cycles, the negative shift (~7 mV) of the half-wave potential for Pt/CNT8was found to be significantly lesser than that for the JM Pt/C catalyst (~32 mV), indicating superior catalytic stability.

    Microwave-assistance; Platinum; Carbon nanotubes; Diameter effect; Stability

    1 Introduction

    The fossil fuel reduction and increasingly serious environmental pollution have made it urgent to search for new impetus to cars. Proton exchange membrane fuel cell (PEMFC), a new focus of the material industry, has attracted growing attention owing to its high energy conversion efficiency and low pollution emission. Years of basic research and development suggest that substantial progress has been made in research on PEMFC as a vehicle power. It is considered as one major energy technology in the 21st century and as the future of traffic power1–3. Because the catalyst is critical in the fuel cell, its carrier plays an extremely important role in the catalyst and its electrochemical reaction. The physical properties and surface chemical properties of the carrier significantly affect the catalytic activity and performance of the whole battery4.Therefore, selecting a catalyst carrier is particularly important. An appropriate carrier of PEMFC anode catalysts should satisfy two conditions: (i) large specific surface area and high electrical conductivity, and (ii) stability in the harsh working environment of PEMFC5,6. Various carbon-based materials can be used as carriers, such as carbon black7–9, activated carbon fibers10, mesoporous carbon11–13, carbon paper14,15, and carbon nanotubes (CNTs)16–18.

    CNTs have received extensive attention as a new catalyst carrier in recent years19–27. CNTs can fill in and adsorb particles because of their tubular structure, singular conductivity and very large specific surface area, and they are highly stable in many conditions, which make CNTs a very promising catalyst carrier28,29. Therefore, CNT-supported catalysts have special appeal in electron transport of catalytic process30.With CNTs as a support, however, the major concern is the deposition method that generates highly-dispersed metal particles on the surfaces of CNTs. Pt deposits onto CNTs through complication between the Pt2+precursor and the C=C fragments atop the support. Because the number of reactive C=C fragments at the nanotube surfaces is limited, the deposition of metal precursors per unit surface area is hindered31,32. The most advanced strategy to increase the number of available anchoring sites is to functionalize the nanotube surfaces through chemical or physical treatments33. For this issue, many efforts have been devoted to the roles of oxygen-containing surface groups, which anchor nanoparticles and thereby promote the deposition of metallic nanoparticles onto carbon surfaces34. Although the presence of oxygen-bearing groups may not promote Pt incorporation, it stabilizes the catalysts by increasing the interaction strength between the Pt particles and the support35–38. Additionally, the presence of surface functional groups increases the hydrophilicity of the catalysts, favoring the diffusion of the reactants toward the active sites39. In addition, CNTs are composed of thickness-varying graphite curls, and the carbon atoms in the graphite layers aresphybrid. Each carbon atom has an unpaired electron located in thetrack perpendicular to the layer40. Due to the quantum confinement effect, electrons can only move in the axial direction of the tubes in the graphite sheet. Thus, the electrical properties are affected by the tube diameter/length, the spiral structure of the winding, and other factors.

    In this paper, the modified CNTs supported Pt nanoparticles (NPs) were synthesized through a microwave-assisted homogeneous deposition strategy, in which ethylene glycol was used as the solvent and reducing agent of Pt precursor. This fast and easy-to-operate process ensured uniform heating and low-cost; besides, it can effectively increase the dispersion as well as loading of Pt NPs on the CNTs. Moreover, the Pt/CNT catalysts were compared to the commercially available VC supported Pt (20% (, mass fraction)) catalyst from Johnson Matthey.

    2 Experimental

    2.1 Functionalization of CNTs and synthesis of electrocatalysts

    Four batches of multi-walled CNTs with purity >95% were obtained from Nanjing XFNANO Materials Tech Co., Ltd. (China) with mean diameters of 8–15 nm (CNT8), 20–30 nm (CNT20), 30–50 nm (CNT30), and >50 nm (CNT50), respectively. The CNTs were treated in acid to eliminate impurities and create surface oxygen groups. Then each gram of CNTs was dispersed in 270 mL of a sulfonitric mixture (concentrated sulfuric acid and nitric acid in the volume ratio of 1 : 3), refluxed at room temperature for 1 h, and then transferred to an oil bath at 100°C under backflow mixing for 4 h. Afterward, the reaction vessel was cooled down to room temperature and filled with distilled water (ca. 2 L). The solids were recovered by filtration, washed thoroughly with distilled water until the filtrate was about pH 7.0, and dried overnight at 60°C.

    The functionalized CNTs were used as the support for 20% () Pt in the catalysts. Each time, about 80 mg of the functionalized CNTs was dispersed in 40 mL of ethylene glycol (EG) and ultrasonicated for 30 min. Then 2.7 mL of a solution of H2PtCl6×6H2O in EG (0.02 g×mL?1) was added dropwise to a CNTs suspension under vigorous stirring for 40 min at room temperature. Then the solution was adjusted to about pH 10 by using a KOH/EG solution, removed to the microwave reactor and heated at 170°C for 30 min. EG was used as both the reducing agent and the solvent here. Afterward, the Pt/CNT were washed with deionized water and dried at 60°C overnight.

