• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study

    2018-01-10 01:22:36WANGXiuXiuZHAOJianWeiYUGang
    物理化學(xué)學(xué)報(bào) 2017年9期
    關(guān)鍵詞:納米線嘉興孔洞

    WANG Xiu-Xiu ZHAO Jian-Wei YU Gang,*

    ?

    Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study

    WANG Xiu-Xiu1ZHAO Jian-Wei2YU Gang1,*

    (1;2)

    Based on molecular dynamics simulations, the plastic deformation of silver nanowires under uniaxial tension has been studied systematically. In this paper, the mechanical properties of [111]-oriented twin nanowires with different hole sizes have been studied. The existence of holes has no effect on the elastic deformation stage. The hole on the twin boundary has two main roles in the plastic deformation stage. During the initial stages of plastic deformation, the main function of the hole is to produce new dislocations as dislocation sources at small hole sizes. Upon increasing the hole size, the main effect changes to stop dislocation slip. During the late stages of plastic deformation, the two functions of the hole complement each other, upon increasing the hole size, the function of the hole as dislocation sources becomes obvious, leading to weakening of the plasticity of the nanowires.

    Hole defect; Twin boundary; Tension; Silver nanowire; Molecular dynamics

    1 Introduction

    Metallic nanowires have been synthesized widely owing to their great potential applications in optical science, optical engineering mechanics, electronics and material science, etc1–4. Due to the effect of large surface-to-volume ratios, the structure and properties of nanowires are quite different from those of bulk materials5–8. Investigation of the mechanical behaviors of metal materials can provide the important insights and information to understand the nature of the nanowires and further promote the operation and improve the function of the nanodevices. Considerable studies on experimental measurements and computational simulations of understanding the mechanical properties of metallic nanowires under external loadings have been carried out9–14. Among these studies, it can be concluded that the deformations and strength of metallic nanowires are influenced by many factors, such as twin boundary (TB), defects, surface morphology, strain rate and temperature.

    The TB is a kind of planar stacking faults whose lattice structures exhibit mirror symmetry across the boundary. It has always been of particular interesting because of the role as it plays in deformation processes15–18. In particular, as the critical dimensions of the material reduced to nanoscale, with the increase of the percentage of atoms located at or near the interfaces, the influence of the TBs becomes obvious. For example, many recent investigations in the metallic nanowires are associated with atomic-level mechanisms of plastic deformation at TBs19–24. Previous experiments have shown that the presence of high-density twins in copper nanowires can dramatically enhance the mechanical strength to present the considerable tensile ductility25–28. Compared to the experiments, molecular dynamics (MD) simulations have also been carried to understand the TB-strengthening21,23,29–33. Cao34have investigated the deformation mechanisms of twinned copper nanowires with a square cross-section using the MD simulation. They reported that the smaller TB spacing, the higher yielding stresses of the twinned nanowires. Deng and Sansoz35proposed a similar simulation models compared to the Cao’s work and predicted the linear dependence of yield stress as a function of number of TBs per unit length in periodically twinned Au nanowires with different diameters. Guo and Xia30established an analytical model based on kinetic rate theory to discuss the above-mentioned competing mechanisms. Moreover, Deng and Sansoz36further took the temperature effect into the study and put forward rate-controlling deformation mechanisms to show the surface dislocation emission and twin-slip interaction. All these studies of TB-strengthening demonstrated twin boundary spacing governs the mechanical properties and deformation behaviors of twinned metallic nanowires.

    On the other hand, defects also play an important role in the generation of dislocation, slips or stacking faults. It is demonstrated that the existences of defects destroy the integrity of material structure, and it will lead to the serious influence on the physical properties of nanomaterials37,38. Meyers and Aimone39have observed the dislocation growth near the hole in the experiment of rapid compression of copper grain, copper holes emit a lot of slip bands near grain boundary, but due to the limitation of experimental technology, accurate dislocation and the dynamic process are difficult to acquire. Therefore, molecular dynamics calculation is essentially important for the comprehensive understanding of the defects effect in the microscopic material mechanics40,41. Deng and Sansoz36discovered that special defects could be utilized to approach a near-ideal strength in gold nanowires through microstructural design. Silva42studied the formation, evolution and breaking of gold nanowires, and they showed how defects led to the formation of one-atom constrictions in the gold nanowires.

    Although much progress has been made on the experiment and theoretical calculation, there are rare reports on the direct study combined twin boundary and hole. Therefore, it is worth to study how the combined effects of the hole and twin boundary on the deformation of nanowires. In this work, we designed and constructed the silver nanowires with specific structures. By means of MD simulation, we will present their influence on the TB-strengthening and the deformation mechanism of silver nanowires.

    2 Simulation method

    Cuboid samples with the dimensions of 9.45 nm × 9.45 nm × 22.09 nm and~0.09 million atoms were constructed using a Voronoi tessellation construction as a matrix, as shown in Fig.1. The models of silver samples containing a twin boundary and a hole where on the twin boundary, and the hole is on the twin boundary. Three typical twinned nanowires with holes are illustrated in the figures, while one twinned nanowire with no hole (specimen I) is presented for comparison. The hole radius () of the second, third and fourth wires are 0.33 nm (0.8 lattices) (specimen II),0.82 nm (2.0 lattices) (specimen III) and 2.45 nm (6.0 lattices) (specimen IV), respectively. MD simulations were performed on the polycrystalline silvers with different length-diameter ratios using a self-developed software NanoMD43–47. A constant strain rate of 1.09 × 109s?1was used in all simulations. The embedded atom method (EAM) potential48–50was adopted to analyze the atomic interaction of Face Centered Cubic (FCC) silver atoms. Free boundary conditions were applied in all three spatial dimensions to model a columnar-like structure. Prior to any imposed stress, each sample was equilibrated at a constant temperature for 51.3 ps to relax the unfavorable configurations in the grain boundaries. After reaching a steady-state arrangement, change the hole radius to extract temperature-dependent behaviors of the simulations.

    Fig.1 Atomistic model of [111] silver nanowires.

    (a) specimen I, (b) specimen II, (c) specimen III, (d) specimen IV.

    In order to study the structures of plastically deformed polycrystralline nanowires in detail, different types of defects are identified by means of the centro-symmetry parameter51. The centro-symmetry parameter can be defined as:

    (1)

    where RandR+6are the vectors corresponding to the six pairs of opposite nearest neighbours in the FCC lattice,0is the distance of the nearest neighbours andpis the centro-symmetry parameter value of atomin the lattice. For reference, p< 0.4 corresponds to the FCC structure, especiallyp= 0 reflects a perfect silver lattice. 0.7 <p< 1.2 stands for stacking faults, corresponding to the hexagonal close-packed (HCP) atoms. 1.2 <p< 1.8 represents for atoms halfway between HCP and the surface atoms, andp> 1.8 is equivalent to surface atoms. For convenience,p> 1.2 is regarded as other atoms for discussion in the following paragraphs.

    The stress within the nanowires is computed by the virial scheme, and the overall stress is taken as the average of all atomistic stresses52. The corresponding atomic stress is expressed in terms of embedded-atom method potential functions as follows:

    (2)

    whereis thecomponent of the atomic stress tensor of atom,is its volume,is the mass andvis the velocity component in thedirection of atom,,,andare parameters from EAM potential. The first and second terms on the right side of the above-mentioned equation represent the thermal and atomic interactions, respectively.

    3 Results and discussion

    3.1 The influence of the hole size as studied with the potential energy and stress-strain curves

    Potential energy is the stored energy of an object. It is the energy by virtue of an object’s. Generally, the potential energy is equal to the total energy divided by the total number of atoms in the system. Fig.2 shows the potential energy responses of seven nanowires at 10 K under tensile loading. In the elastic stage (the area <1> in Fig.2), elastic potential energyis the potential mechanical energy stored in the configuration of a material or physical system as work is performed to distort its volume or shape. After fitting, we observe that the potential energy increases in the form of a parabola (= 1/22). Theis 5.90 × 10?12, 6.51 × 10?12, 6.69 × 10?12, 6.65 × 10?12, 6.27 × 10?12and 6.35 × 10?12eV·strain?1, respectively. After many fitting, the error range ofis 3%–6%. From Fig.2, we can observe that the twinned nanowire without hole has least potential energy. At small hole size, the potential energy of the sample is lower than the single crystal nanowire, by raising hole size, the potential energy is higher than the single crystal nanowire.This is because the inner surface atoms of the hole can increase the potential energy. With the increase of the hole size, the hole effect on the potential energy is dominant. In the plastic stage, the potential energy has a slight decline, then, because of the large amounts of dislocation slips produced, the potential energy presents fluctuation. It is known that the potential drop is proportional to the sliding area. The TB can block the dislocation slip during the stretching, reducing the area. Therefore, the sample of single crystal needs biggest potential drop on dislocation slip. We also observe that the potential drop increases with the hole size increasing. This is because the larger hole releases more energy while the structure collapses during stretching.

    Fig.2 Potential energy curves for Ag nanowires at 10 K. color online.

    Fig.3 plots the stress-strain curves of the ten nanowires at 10 K. Ten nanowires subjected to a tensile loading exhibit the features of both elastic and plastic deformations. It is observed that each curve increases up to a threshold stress, corresponding to the yield point. The yield stress of the single crystal nanowire is expected to exhibit a maximum yield stress, that is, about 20% larger than that of the twinned nanowires with a hole in spite of the hole size. After the yield point, the curves decrease with significant fluctuations until the final breaking.

    Fig.3 Stress-strain curves for the ten simulated Ag nanowires.color online.

    To further reveal the influence of the hole on the deformation and breaking behaviors, we studied yield stress, yield strain, Young′s modulus and fracture strain as functions of the hole radius. Fig.4(a) shows the yield stress-hole radius curve. We can observe that the yield stress does not have significant change with the increase of the hole size, the average of the yield stress is about (3.67±0.08) GPa, less than that of single crystal. Similarly, the hole has no obvious effect on the yield strain as shown in Fig.4(b). The average value of the yield strain is about 0.045±0.006. In Fig.4(c), the average Young’s modulus has a first increase followed by a decrease with hole radius increasing, but the overall change is not obvious. Gao.53studied the silver nanowires with different twin boundary spacing, they found that twin boundary spacing has no effect on Young’s modulus. Gao also mentioned that the effect of hole size on silver nanowires is not significant in his Ph.D. thesis, which is consistent with our result. We know the Young’s modulus is defined as the stress of a material divided by its strain in the elastic deformation region, which may be used to evaluate the mechanical strength of the nanowires. So, from Fig.4((a)?(c)), we can observe that the hole effect on the twinned Ag nanowires is not obvious in elastic region. Fig.4(d) illustrates the fracture strain as function of the hole radius. We observed that with the increase of the hole radius, the fracture strain decreases. We can explain the decrease of the fracture strain from the generation of dislocations. Most dislocations are originated from surfaces, including the inter surface of the cavity. Therefore, the larger the inter surface may result in more dislocations. Then, the system more quickly reaches the necking position till final breaking, showing a smaller fracture strain. Meanwhile, the surface, including the inner surface, can block the propagation of the dislocation, the bigger the inner surface, the smaller the dislocation area, thus the fluctuation gets smaller.