    2.2 Structural and compositional characterization

    The prepared catalysts were analyzed on an X-ray diffractometer (XRD) (Shimazdou, XD-3A) within the Bragg’s angles (2) from 5° to 90° at a speed of 7 (°)·min?1. The crystal phases with the corresponding diffraction lines were implemented by comparison with powder diffraction files (PDF) from International Centre for Diffraction Data (ICDD). The average crystallite sizewas estimated from the diffraction peak of Pt (220) by using the Debye-Scherrer equation (Eq.(1))41:

    = 0.9λ1/(cosmax) (1)

    whereλ1is the X-ray wavelength,maxis the maximum angle of the (220) peak, andis the full-width at half-maximum in radians. The loss curves of Pt/CNT catalysts were measuredthermogravimetric analysis (TGA). Usually, 20–30 mg of a catalyst was heated from 298 to 1098 K at 7 K·min?1and air atmosphere. The morphology of the catalyst was observed on a transmission electron microscope (TEM, JEOL JEM-3010HR, Japan). Raman spectra of the CNTs and after treatment CNTs were recorded using a 1000 spectrometer equipped with a 100 mW laser with emission at 532 nm equipped with a thermoelectrically cooled CCD detector. X-ray photoelectron spectroscopy (XPS) measurements were performed with a VG Scientific ESCALAB 250 electron spectrometer using Al KR radiation under a vacuum of 2′10?8Pa.

    2.3 Electrochemical characterization

    The electrochemical tests were performed on a three-electrode work station (Zahner, Germany), with a platinum wire used as the counter electrode and a saturated calomel electrode as the reference electrode. The reported potential was relative to the reversible hydrogen electrode potential (RHE). The catalysts were dropped onto the surfaces of the glassy carbon (GC) electrode (5 mm diameter) with an ink42. The GC was already polished (50 nm alumina) to a mirror finish and ultrasonically cleaned with deionized water. Theoretically, 20.4mg?cm?2of Pt was deposited onto the working electrode. Each time a 2 mg of the catalyst was dispersed in 3 mL of deionized water, 7 mL of isopropanol, and 40mL of Nafion by sonication. Subsequently, 20mL of the ink was dropped onto the GC surfaces until the catalyst was totally dried at room temperature. The catalysts were treated by 50 cyclic scans from 0.05 to 1.1 V at 50 mV?s?1. Before the electrochemical tests, the working electrode was electrochemically cleaned and stabilized by 20 cycles between 0.05 and 1.1 V at 100 mV?s?1. The ORR performance of each catalyst was studied with a conventional rotating disk electrode (RDE). The catalysts (deposited onto the GC electrode) were immersed in an O2-saturated 0.1 mol?L?1HClO4electrolyte at the cyclic potential between 1.1 and 0.05 V at 20 mV?s?1and 1600 r?min?1until the current was stable. The accelerated stability of the catalyst was studied at a scan rate of 50 mV?s?1at 0.60 and 1.00 V (. RHE) repeated scanning for 5000 cycles in N2-protected 0.1 mol?L?1HClO4. Before any stability test, the catalyst supported on the electrode was cycled between 0.05 and 1.10 V at a scan rate of 100 mV?s?150 cycles.

    3 Results and discussion

    3.1 Physicochemical characterization

    Raman spectra of the initial and functionalized CNTs are both presented in Fig.1. The most prominent features in all Raman spectra are a set of bands at about 1350 and 1580 cm?1that are usually referred to as theandbands, respectively. Theband andband account for the complete structure of the graphite layer and the defect structure of nanotube walls, respectively. The increase of theI/Iratio suggests the improvement of defect degree. The evolution of theI/Iratios in Fig.1 indicates that the chemical treatment moderately increases the amount of defects in the CNTs. Therefore, theI/Iratio of CNT8after acid treatment is the highest relative to other CNTs, which suggests the presence of more defects in CNT8. Due to the larger specific surface area, the smaller-diameter CNTs contain more surface defects that are beneficial to the loading of Pt metal.

    The crystalline structures of the Pt/CNT catalysts analyzed by powder XRD are showed in Fig.2. Specifically, the four major peaks at 2= 39.7°, 46.2°, 67.5°, 81.4° are attributed to the (111), (200), (220) and (211) peaks of Pt, respectively (JCPDS 04-0802)43. The peaks at around 40°, 46°, 67° and 81° can be attributed to the diffraction from CNTs. These results indicate the successful preparation of Pt/CNT catalysts. The Pt crystallite sizes of Pt/CNT8, Pt/CNT20, Pt/CNT30and Pt/CNT50calculated by Eq.(1) are 4.32, 4.73, 4.94 and 5.02 nm, respectively, which indicates the deposition of Pt nanocrystals can be affected by the tube diameter.

    Fig.3 displays the TEM graphs of the Pt/CNT catalysts and the corresponding particle size distributions plotted by counting at least 150 particles on each catalyst. The TEM graphs confirm that the nanotube diameters change in the order of CNT50> CNT30> CNT20> CNT8. Moreover, the Pt particles in Pt/CNT8have a mean diameter of about 3.58 nm and a narrow particle size distribution. The averages sizes of Pt particles in Pt/CNT20, Pt/CNT30and Pt/CNT50are 4.46, 4.71 and 5.34 nm, respectively, which agree with the crystallite sizes calculated by XRD and confirm that the Pt particle size increases with the tube diameter. The possible reason is the surface area of CNTs. Due to the smaller specific surface area of the larger-diameter CNTs, the limited surface sites lead to the formation of relatively large-size particles. Clearly, the appropriate surface area of CNTs also plays an important role in the size and dispersion of the Pt nanoparticles.

    Fig.1 Raman spectra of the initial (red line), functionalized (back line) CNTs.

    Fig.2 XRD patterns of Pt/CNT catalysts with different tube diameters.

    The TG profiles of the Pt/CNT catalysts are displayed in Fig.4. The loads of Pt on the diameter-varying CNTs are significantly different. The most relevant difference in the TG profiles is the beginning temperature of weight loss which shifts from ca. 450°C in Pt/CNT8, Pt/CNT20and Pt/CNT30to ca. 520°C in Pt/CNT50. CNT50also has a higher onset temperature. This is because the thermal stability of CNTs changes with the tube diameters and is improved at the nanotube diameters above 50 nm. The CNTs incorporation of Pt seems to enhance the differences. The Pt loads of the Pt/CNT change in the order of Pt/CNT8(19.6% ()) > Pt/CNT20(17.2% ()) > Pt/CNT30(16.7% ()) > Pt/CNT50(16.5% ()).