    3.2 Influence of the hole size as studied with the statistics of the specific atoms

    To reveal the hole radius-dependence of plastic deformation samples, Fig.5 illustrates the evolution of the relative numbers of FCC, HCP and other atoms in the series of nanowires during the tensile loading. The relative number of the atoms is defined as the number at a certain strain subtracts the number before deformation. The positive value represents the increase, and. In the elastic deformation region with the strain from 0 to 3.0%, there is no significant change in the number of all atoms. After 3.0% strain, the nanowires get into the plastic deformation stage. The number of FCC atoms decreases accompanied with increasing HCP atoms. The sharp increase of HCP atoms in incipient plastic deformation indicates that the nucleation and motion of dislocation activities may be the dominant deformation mechanism for samples. The number of other atoms has a small increase in different time periods, as shown in Fig.5. The other atoms mainly represent the atoms in low centrosymmetry environment, including the hole surface atoms. In the late stage of plastic deformation (after 0.045 strain), the reduction of FCC atoms is not completely converted to HCP atoms, but also leads to the increase of the other atoms. It indicates that the mechanism transition in the late stage of plastic deformation.

    Fig.4 Mechanical properties of Ag nanowires with different hole size.

    (a) the yielding stress, (b) the yielding strain, (c) Young’s modulus and (d) fracture strain of the nanowire plotted against the hole size, respectively.

    Fig.5 Reduce number of different atoms versus strain of [111] elongation.

    (a) specimen I; (b) specimen II; (c) specimen III; (d) specimen IV.

    Generally, the change of the number of HCP atoms shows the generation of dislocations. In order to further investigate the hole effects, we draw the variation speed of the number of HCP atoms with hole surface area curve as shown in Fig.6. From Fig.6, we can observe that when the hole radius is less than 2.5 lattices, the variation speed of the number of HCP atoms increases with the hole surface area increasing. In contrast, when the hole size is more than 2.5 lattices, the variation speed of the number of HCP atoms decreases with the hole surface area increasing. We can infer that when the hole radius is less than 2.5 lattices, with the increase of the hole, more dislocations are generated from hole surface, so the faster the number of HCP atoms increased. Interestingly, the rate increases linearly with the increase of the hole surface area. But hole radius to a certain extent, because of the function which the hole can blocks dislocation slips, the slip plane area gets smaller, thus, the speed of the number of HCP atoms decreases.

    Fig.6 FCC atoms reduce rate with different hole surface area.

    3.3 Influence of the hole size as studied with the atomic configuration

    To further study how the hole affects the plastic deformation of the nanowire, we have captured the microstructure evolution of specimens I, II, III and IV, respectively. The microstructure evolution of specimens I and III are shown in Figs.1 and 2 in supplementary material.

    Figs.7 and 8 show the dislocation evolution in specimens II and IV at yield point and the following picoseconds. Figs.7(a) and 8(a) correspond to the true yield point. At true yield point, the initial dislocations are all emitted from the surface in specimens II and IV (the letter “A” in Figs.7(a) and 8(a)) and it is not affected by the hole, in accordance with the result of the first stage which the hole has no effect on the initial dislocation generated in Fig.5. Figs.7(b, c), and 8(b, c) correspond to the yield point and the first release point, respectively. From the microscopic point of view, it is explained that with the increase of hole radius, the change rate of HCP atomic number increases first and then decreases. Compared with specimen IV, the main hole of specimens II, III is as dislocation sources generate new dislocations (the letter “B” in Figs.7(b) and 8(b)). While the main role of the hole of specimen IV blocks the dislocation slips, and the dislocation generated rate is lower than specimens I, II, III corresponding to Fig.6. In Figs.7(c) and 8(c), a large number of dislocations are generated and partial dislocations are absorbed by twin boundary or the front dislocation. In Fig.8(c), the hole in twin boundary has two roles, one generates new dislocations as dislocation sources, and the other blocks the dislocation slip. Figs.7(d) and 8(d) corresponds to the strain is 0.1, where the number of HCP atoms appears fluctuation. In Figs.7(d) and 8(d), the continuous generation and disappearance of the dislocations result in the number of HCP atoms appearing fluctuation. Figs.7(e) and 8(e) corresponds to the point where the necking appears. In Fig.7(e), the necking appears at the 1/2 of the nanowire when it deforms to 26%. The necking of specimen IV appears at the hole surface when the nanowire deforms to 15% in Fig.8(e). Combining Figs.4(d) and 5, we can observe that the larger the hole, the easier the necking appears and the easier the nanowires break.

    Fig.7 Tensile yielding of specimen II at 10 K.

    (a) the generation of the initial dislocation specimen II before yield point. (b) atomic structure of the deformed sample at= 4.1%. (c) atomic structure of the deformed sample at= 6.2%. (d) atomic structure of the deformed sample at= 10.0%. (e) atomic structure of the deformed sample at= 26.0%.

    Fig.8 Tensile yielding of specimen IV at 10 K.

    (a) the generation of the initial dislocation specimen IV before yield point. (b) atomic structure of the deformed sample at= 4.2%. (c) atomic structure of the deformed sample at= 5.7%. (d) atomic structure of the deformed sample at= 10.0%. (e) atomic structure of the deformed sample at= 15.0%.