    X-ray photoelectron spectroscopy (XPS) spectra characterizing the chemical state information of the Pt 4of the Pt/CNT catalysts are shown in Fig.5. The Pt 4region shows doublet peaks at 71.2 and 74.3 eV, which are attributed to Pt047/2and Pt045/2, respectively. The two pairs of peaks from the spin-orbital split of the 47/2and 45/2regions were due to Pt(II) and Pt(IV) valence states, respectively. The atomic compositions of different Pt species calculated based on the Pt 4spectra of Pt/CNT catalysts are shown in Table 1. The catalysts show different ratios of metallic Pt to oxide species. This composition suggests a basically complete reduction of the adsorbed Pt(IV) complex species by the EG, implying that the microwave-assisted ethylene glycol strategy is highly efficient for preparation of high Pt-load catalysts with the support of CNTs. Therefore, the Pt load was the highest in the case of 8–15 nm CNTs, which improves the efficiency of the catalysts.

    Fig.3 TEM patterns for (a) Pt/CNT8, (b) Pt/CNT20, (c) Pt/CNT30, and (d) Pt/CNT50 and the corresponding histograms of particle sizes distribution.

    Fig.4 TG profiles recorded in air of Pt/CNT catalysts with different diameters of CNTs.

    Fig.5 XPS spectra of (a) Pt/CNT8, (b) Pt/CNT20, (c) Pt/CNT30, (d) Pt/CNT50.

    Table 1 The atomic ratio (x) of Pt(0)/Pt(II)/Pt(IV) of Pt/CNT catal1ysts.

    3.2 Electrocatalytic performance of catalysts

    The CVs of the Pt/CNT catalysts are shown in Fig.6. The catalysts show significant differences in the hydrogen absorption peak at 0.05–0.4 V and the oxygen reduction peak at 0.7–0.9 V. The electrochemical surface area (ESA) was calculated by integrating the hydrogen desorption area in the range of 0.075 to 0.35 V as follows:

    ESAPt= {H/[0.21 ×pt×g]} × 10 (2)

    Fig.6 CV curves for Pt/CNT catalysts with different diameters of CNTs.

    All measurements were made in N2-purged 0.1 mol?L?1HClO4at room temperature. Sweep rate: 50 mV s?1.

    Table 2 Electrochemical properties of the Pt/CNTbefore and after stability test.

    whereH(mC) is the charge required during hydrogen adsorption on the Pt surface,Pt(mg?cm?2) is the of Pt loading on the working electrode, andg(cm2) is the surface area of the GC electrode (i.e., 0.196 cm2)44. The ESAPt(m2?g?1) of JM Pt/C, Pt/CNT8, Pt/CNT20, Pt/CNT30and Pt/CNT50calculated by Eq.(2)is 53.52, 108.4, 102.1, 82.2 and 69.4 m2?g?1, respectively. As for the differences, the possible reason is that CNTs with smaller tube diameter and larger specific surface area contain more functional groups, so more Pt (0) is loaded and the particles are smaller, leading to larger electrochemical active area of the catalysts. Interestingly, the onset potential of the oxide formation region shifts to lower positive level as the Pt particle size decreases, indicating that the catalysts become more oxophilic with the decrease of particle size.

    The RDE was operated at 1600 r?min?1to measure the mass activities of the catalysts. The polarization curves of the Pt/CNT catalysts are shown in Fig.7(a), with the JM Pt/C catalyst for comparison. Moreover, the mass activities of the catalysts were compared by calculating the kinetic current densitykas follows45:

    Fig.7 (a) Polarization curves and (b) mass activities for Pt/CNT catalysts with different diameters of CNTs and JM Pt/C.

    Measurements were made in O2-saturated 0.1 mol?L?1HClO4at a rotation rate of 1600 r?min?1.

    Fig.8 Electrochemical durability for (a) Pt/CNT8, (b) Pt/CNT20, (c) Pt/CNT30, (d) Pt/CNT50, and JM Pt/C.

    k= (lim×)/(lim?) (3)

    wherelimis the current density at= 0.4 V, andis the current density at= 0.9 V. The mass activity of Pt was estimated by calculation ofk. The Pt mass activities of JM Pt/C, Pt/CNT8, Pt/CNT20, Pt/CNT30and Pt/CNT50at 0.9 V are 0.071, 0.188, 0.117, 0.092, and 0.045 A?mg?1, respectively, indicating the highest activity of the Pt/CNT8catalysts is over 2 times higher than JM Pt/C (Fig.7(b)). The catalytic activities follow the order of Pt/CNT8> Pt/CNT20> Pt/CNT30> JM Pt/C > Pt/CNT50. Therefore, the ORR activities were linear dependence with diameter of CNTs support.

    Accelerated durability tests were conducted under cycling potential sweeps at 50 mV?s?1between 0.6 and 1.1 V. RHE and by measuring the electrochemical property changes (Fig.8 and Table 2). After 5000 cycles, the negative shifts of Pt/CNT8, Pt/CNT20, Pt/CNT30and Pt/CNT50at half-wave potential are 7, 8, 10 and 38 mV, respectively. Their retained Pt mass activities are 81%, 80%, 72% and 35%, respectively. Pt/CNT8shows a significant durability compared with other catalysts, because the support of CNTs could reduce Pt degradation and loss. Meanwhile, the current densityis thelargest in the case of the smallest-diameter CNTs. Therefore, the ESA of each Pt/CNT catalyst before andafter the durability tests were also measured. It was found the losses of ESA in Pt/CNT8, Pt/CNT20, Pt/CNT30and Pt/CNT50were 4.6%, 11%, 14.9% and 2.0%, respectively. These results indicate the ESA of catalysts are stable when the CNTs are used as a catalyst carrier.