    Conclusively, the hole has no effect on the elastic deformation of twin silver nanowires. The hole effect is mainly manifested in the plastic deformation stage. There are two main functions, one is to block the dislocation slips, the other is to generate new dislocations as dislocation sources. In the initial plastic deformation, the main function of the hole is to generate new dislocations as dislocation sources at small hole size. By raising the hole size, the main function of the hole is to block dislocation slip. In the late stage of plastic deformation, the two functions of the hole complement each other, with the hole size increasing, the function of the hole surface atoms as dislocation sources becomes more significant, leading to the plastic of nanowires weaken.

    4 Conclusions

    In this work, we performed a MD simulations on the tensile deformation behavior of twinned nanowires with different hole size at 10 K. It was found that the potential energy is higher than the single crystal nanowire when the hole radius is greater than 1.64 nm, in contrast, the potential energy is lower than the single crystal nanowire. We also found that the initial dislocations are all emitted from the surface and the hole has no effect on the initial dislocation generated. However, in this work, the main finding is that the hole on the twin boundary has two main functions in the plastic deformation stage. In the initial stage of plastic deformation, generating new dislocations as dislocation sources is the main function of the hole at small hole size. By raising the hole size, the main function of the hole is to block dislocation slip. In the late stage of plastic deformation, the two functions of the hole complement each other, with the hole size increasing, the function of the hole surface atoms as dislocation sources becomes more significant, leading to the plastic of nanowires weaken.

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L.... 2004,, 3654. doi: 10.1063/1.1738932

    (2) Liu, H. Q.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G.. 2004,, 671. doi: 10.1021/nl049826f

    (3) Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R.2003,, 112. doi: 10.1126/science.1081940

    (4)Husain, A.; Hone, J.; Postma, H. W. C.; Huang, X. M. H.; Drake, T.; Barbic, M.; Scherer, A.; Roukes, M. L.2003,, 1240. doi: 10.1063/1.1601311

    (5) Park, H. S.; Cai, W.; Espinosa, H. D.; Huang, H. C.2009, 34, 178. doi: 10.1557/mrs2009.49

    (6) Lieber, C. M.; Wang, Z. L.2007,, 99. doi: 10.1557/mrs2007.41

    (7) Alexandrov, A. S.; Kabanov, V. V.2005,, 076601. doi: 10.1103/PhysRevLett.95.076601

    (8) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.. 2003,, 353. doi: 10.1002/chin.200322236

    (9) Liang, H. Y.; Upmanyu, M.; Huang, H. C...2005,, 241403. doi: 10.1103/ PhysRevB.71.241403

    (10) Diao, J.; Gall, K.; Dunn, M. L....2004,, 1935. doi: 10.1016/j.jmps.2004.03.009

    (11) Rodrigues, V.; Fuhrer, T.; Ugarte, D.... 2000,, 4124. doi: 10.1103/PhysRevLett.85.4124

    (12) Rego, L. G. C.; Rocha, A. R.; Rodrigues, V.; Ugarte, D...2002,, 106. doi: 10.1103/ PhysRevB.67.045412

    (13) Kondo, Y.; Takayanagi, K.... 1997,, 3455. doi: 10.1103/PhysRevLett.79.3455

    (14) Wen, Y. H.; Zhang, Y.; Wang, Q.; Zheng, J. C.; Zhu, Z. Z.... 2010,, 513. doi: 10.1016/j.commatsci.2010.02.015

    (15) Algra, R. E.; Verheijen, M. A.; Borgstrom, M. T.; Feiner, L. F.; Immink, G.; Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M.2008,, 369. doi: 10.1038/nature07570

    (16) Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Martensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W... 2006,, 574. doi: 10.1038/nmat1677

    (17) Wang, D. H.; Wang, D. Q.; Hao, Y. J.; Jin, G. Q.; Guo, X. Y.; Tu, K. N.2008,, 215602. doi: 10.1088/0957-4484/19/21/215602

    (18) Shim, H. W.; Zhang, Y.; Huang, H.... 2008,, 10257. doi: 10.1063/1.2979716

    (19) Sansoz, F.; Deng, C.... 2008,, 086101. doi: 10.1063/1.2970029

    (20) Wu, B.; Heidelberg, A.; Boland, J. J.; Sader, J. E.; Sun, X. M.; Li, Y. D.. 2006,, 468. doi: 10.1021/nl052427f

    (21) Sangid, M. D.; Ezaz, T.; Sehitoglu, H.. 2011,, 283. doi: 10.1016/j.actamat.2010.09.032

    (22) Bernardi, M.; Raja, S. N.; Lim, S. K.2010,, 285607. doi: 10.1088/0957-4484/21/28/285607

    (23) Wen, Y. H.; Huang, R.; Zhu, Z. Z.; Wang, Q.... 2012,, 205. doi: 10.1016/j.commatsci.2011.11.020

    (24) Zhang, J. J.; Xu, F. D.; Yan, Y. D.; Sun, T.... 2013,, 684. doi: 10.1007/s11434-012-5575-3

    (25) Lu, K.; Lu, L.; Suresh, S.2009,, 349. doi: 10.1126/science.1159610

    (26) Lu, L.; Sui, M. L.; Lu, K.. 2000,, 1463. doi: 10.1126/science.287.5457.1463

    (27) Lu, L.; Chen, X.; Huang, X.; Lu, K.2009,, 607. doi: 10.1126/science.1167641

    (28) Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K2004,, 422. doi: 10.1126/science.1092905

    (29) McDowell, M. T.; Leach, A. M.; Gaill, K... 2008,, 3613. doi: 10.1021/nl801526c

    (30) Guo, X.; Xia, Y. Z.. 2011,, 2350. doi: 10.1016/j.actamat.2010.06.047

    (31) Kulkarni, Y.; Asaro, R. J.. 2009,, 4835. doi: 10.1016/j.actamat.2009.12.031

    (32) Zhang, Y. F.; Huang, H. C.; Atluri, S. N.... 2008,, 215. doi: 10.3970/cmes.2008.035.215

    (33) Ding, F.; Li, H.; Wang, J. L.; Shen, W. F.; Wang, G. H..... 2002,, 113. doi: 10.1088/0953-8984/14/1/310

    (34) Cao, A. J.; Wei, Y. G.; Mao, S. X.... 2007,, 151909. doi: 10.1063/1.2721367

    (35) Deng, C.; Sansoz, F.2009,, 1517. doi: 10.1021/nl803553b

    (36) Deng, C.; Sansoz, F.2009,, 3001. doi: 10.1021/nn900668p

    (37) Wu, H. A.; Liu, G. R.; Wang, J. S.2004,, 225. doi: 10.1088/0965-0393/12/2/004

    (38) Heino, P.; Hakkinen, H.; Kaski, K.1998,, 641. doi: 10.1103/PhysRevB.58.641

    (39) Meyers, M. A.; Aimone, C. T.1983,, 1. doi: 10.1016/0079-6425(83)90003-8

    (40) Kohlhoff, S.; Gumbsch, P.; Fischmeister, H. F.1991,, 851. doi: 10.1080/01418619108213953

    (41) Fischmeister, H. F.; Exner, H. E.; Poech, M.H.; Kohlhoff, S.; Gumbsch, P.; Schmauder, S.; Sigl, L. S.; Spiegler, R.1989,, 839.

    (42) Silva, E. Z.; Novaes, F. D.; Silva, A. J. R.; Fazzio, A.2004,, 115411. doi: 10.1103/PhysRevB.69.115411

    (43) Zhao, J. W.; Yin, X.; Liang, S.; Liu, Y. H.; Wang, D. X.; Deng, S. Y.; Hou, J..... 2008,, 367. doi: 10.1016/S1005-9040(08)60077-X

    (44) Wang, D. X.; Zhao, J. W.; Hu, S.; Yin, X.; Liang, S.; Liu, Y. H.; Deng, S. Y.. 2007,, 1208. doi: 10.1021/nl0629512

    (45) Liu, Y. H.; Zhao, J. W.; Wang, F. Y...2009,,

    115417. doi: 10.1103//PhysRevB.80.115417

    (46) Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W.2011,, 1624. doi: 10.1039/CONR00797H

    (47) Liu, Y. H.; Wang, F. Y.; Zhao, J. W.; Jiang, L. Y.; Kiguchi, M.; Murakoshi, K..... 2009,, 6514. doi: 10.1039/B902795E

    (48) Johnson, R. A...1988,, 3924. doi: 10.1103/PhysRevB.37.3924

    (49) Johnson, R. A...1988,, 6121. doi: 10.1103/PhysRevB.37.6121

    (50) Johnson, R. A...1989,, 12554. doi: 10.1103/PhysRevB.39.12554.

    (51) Kelchner, C. L.; Plimpton, S. J.; Hamilton, J. C...1998,, 11085. doi: 10.1103/PhysRevB.58.11085.

    (52) Wu, H. A.2006,, 370. doi: 10.1016/j.euromechsol.2005.11.008

    (53) Gao, Y. J.; Sun, Y. L.; Yang, X. B.; Sun, Q.; Zhao, J. W.;2015,, 1546. doi: 10.1080/08927022.2014.999238

    孔洞和孿晶界對(duì)銀納米線形變行為聯(lián)合影響的分子動(dòng)力學(xué)模擬

    汪秀秀1趙健偉2,*余 剛1,*

    (1湖南大學(xué)化學(xué)生物傳感與計(jì)量學(xué)國家重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,長沙 410082;2嘉興學(xué)院材料與紡織工程學(xué)院,浙江 嘉興 314001)

    在分子動(dòng)力學(xué)模擬的基礎(chǔ)上,系統(tǒng)地研究了銀納米線在單軸拉伸條件下的塑性形變。本文研究了不同孔徑大小的[111]晶向的孿晶納米線的力學(xué)性能。研究發(fā)現(xiàn),孔洞的存在對(duì)彈性形變階段沒有影響。孿晶界上的孔洞在塑性形變階段主要有兩個(gè)作用。在初始塑性形變階段,當(dāng)孔洞的尺寸較小時(shí),主要是作為位錯(cuò)源產(chǎn)生新的位錯(cuò);隨著孔洞尺寸的增大,主要作用變?yōu)樽璧K位錯(cuò)滑移。在塑性形變的后期,孔洞的兩個(gè)作用相輔相成,但隨著孔洞尺寸的增大,孔洞作為位錯(cuò)源產(chǎn)生位錯(cuò)的作用變得顯著,最終導(dǎo)致納米線的塑性減弱。

    孔洞缺陷;孿晶界;拉伸;銀納米線;分子動(dòng)力學(xué)

    O641

    10.3866/PKU.WHXB201705087

    March 16, 2017;

    April 27, 2017;

    May 8, 2017.

    YU Gang, Email: yuganghnu@163.com; Tel: +86-1897493643. ZHAO Jian-Wei, Email: zhaojw@nju.edu.cn; Tel: +86-13967321774.

    The project was supported by the National Natural Science Foundation of China (51271074).