    4 Conclusions

    We demonstrated the synthesis of a series of CNTs supported Pt NPs catalysts with different diameters of CNTs through a microwave-assisted homogeneous deposition strategy, followed by reduction using ethylene glycol as the precursor of a reducing agent, and the modified CNTs were used to support. XPS, XRD, TG, and TEM measurements show that this method allows us to deposit high-loading Pt nanoparticles monodisper sed on CNTs, and the diameter of CNTs affects the loading and particle size of the Pt deposited onto CNTs. The Pt loading increases with decreased of tube diameter. At a nanotube diameter of 8?15 nm, the Pt loaded on the CNTs is homogeneous with small particle size (~3.5 nm), which account for both the larger specific surface area of the smaller-diameter nanotubes and the larger number of oxygen-containing surface groups after chemical treatment. Consequently, the catalytic ORR performance is affected by the nanotube diameter. In comparison, Pt/CNT8has the highest ORR activity. Pt/CNT8, Pt/CNT20and Pt/CNT30all have much higher electrochemical activity than JM Pt/C. The stability of a Pt/CNT catalyst is increased when Pt is supported on smaller-diameter CNT8because the larger Pt particles and numerous oxygen groups on CNT8promote the interaction between the Pt particles and the support.

    (1) Frederick, T. W.; Balasubramanian, L.; Mark, F. M.2010,, 2204. doi: 10.1021/jz100553m

    (2) Debe, M. K.2012,, 43. doi: 10.1038/nature11115

    (3) Yi, B. L. Fuel Cells—Principle technologies and applications. Chemical Industry Press: Beijing, 2003. [衣寶廉. 燃料電池: 原理·技術(shù)·應(yīng)用. 北京: 化學工業(yè)出版社, 2003. ]

    (4) Li, W. Z.; Liang, C. H.; Zhou, W. J.2003,, 6292. doi: 10.1021/jp022505c

    (5) Stoyanova, A.; Naldenov, V.; Petrov, K.; Nikolov, I.; Vitanov, T.; Budevski, E.1999,, 1197. doi: 10.1023/A:1003482613323

    (6) Aricò, A.S.; Stassi, A.; Modica, E.; Ornelas, R.; Gatto, I.; Passalacqua, E.; Antonucci, V.2008,, 525. doi: 10.1016/j. jpowsour.2007.1 0.005

    (7) Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.; Wang, Z. B.; Gao, Y. Z.2007,, 331. doi: 10.1016/j.jpowsour.2007.06.084

    (8) Zhang, C. L.; Wang, S. Y.; Peng, Z. M.2014,, 19778. doi: 10.1039/C4TA04728A

    (9) Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M.2007,, 241. doi: 10.1038/nmat1840

    (10) Huang, H. X.; Chen, S. X.; Yuan, C.2008,, 166. doi: 10.1016/j.jpowsour.2007..107

    (11) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Tong, H.; Xue, R. L.; Yang, S. D.; Li, H. L.2009,, 1. doi: 10.1016/j.jelechem.2009.04.013

    (12) Ahn, S. H.; Kwon, O. J.; Kim, S. K.; Choi, I.; Kim, J. J.2010,, 13309. doi: 10.1016/j.ijhydene.2010.09.035

    (13) Wan, K.; Long, G.; Liu, M.; Du, L.; Liang, Z.; Tsiakaras, P.2015,, 566. doi: 10.1016/j.apcatb.2014.10.054

    (14) Viva, F. A.; Bruno, M. M.; Franceschini, E. A.; Thomas, Y. R. J.; Ramos S. G.; Solorza-Feria, O.; Corti, H. R.2014,, 8821. doi: 10.1016/j.ijhydene.2013.12.027

    (15) Madhu, S. S.; Mohammad, N. B.; Zhang, Y.; Li, R. Y.; Sun X. L.; Cai, M.; Frederick, T. W.2009,, 330. doi: 10.1016/j.jpowsour.200 9.02.087

    (16) Tong, H.; Li, H. L.; Zhang, X. G.2007,, 2424. doi:10.1016/j.carbon.2007.06.028

    (17) Walid, M. D.; Toyoko, I.2015,, 392. doi: 10.1080/17458080.2013.838703

    (18) Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan L. J.2015,, 2903.10.1021/acscatal.5b00117

    (19) Guo, L.; Chen, S. G.; Wei, Z. D.2014,, 387. doi: org/10.1016/j.jpowsour.2014.01.040

    (20) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L.2009,, 760. doi: 10.1126/science.1168049

    (21) Guo, L.; Chen, S. G.; Li, L.; Wei, Z. D.2014,, 360. doi: org/10.1016/j.jpowsour.2013.08.102

    (22) Wang, X.; Li, W. Z.; Chen, Z. W.; Wa, J. M.; Yan, Y. S.2006,, 154. doi: 10.1016/j.jpowsour.2005.09.039

    (23) Wu, G.; Xu, B. Q.;.2007,, 148. doi:10.1016/j.jpowsour. 2007. 08.024

    (24) Zhao, Y. C.; Lan, H. X.; Deng, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y.. 2010,, 2255. [趙彥春, 蘭黃鮮, 鄧彬彬, 田建裊, 楊秀林, 王鳳陽. 物理化學學報, 2010,, 2255.] doi: 10.3866/PKU.WHXB20100829

    (25) Chen, Y.; Tang, Y. W.; Kong L. Y.; LIU, C. P.; XING, W.; LU, T. H.. 2006,, 119. [陳 煜, 唐亞文, 孔令涌, 劉長鵬, 邢 巍, 陸天虹. 物理化學學報, 2006,, 119.] doi: 10.3866/PKU.WHXB20060124

    (26) Hsieh, C. T.; Gu, J. L.; Tzou, D. Y.; Chu, Y. C.; Chen, Y. C.2013,, 10345. doi: 10.1016/j.ijhydene.2013.05.146

    (27) He, D. P.; Zeng, C.; Xu, C.; Cheng N. C.; Li, H. G.; Mu, S. C.; Pan, M.2011,, 5582. doi: 10.1021/la2003589

    (28) Li, X. G.; Hsing, I.2006,, 5250. doi: 10.1016/j.electacta.20 06.01.046

    (29) Tao, L.; Dou, S.; Ma, Z. L; Wang, S. Y.2015,, 46. doi: 10.1016/j.electacta.2015.01.054

    (30) Fang, B. Z.; Kim, M. S.; Kim, J. H.; Song, M. Y.; Wang Y. J.; Wang, H. J.; Wilkinson, D. P.; Yu J. S.2011,, 8066 doi: 10.1039/C1JM10847F

    (31) Kong, B. S.; Jung, D. H.; Oh, S. K.; Han, C. S.; Jung, H. T...2007,, 8377. doi: 10.1021/jp071297r

    (32) Nie, Y.; Li, L.; Wei, Z. D.... 2015,, 2168. doi: 10.1039/C4CS00484A

    (33) Yu, R. Q; Chen, L. W.; Liu Q. Q.; Lin J. Y.; Tan, K. Lee.; Siu, C. N.; Chan, H. S. O.; Xu G. Q.; Hor, T. S. A..1998,, 718. doi: 10.1021/cm970364z

    (34) Star, A.; Liu, Y.; Grant, K.;Ridvan, L.; Stoddart, J. F.; Steuerman, D. W.; Diehl, M. R.; Boukai, A.; Heath, J. R.2003,, 553. doi: 10.1021/ma021417n

    (35) Soin, N.; Roy, S. S.; Karlsson, L.; McLaughlin, J. A. Diamond Relat Mater 2010,, 595. doi: 10.1016/j.diamond.2009.10.029

    (36) He, D. P.; Mu, S. C; Pan, M.2011,, 82. doi: 10.1016/j. carbon.2010.0 8.045

    (37) Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. J...2005,, 22212. doi: 10.1021/jp0555448

    (38) Liu, Z. L.; Lin, X. H.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M.2002,, 4054. doi: 10.1021/la0116903

    (39) Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P.2006,, 2392. doi: 10.1021/la052753a

    (40) Liu, J. B.; Yuan, Y.; Bashir, S.2013,, 6476. doi: 10.3390/en6126476

    (41) Zhao, Y. C.; Yang, X. L.; Tian, J. N.2009,, 7114. doi: 10.1016/j.electacta.2009.07.021

    (42) Yu, H.; Zeng, K.; Fu, X. B.; Zhang, Yan.; Peng, F.; Wang, H. J.; Yang, J.2008,, 11875. doi: 10.1021/jp804003g

    (43) Hussain, S.; Pal, A. K.2008,, 1874. doi: 10.1016/j.matlet.2007.10.021

    (44) Luo, M. C.; Wei, L. L.; Wang, F. W.; Han, K. F.; Zhu, H.2014,, 34. doi: 10.1016/j.jpowsour.2014.07.102

    (45) Zhu, H.; Luo, M. C.; Zhang, S.; Wei, L. L.; Wang, F. W.; Wang, Z. G.; Wei, Y. S.; Han, K. F.2013,,3323. doi: 10.1016/j.ijhydene.2012.12.12

    管徑對碳納米管負載鉑催化劑氧還原的影響

    于景華 李文文 朱 紅*

    (北京化工大學理學院,化工資源有效利用國家重點實驗室,北京 100029)

    采用微波輔助乙二醇法制備了一系列酸處理后的不同管徑(8–15,20–30,30–50,>50 nm)的碳納米管(CNT)負載鉑(Pt)催化劑(Pt/CNT)。通過X射線光電子能譜(XPS)、X射線衍射(XRD)、熱重分析儀(TGA)、透射電子顯微鏡(TEM)對所制得催化劑進行結(jié)構(gòu)表征;采用循環(huán)伏安法(CV)和線性掃描伏安法(LSV)對其催化性能進行測試。結(jié)果表明,不同管徑的碳納米管對Pt的粒徑、載量和分散性有一定程度影響;然而,不同CNT管徑的催化劑表現(xiàn)出明顯不同的催化氧還原反應(yīng)(ORR)活性。采用管徑為8–15 nm的CNT作為載體制備的催化劑(Pt/CNT8)的Pt載量最高,表現(xiàn)出有很好的催化活性和穩(wěn)定性。Pt/CNT8在0.9 V時Pt的質(zhì)量活性為0.188 A?mg?1,是商業(yè)催化劑(JM Pt/C)的2倍。經(jīng)掃描5000圈穩(wěn)定性測試之后,Pt/CNT8的半波電位負移(~7 mV)遠遠小于商業(yè)JM Pt/C半波電位的負移(~32 mV),表現(xiàn)出優(yōu)越的催化ORR穩(wěn)定性。

    微波輔助;鉑;碳納米管;管徑效應(yīng);穩(wěn)定性

    O646

    10.3866/PKU.WHXB201705052

    March 23, 2017;

    April 24, 2017;

    May 5, 2017.

    . Email: zhuho128@126.com; Tel: +86-10-64444919.

    The project was supported by the Beijing Municipal Science and Technology Program, China (Z171100000917019), the National Key Research and Development Program of China (2016YFB0101203), the National Natural Science Foundation of China (21376022, 21476020), International S&T Cooperation Program of China (2013DFA51860), and Fundamental Research Funds for the Central Universities, China (JC1504).