    國家自然科學(xué)基金(51271074)資助

    猜你喜歡
    納米線嘉興孔洞
    《初心》
    一種面向孔洞修復(fù)的三角網(wǎng)格復(fù)雜孔洞分割方法
    嘉興學(xué)院
    3d過渡金屬摻雜對(duì)Cd12O12納米線電子和磁性能的影響
    孔洞加工工藝的概述及鑒定要點(diǎn)簡析
    收藏界(2019年3期)2019-10-10 03:16:22
    浙江嘉興卷
    溫度對(duì)NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    玻璃漿料鍵合中的孔洞抑制和微復(fù)合調(diào)控
    嘉興:兩條底線之間的平衡
    搡老乐熟女国产| 久久久亚洲精品成人影院| 久久久久网色| 夜夜看夜夜爽夜夜摸| 欧美日韩一区二区视频在线观看视频在线 | 观看免费一级毛片| 蜜桃亚洲精品一区二区三区| 在线 av 中文字幕| 国产亚洲精品久久久com| 国产淫片久久久久久久久| av女优亚洲男人天堂| 韩国高清视频一区二区三区| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 亚州av有码| 久久精品久久久久久噜噜老黄| 亚洲精品乱码久久久久久按摩| 欧美老熟妇乱子伦牲交| 美女被艹到高潮喷水动态| 成人一区二区视频在线观看| 国产精品人妻久久久久久| h日本视频在线播放| 国产一区有黄有色的免费视频| 在线播放无遮挡| 精品人妻一区二区三区麻豆| 女人被狂操c到高潮| 18禁动态无遮挡网站| 国产亚洲av片在线观看秒播厂| 国产高清三级在线| 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放| 夫妻性生交免费视频一级片| 色5月婷婷丁香| 免费av观看视频| 99re6热这里在线精品视频| 边亲边吃奶的免费视频| 男女国产视频网站| 久热久热在线精品观看| 亚洲色图av天堂| 26uuu在线亚洲综合色| 久久久久久久精品精品| av线在线观看网站| 免费观看在线日韩| 国产成人精品婷婷| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 日韩成人av中文字幕在线观看| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 韩国高清视频一区二区三区| 精品酒店卫生间| 97人妻精品一区二区三区麻豆| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 亚洲国产精品国产精品| 一级毛片黄色毛片免费观看视频| 日韩三级伦理在线观看| 黄色视频在线播放观看不卡| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| 人妻制服诱惑在线中文字幕| 七月丁香在线播放| 亚洲成人久久爱视频| 午夜精品一区二区三区免费看| 你懂的网址亚洲精品在线观看| 一区二区av电影网| 大片免费播放器 马上看| 99久久人妻综合| 网址你懂的国产日韩在线| 久久热精品热| 欧美xxⅹ黑人| 禁无遮挡网站| 日韩亚洲欧美综合| 国产综合懂色| av在线蜜桃| 国产av不卡久久| 国产淫片久久久久久久久| 秋霞伦理黄片| 亚洲精品成人久久久久久| 丝袜美腿在线中文| 久久久亚洲精品成人影院| 视频区图区小说| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久| 精品酒店卫生间| 久久99热这里只有精品18| 亚洲精品影视一区二区三区av| 欧美成人午夜免费资源| 亚洲av日韩在线播放| 777米奇影视久久| 一本一本综合久久| 80岁老熟妇乱子伦牲交| 精品熟女少妇av免费看| 免费播放大片免费观看视频在线观看| 毛片女人毛片| 久久6这里有精品| 麻豆成人午夜福利视频| 国产精品一二三区在线看| 又爽又黄a免费视频| 99久久精品一区二区三区| 少妇高潮的动态图| 男女边摸边吃奶| 有码 亚洲区| 最近手机中文字幕大全| videossex国产| 一区二区三区免费毛片| 九九爱精品视频在线观看| 九草在线视频观看| 日韩欧美精品v在线| 男女国产视频网站| 婷婷色综合www| 欧美丝袜亚洲另类| 又爽又黄a免费视频| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 久久99精品国语久久久| 久久久精品94久久精品| 最近手机中文字幕大全| 舔av片在线| 国产伦精品一区二区三区视频9| 久久99热这里只有精品18| 亚洲精品亚洲一区二区| 亚洲美女视频黄频| 中国国产av一级| 99久国产av精品国产电影| 久久久久性生活片| 中文字幕久久专区| 久久久亚洲精品成人影院| 国产精品女同一区二区软件| 老师上课跳d突然被开到最大视频| 精品国产一区二区三区久久久樱花 | 亚洲三级黄色毛片| 97人妻精品一区二区三区麻豆| 免费观看性生交大片5| 亚洲久久久久久中文字幕| 一级毛片黄色毛片免费观看视频| 国产精品爽爽va在线观看网站| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 国产男女内射视频| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 国产高清有码在线观看视频| 一级爰片在线观看| 国产真实伦视频高清在线观看| av国产精品久久久久影院| 日日啪夜夜爽| 中文字幕av成人在线电影| 最近中文字幕高清免费大全6| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 视频中文字幕在线观看| 成人综合一区亚洲| 日韩精品有码人妻一区| 97精品久久久久久久久久精品| 中国美白少妇内射xxxbb| 草草在线视频免费看| 亚洲精品日本国产第一区| 另类亚洲欧美激情| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 久久久久久久大尺度免费视频| 黄色日韩在线| 各种免费的搞黄视频| 成年人午夜在线观看视频| 国产毛片在线视频| 美女国产视频在线观看| 久久99热6这里只有精品| 免费av不卡在线播放| 大片电影免费在线观看免费| 特大巨黑吊av在线直播| 国产乱人视频| 欧美日韩国产mv在线观看视频 | h日本视频在线播放| 男女下面进入的视频免费午夜| 全区人妻精品视频| 欧美日本视频| 亚洲色图av天堂| 人妻夜夜爽99麻豆av| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 99久久中文字幕三级久久日本| 我要看日韩黄色一级片| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 