    北京市科技計劃(Z171100000917019), 國家重點基礎(chǔ)研究發(fā)展計劃(2016YFB0101203), 國家自然科學基金(21376022, 21476020), 國際科技合作項目(2013DFA51860)和中央高?;究蒲袠I(yè)務(wù)費(JC1504)資助

    猜你喜歡
    物理化學伏安載量
    用伏安法測電阻
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    病毒載量檢測在102例HIV抗體不確定樣本診斷中的應(yīng)用
    陳建杰教授治療低病毒載量慢性乙型肝炎經(jīng)驗總結(jié)
    Chemical Concepts from Density Functional Theory
    基于LABVIEW的光電池伏安特性研究
    電子制作(2016年23期)2016-05-17 03:53:41
    通過伏安特性理解半導體器件的開關(guān)特性
    乙肝患者HBV載量與IgA,IgG,IgM及C3,C4相關(guān)性研究
    腎移植及胰腎聯(lián)合移植患者短暫/持續(xù)BK病毒血癥對遠期預后的影響
    波野结衣二区三区在线| 麻豆乱淫一区二区| 国产一级毛片在线| 另类亚洲欧美激情| 免费观看人在逋| 电影成人av| 欧美最新免费一区二区三区| 黄片小视频在线播放| 美女福利国产在线| 少妇人妻久久综合中文| 国产男女超爽视频在线观看| 久久毛片免费看一区二区三区| 涩涩av久久男人的天堂| 丰满饥渴人妻一区二区三| av国产久精品久网站免费入址| 自拍欧美九色日韩亚洲蝌蚪91| tube8黄色片| 免费黄色在线免费观看| 亚洲一区中文字幕在线| 欧美人与性动交α欧美软件| 国产成人免费无遮挡视频| 人妻人人澡人人爽人人| 欧美精品亚洲一区二区| 老熟女久久久| 一级a爱视频在线免费观看| 国产一级毛片在线| 国产一区有黄有色的免费视频| 亚洲精华国产精华液的使用体验| 国产免费现黄频在线看| 午夜福利网站1000一区二区三区| 亚洲精品自拍成人| 欧美人与性动交α欧美精品济南到| 极品人妻少妇av视频| 丰满乱子伦码专区| 欧美人与性动交α欧美软件| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 这个男人来自地球电影免费观看 | 亚洲国产精品成人久久小说| 乱人伦中国视频| 午夜福利一区二区在线看| 人人妻人人澡人人爽人人夜夜| 日韩av在线免费看完整版不卡| 一区二区av电影网| 黄色毛片三级朝国网站| 日韩中文字幕欧美一区二区 | 国产毛片在线视频| 伊人亚洲综合成人网| 亚洲欧洲国产日韩| 亚洲 欧美一区二区三区| 久久久久精品性色| 高清在线视频一区二区三区| 午夜免费男女啪啪视频观看| 满18在线观看网站| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 国精品久久久久久国模美| 超碰成人久久| 免费黄色在线免费观看| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 女人高潮潮喷娇喘18禁视频| 欧美精品亚洲一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲成色77777| 国产成人精品无人区| 精品国产一区二区三区久久久樱花| 哪个播放器可以免费观看大片| 99久久精品国产亚洲精品| 精品午夜福利在线看| 久久热在线av| 亚洲欧美一区二区三区国产| 999久久久国产精品视频| 男人添女人高潮全过程视频| 国产精品久久久久久精品电影小说| 在现免费观看毛片| 亚洲国产精品国产精品| 赤兔流量卡办理| 国产精品久久久久久人妻精品电影 | 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 伦理电影大哥的女人| 久久99精品国语久久久| 七月丁香在线播放| 精品久久久久久电影网| 一区二区av电影网| 国产一区二区在线观看av| 日韩不卡一区二区三区视频在线| 亚洲人成77777在线视频| 国产一卡二卡三卡精品 | 一级片免费观看大全| 91精品三级在线观看| 欧美精品高潮呻吟av久久| 美女午夜性视频免费| 亚洲成人免费av在线播放| 最近2019中文字幕mv第一页| av女优亚洲男人天堂| 啦啦啦中文免费视频观看日本| xxxhd国产人妻xxx| 亚洲综合精品二区| 午夜91福利影院| 午夜免费鲁丝| 综合色丁香网| 日本欧美国产在线视频| 一边摸一边做爽爽视频免费| 久久久久精品性色| 男人舔女人的私密视频| 欧美亚洲日本最大视频资源| 精品国产超薄肉色丝袜足j| 国产亚洲最大av| 免费高清在线观看视频在线观看| www.av在线官网国产| 免费日韩欧美在线观看| 大片免费播放器 马上看| 久久 成人 亚洲| 久久久精品94久久精品| 亚洲精品美女久久av网站| 看十八女毛片水多多多| 国产探花极品一区二区| 亚洲中文av在线| 大陆偷拍与自拍| 久久鲁丝午夜福利片| 国产成人系列免费观看| 精品国产露脸久久av麻豆| 一区二区av电影网| 中国国产av一级| av不卡在线播放| 嫩草影视91久久| 中文字幕人妻丝袜一区二区 | 久久精品国产亚洲av涩爱| 亚洲一码二码三码区别大吗| 亚洲伊人久久精品综合| 99热网站在线观看| 午夜免费鲁丝| 一级黄片播放器| 亚洲国产看品久久| 在线天堂中文资源库| 一级毛片黄色毛片免费观看视频| 最新在线观看一区二区三区 | 熟妇人妻不卡中文字幕| av视频免费观看在线观看| 人成视频在线观看免费观看| 午夜久久久在线观看| 看免费av毛片| 婷婷色av中文字幕| 亚洲精品美女久久久久99蜜臀 | 亚洲色图 男人天堂 中文字幕| 国产极品天堂在线| 搡老乐熟女国产| 久久久精品94久久精品| 国产一区二区三区av在线| 国产av国产精品国产| 人体艺术视频欧美日本| 天堂中文最新版在线下载| 久久久亚洲精品成人影院| 一级毛片 在线播放| 国产成人欧美在线观看 | 婷婷色av中文字幕| 国产精品免费大片| 夜夜骑夜夜射夜夜干| 韩国精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 国产免费视频播放在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产 一区精品| 国产男女内射视频| 老司机在亚洲福利影院| 久热这里只有精品99| 在线天堂最新版资源| 男女边摸边吃奶| 亚洲人成电影观看| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 人人妻人人澡人人爽人人夜夜| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 另类精品久久| 美女午夜性视频免费| 亚洲精品一二三| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 免费观看性生交大片5| 