日韩欧美一区视频在线观看 | 一级毛片我不卡| 亚洲在线观看片| 亚洲自拍偷在线| 久久韩国三级中文字幕| 久久久久久久久久久丰满| 精品国产一区二区三区久久久樱花 | 熟妇人妻不卡中文字幕| 可以在线观看毛片的网站| 精品国产一区二区三区久久久樱花 | 亚洲美女搞黄在线观看| 黄色配什么色好看| 如何舔出高潮| 成人毛片a级毛片在线播放| 校园人妻丝袜中文字幕| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 精品久久久精品久久久| 18+在线观看网站| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 国产精品不卡视频一区二区| 一级片'在线观看视频| 女的被弄到高潮叫床怎么办| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 久久亚洲国产成人精品v| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 亚洲aⅴ乱码一区二区在线播放| 一级毛片 在线播放| av国产精品久久久久影院| 国产精品国产三级国产专区5o| 久久久久久久久久久丰满| 精品酒店卫生间| 欧美bdsm另类| 欧美成人a在线观看| 80岁老熟妇乱子伦牲交| 国产精品久久久久久精品电影| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 人人妻人人爽人人添夜夜欢视频 | 欧美激情在线99| videossex国产| 超碰97精品在线观看| 久久99热6这里只有精品| 国产在线男女| 国产黄色免费在线视频| 欧美性猛交╳xxx乱大交人| 国产亚洲精品久久久com| 国产欧美日韩一区二区三区在线 | 麻豆国产97在线/欧美| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲av国产av综合av卡| 日韩国内少妇激情av| 两个人的视频大全免费| 少妇的逼好多水| 色视频www国产| 欧美激情久久久久久爽电影| 黑人高潮一二区| 亚洲综合精品二区| 又黄又爽又刺激的免费视频.| 亚洲经典国产精华液单| 一区二区av电影网| 国产免费一区二区三区四区乱码| 美女高潮的动态| 亚洲无线观看免费| av在线观看视频网站免费| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 欧美97在线视频| 国产黄频视频在线观看| 在线观看免费高清a一片| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 久久精品夜色国产| 永久免费av网站大全| 午夜福利视频精品| 大香蕉久久网| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 国产精品一区二区三区四区免费观看| 久久久精品欧美日韩精品| 欧美97在线视频| 久久久久久久久大av| 中文字幕亚洲精品专区| 久久国产乱子免费精品| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 久久亚洲国产成人精品v| 精品久久久久久久久av| 国产高清三级在线| 色吧在线观看| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 欧美日韩国产mv在线观看视频 | 亚洲国产高清在线一区二区三| 日本av手机在线免费观看| 成人欧美大片| 日韩av免费高清视频| 美女高潮的动态| 在线天堂最新版资源| 免费高清在线观看视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 成人欧美大片| 亚洲av日韩在线播放| 青春草亚洲视频在线观看| 免费看日本二区| 白带黄色成豆腐渣| 日韩大片免费观看网站| 精品人妻熟女av久视频| 久久久久久久久久成人| 噜噜噜噜噜久久久久久91| 夜夜爽夜夜爽视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本欧美国产在线视频| 欧美xxⅹ黑人| 免费观看的影片在线观看| 亚洲性久久影院| 各种免费的搞黄视频| 免费大片18禁| av国产精品久久久久影院| 免费黄频网站在线观看国产| 亚洲精品视频女| 国产精品久久久久久av不卡| 国产淫语在线视频| 麻豆久久精品国产亚洲av| 一级毛片电影观看| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃 | 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 亚洲av电影在线观看一区二区三区 | 熟女av电影| 亚洲精品色激情综合| 色视频www国产| 亚洲av国产av综合av卡| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 黑人高潮一二区| 久久久精品欧美日韩精品| 18禁在线无遮挡免费观看视频| 三级国产精品片| 欧美高清成人免费视频www| 亚洲av国产av综合av卡| 嫩草影院新地址| 日韩一区二区视频免费看| 亚洲欧美日韩无卡精品| 最近手机中文字幕大全| 中文字幕久久专区| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 观看免费一级毛片| 成人黄色视频免费在线看| 热99国产精品久久久久久7| 久久99热6这里只有精品| 亚洲久久久久久中文字幕| 黄色日韩在线| 午夜激情久久久久久久| 乱系列少妇在线播放| 尾随美女入室| 久久99蜜桃精品久久| 午夜亚洲福利在线播放| 久久精品国产鲁丝片午夜精品| 国产老妇女一区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品,欧美精品| 国产在视频线精品| 国产精品99久久久久久久久| 国产av不卡久久| 精品午夜福利在线看| 亚洲色图综合在线观看| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 亚洲图色成人| 婷婷色麻豆天堂久久| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 91精品一卡2卡3卡4卡| 久久久久久久久大av| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 亚洲国产成人一精品久久久| 美女国产视频在线观看| 男人添女人高潮全过程视频| 久久久久久久午夜电影| 人妻一区二区av| av一本久久久久| 国产伦理片在线播放av一区| 