热re99久久国产66热| 熟妇人妻不卡中文字幕| 90打野战视频偷拍视频| 国产麻豆69| 欧美国产精品一级二级三级| a 毛片基地| 国产精品人妻久久久影院| 色视频在线一区二区三区| 国产精品欧美亚洲77777| 婷婷色综合www| 成年av动漫网址| 午夜免费鲁丝| 亚洲一区中文字幕在线| 人妻人人澡人人爽人人| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 国产在视频线精品| 成年av动漫网址| 亚洲成色77777| 欧美精品一区二区大全| 国产成人精品无人区| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 欧美黑人精品巨大| 超色免费av| 国产一区二区 视频在线| 国产日韩欧美视频二区| 男人添女人高潮全过程视频| 老鸭窝网址在线观看| 国产黄色免费在线视频| 在线观看免费日韩欧美大片| 亚洲,一卡二卡三卡| 欧美日韩av久久| 18禁国产床啪视频网站| 午夜av观看不卡| 国产av国产精品国产| 韩国精品一区二区三区| 欧美黑人精品巨大| 久久av网站| 香蕉国产在线看| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 美女高潮到喷水免费观看| 久久久久精品久久久久真实原创| netflix在线观看网站| 亚洲国产精品国产精品| 亚洲成人av在线免费| 操美女的视频在线观看| 下体分泌物呈黄色| 日韩一区二区视频免费看| 伊人亚洲综合成人网| 久久久久人妻精品一区果冻| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 天天操日日干夜夜撸| 五月开心婷婷网| 女人久久www免费人成看片| 一本一本久久a久久精品综合妖精| 国产精品av久久久久免费| 国产一区二区在线观看av| 久久久久网色| 男女午夜视频在线观看| 免费观看av网站的网址| 国产男女内射视频| 亚洲三区欧美一区| 亚洲五月色婷婷综合| 一个人免费看片子| 国产精品国产三级专区第一集| 丰满迷人的少妇在线观看| 熟妇人妻不卡中文字幕| 久久久久久久久久久久大奶| 黄片播放在线免费| 久久精品亚洲熟妇少妇任你| 欧美97在线视频| 如日韩欧美国产精品一区二区三区| 在线观看三级黄色| 亚洲五月色婷婷综合| 国产探花极品一区二区| 成年女人毛片免费观看观看9 | av福利片在线| 精品少妇内射三级| av在线app专区| 国产福利在线免费观看视频| 在线观看国产h片| 久久久精品区二区三区| 亚洲av日韩精品久久久久久密 | 成人漫画全彩无遮挡| 欧美中文综合在线视频| 亚洲精品在线美女| 黄片小视频在线播放| 亚洲在久久综合| 免费高清在线观看视频在线观看| 亚洲国产精品一区二区三区在线| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 一级爰片在线观看| 久久久久精品人妻al黑| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| av在线app专区| 国产熟女午夜一区二区三区| 国产麻豆69| 日日撸夜夜添| 不卡av一区二区三区| 国产不卡av网站在线观看| 电影成人av| 久久97久久精品| 国语对白做爰xxxⅹ性视频网站| 婷婷成人精品国产| 女的被弄到高潮叫床怎么办| 中文乱码字字幕精品一区二区三区| av不卡在线播放| 久久人人爽人人片av| 青春草视频在线免费观看| 香蕉丝袜av| 99国产精品免费福利视频| av免费观看日本| av网站免费在线观看视频| 黄色怎么调成土黄色| 亚洲成人免费av在线播放| 欧美日韩成人在线一区二区| 天天躁日日躁夜夜躁夜夜| 男女午夜视频在线观看| 丝袜人妻中文字幕| 在线观看免费高清a一片| 欧美乱码精品一区二区三区| 无遮挡黄片免费观看| 天天操日日干夜夜撸| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 国产精品一国产av| 老司机影院成人| 亚洲男人天堂网一区| 99热网站在线观看| 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 一级毛片 在线播放| 亚洲五月色婷婷综合| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久人妻精品电影 | 极品少妇高潮喷水抽搐| 麻豆精品久久久久久蜜桃| 亚洲少妇的诱惑av| 亚洲av成人不卡在线观看播放网 | 巨乳人妻的诱惑在线观看| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 国产淫语在线视频| 狠狠婷婷综合久久久久久88av| 国产 一区精品| 汤姆久久久久久久影院中文字幕| 色综合欧美亚洲国产小说| 十分钟在线观看高清视频www| 麻豆精品久久久久久蜜桃| 黄色视频不卡| 精品第一国产精品| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 免费黄频网站在线观看国产| h视频一区二区三区| 久久精品国产亚洲av高清一级| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区国产| 天天添夜夜摸| 国产精品 欧美亚洲| 麻豆乱淫一区二区| 亚洲七黄色美女视频| 亚洲精品久久午夜乱码| 欧美黑人精品巨大| 99热网站在线观看| 亚洲成人手机| 亚洲欧美一区二区三区国产| 亚洲国产精品国产精品| 亚洲精品视频女| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 美女国产高潮福利片在线看| 国产在线视频一区二区| 大片电影免费在线观看免费| 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 亚洲国产欧美网| 国产xxxxx性猛交| 在线观看免费午夜福利视频| 久久精品亚洲av国产电影网| 99热网站在线观看| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 一本久久精品| 99国产精品免费福利视频| 亚洲国产欧美一区二区综合| 中文字幕人妻熟女乱码| 咕卡用的链子| 侵犯人妻中文字幕一二三四区| 国产男女超爽视频在线观看| 观看美女的网站| 国产成人欧美| 亚洲精华国产精华液的使用体验| www日本在线高清视频| www日本在线高清视频| 97在线人人人人妻| 美女大奶头黄色视频| 欧美黄色片欧美黄色片| 亚洲av日韩在线播放| 观看av在线不卡| av天堂久久9| 9热在线视频观看99| 精品人妻一区二区三区麻豆| 中文字幕人妻丝袜一区二区 | 大陆偷拍与自拍| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区综合在线观看| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 