69人妻影院| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 在线天堂最新版资源| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 综合色av麻豆| 久久久久久久久久成人| 性插视频无遮挡在线免费观看| 看十八女毛片水多多多| 禁无遮挡网站| 久久精品人妻少妇| 美女视频免费永久观看网站| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 中国国产av一级| 十八禁网站网址无遮挡 | 黑人高潮一二区| 成人一区二区视频在线观看| 中国国产av一级| 日韩,欧美,国产一区二区三区| 久久97久久精品| 亚洲色图av天堂| 久久久久九九精品影院| 久久久亚洲精品成人影院| 建设人人有责人人尽责人人享有的 | 久久久久性生活片| a级毛色黄片| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 国产午夜福利久久久久久| 春色校园在线视频观看| 高清午夜精品一区二区三区| 91精品伊人久久大香线蕉| 亚洲天堂国产精品一区在线| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 国产精品国产av在线观看| 亚洲av福利一区| 久热久热在线精品观看| av网站免费在线观看视频| 日本爱情动作片www.在线观看| videos熟女内射| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 成年女人看的毛片在线观看| 国产成人免费无遮挡视频| 中文资源天堂在线| 九色成人免费人妻av| 日本一本二区三区精品| 日韩强制内射视频| 久久久久国产网址| 毛片女人毛片| 亚洲真实伦在线观看| 亚洲人成网站在线播| 丰满人妻一区二区三区视频av| 天堂网av新在线| 毛片一级片免费看久久久久| 高清午夜精品一区二区三区| 亚洲精品第二区| 97人妻精品一区二区三区麻豆| 国产91av在线免费观看| 在线观看三级黄色| 麻豆成人av视频| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 久久99蜜桃精品久久| 日本三级黄在线观看| 精品午夜福利在线看| 欧美老熟妇乱子伦牲交| 精品久久久久久久末码| 亚洲精品aⅴ在线观看| 国产69精品久久久久777片| 亚洲av成人精品一二三区| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 久久久久国产网址| 男人和女人高潮做爰伦理| 国产精品国产三级专区第一集| 国产一级毛片在线| 最近最新中文字幕免费大全7| 最近最新中文字幕大全电影3| 又粗又硬又长又爽又黄的视频| 波多野结衣巨乳人妻| 69人妻影院| 日本-黄色视频高清免费观看| 水蜜桃什么品种好| 99热国产这里只有精品6| 国产精品蜜桃在线观看| 国产欧美另类精品又又久久亚洲欧美| a级一级毛片免费在线观看| av国产精品久久久久影院| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美日韩另类电影网站 | 日韩大片免费观看网站| 国产精品人妻久久久久久| 少妇猛男粗大的猛烈进出视频 | 人妻系列 视频| 少妇人妻 视频| 男人添女人高潮全过程视频| 精品少妇久久久久久888优播| 欧美最新免费一区二区三区| 国产精品99久久99久久久不卡 | 免费少妇av软件| 国产精品女同一区二区软件| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| av免费在线看不卡| 精品久久久久久久人妻蜜臀av| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人 | 黄色视频在线播放观看不卡| 久久精品久久久久久噜噜老黄| tube8黄色片| 丰满乱子伦码专区| 五月开心婷婷网| 午夜爱爱视频在线播放| 久久久久精品久久久久真实原创| 国产成人a区在线观看| 美女xxoo啪啪120秒动态图| 色网站视频免费| 久久精品国产亚洲网站| 国产精品一及| 日韩在线高清观看一区二区三区| 国产免费视频播放在线视频| 男的添女的下面高潮视频| 超碰97精品在线观看| 在线观看一区二区三区| 免费看av在线观看网站| 久久精品国产鲁丝片午夜精品| 在线看a的网站| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 亚洲,一卡二卡三卡| 搞女人的毛片| 欧美性感艳星| 人妻一区二区av| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 久久99热这里只频精品6学生| av黄色大香蕉| 国产精品秋霞免费鲁丝片| 99久久人妻综合| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 黑人高潮一二区| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 秋霞伦理黄片| 我要看日韩黄色一级片| 日韩国内少妇激情av| 毛片一级片免费看久久久久| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 日本欧美国产在线视频| 国产一区二区在线观看日韩| 午夜视频国产福利| 精品久久久久久久末码| 国产精品国产三级专区第一集| 久久久久久久国产电影| 亚洲欧洲日产国产| 色网站视频免费| 干丝袜人妻中文字幕| 国产男人的电影天堂91| 大香蕉久久网| 亚洲欧美一区二区三区国产| av国产免费在线观看| 亚洲丝袜综合中文字幕| videossex国产| 街头女战士在线观看网站| 精品久久久噜噜| 国产高清有码在线观看视频| 男女边摸边吃奶| 最近最新中文字幕大全电影3| 亚洲av男天堂| 日本熟妇午夜| 亚洲欧美一区二区三区国产| 视频区图区小说| a级一级毛片免费在线观看| 欧美日韩国产mv在线观看视频 | 免费av毛片视频| 久久久久久久久久成人| 国产淫片久久久久久久久| 成人国产麻豆网| 18+在线观看网站| 亚洲综合精品二区| 3wmmmm亚洲av在线观看| 国产淫语在线视频| 亚洲国产最新在线播放| 久久久午夜欧美精品| 国产日韩欧美在线精品| 国产成人a∨麻豆精品| freevideosex欧美| 熟妇人妻不卡中文字幕| 国产精品爽爽va在线观看网站| 精品酒店卫生间| 麻豆精品久久久久久蜜桃| 黑人高潮一二区| 国产毛片a区久久久久| 久久精品夜色国产| 亚洲伊人久久精品综合| 欧美潮喷喷水| 性色avwww在线观看| 蜜臀久久99精品久久宅男| 精品亚洲乱码少妇综合久久| a级毛片免费高清观看在线播放| 伦理电影大哥的女人| 国产中年淑女户外野战色|