老熟女久久久| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 女人爽到高潮嗷嗷叫在线视频| 建设人人有责人人尽责人人享有的| 国产成人系列免费观看| 成人亚洲精品一区在线观看| 一级片'在线观看视频| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 国产伦理片在线播放av一区| 午夜福利免费观看在线| 成人黄色视频免费在线看| 高清av免费在线| 久久人人爽av亚洲精品天堂| 黄色 视频免费看| 99re6热这里在线精品视频| 99精品久久久久人妻精品| 最近中文字幕高清免费大全6| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 青草久久国产| 黄色怎么调成土黄色| 女的被弄到高潮叫床怎么办| h视频一区二区三区| 国产在线免费精品| 亚洲欧美成人综合另类久久久| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 久久性视频一级片| 丝袜脚勾引网站| 一级毛片黄色毛片免费观看视频| av国产精品久久久久影院| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 欧美97在线视频| 久久这里只有精品19| 免费黄色在线免费观看| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 秋霞伦理黄片| 欧美日韩亚洲国产一区二区在线观看 | 美女主播在线视频| 国产深夜福利视频在线观看| 各种免费的搞黄视频| 久久久精品免费免费高清| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| netflix在线观看网站| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 亚洲中文av在线| 免费观看性生交大片5| kizo精华| 性少妇av在线| 18禁观看日本| 日本午夜av视频| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 少妇人妻精品综合一区二区| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 在线观看www视频免费| 色精品久久人妻99蜜桃| 色播在线永久视频| 精品免费久久久久久久清纯 | 欧美中文综合在线视频| 男人添女人高潮全过程视频| xxx大片免费视频| 欧美av亚洲av综合av国产av | 午夜精品国产一区二区电影| 哪个播放器可以免费观看大片| 精品少妇一区二区三区视频日本电影 | 国产av一区二区精品久久| 一本色道久久久久久精品综合| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 五月天丁香电影| 90打野战视频偷拍视频| 亚洲一区中文字幕在线| 欧美在线一区亚洲| 一边摸一边抽搐一进一出视频| 老司机影院毛片| 在线观看免费高清a一片| av有码第一页| 丁香六月欧美| 亚洲国产精品一区二区三区在线| 超碰成人久久| 亚洲第一区二区三区不卡| 国产在视频线精品| 中文字幕人妻丝袜制服| www日本在线高清视频| 成年美女黄网站色视频大全免费| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 精品福利永久在线观看| 久久久久国产精品人妻一区二区| 汤姆久久久久久久影院中文字幕| 久久人人爽人人片av| 最近中文字幕2019免费版| 色播在线永久视频| 国产成人一区二区在线| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 嫩草影院入口| 性高湖久久久久久久久免费观看| 久久韩国三级中文字幕| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 最黄视频免费看| 少妇精品久久久久久久| 9色porny在线观看| 狠狠婷婷综合久久久久久88av| 女性被躁到高潮视频| 免费人妻精品一区二区三区视频| av线在线观看网站| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 黄色视频在线播放观看不卡| 看非洲黑人一级黄片| 久久狼人影院| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 国产黄色免费在线视频| 十八禁高潮呻吟视频| av一本久久久久| 国产一区二区三区综合在线观看| 亚洲一区中文字幕在线| 99香蕉大伊视频| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 美女脱内裤让男人舔精品视频| 午夜激情av网站| 欧美人与性动交α欧美精品济南到| 在线观看一区二区三区激情| 国产精品三级大全| 久久久久久久久久久免费av| 久久久久精品性色| 久久精品久久久久久噜噜老黄| 国产淫语在线视频| 日日摸夜夜添夜夜爱| 制服丝袜香蕉在线| 国产乱来视频区| 国产成人免费观看mmmm| 尾随美女入室| 热99国产精品久久久久久7| 青草久久国产| 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 精品国产乱码久久久久久男人| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久人人做人人爽| 黑人猛操日本美女一级片| 一区二区日韩欧美中文字幕| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| 久久久久网色| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 老司机靠b影院| av福利片在线| 国产av一区二区精品久久| 国产激情久久老熟女| 欧美 日韩 精品 国产| 日本av免费视频播放| 亚洲av综合色区一区| 国产av精品麻豆| 色播在线永久视频| 久久99一区二区三区| 国产精品久久久久久精品电影小说| 十八禁人妻一区二区| 午夜精品国产一区二区电影| 亚洲国产欧美在线一区| 国产成人系列免费观看| 一边亲一边摸免费视频| 1024香蕉在线观看| 色吧在线观看| 捣出白浆h1v1| 一区二区三区乱码不卡18| 女人久久www免费人成看片| 免费黄色在线免费观看| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| 国产激情久久老熟女| 热99久久久久精品小说推荐| 黄色怎么调成土黄色| 人体艺术视频欧美日本| 久久人人爽人人片av| 777米奇影视久久| 国产精品一区二区在线观看99| 啦啦啦啦在线视频资源| 免费黄色在线免费观看| 熟女av电影| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| av卡一久久| 国产精品一国产av| 嫩草影视91久久| 久久久久国产一级毛片高清牌|