• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consumers’ privacy data sharing between the seller and the e-commerce platform

    2020-07-20 09:20:40ChengYanMeiShuZhongWeijun

    Cheng Yan Mei Shu’e Zhong Weijun

    (School of Economics and Management, Southeast University, Nanjing 210096, China)

    Abstract:Due to the fact that consumers’ privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents, consumers and sellers, a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents (the platform, the seller on it and consumers) under privacy data sharing. Equilibrium decisions show that after sharing consumers’ privacy data once, the platform can collect more privacy data from consumers. Meanwhile, privacy data sharing pushes the seller to reduce the product price. Moreover, the platform will increase the transaction fee if the privacy data sharing value is high. It is also indicated that privacy data sharing always benefits consumers and the seller. However, the platform’s profit decreases if the privacy data sharing value is low and the privacy data sharing level is high. Finally, an extended model considering an incomplete information game among the agents is discussed. The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing. Factors including the seller’s possibility to buy privacy data, the privacy data sharing value and privacy data sharing level affect the two agents’ payoffs. If the platform wishes to benefit from privacy data sharing, it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.

    Key words:privacy data; data sharing; data sharing level; data sharing value; transaction fee

    Consumers’privacy data is of great value to enterprises. With the help of this data, enterprises can recognize the potential consumers and send them targeted advertisement to increase sales[1-4]. In practice, enterprises’ ability to collect consumers’ personal data varies. In the context of e-commerce, the platform of which holds a large amount of consumer data, while sellers on the platform can only obtain a very limited amount. Take taobao.com in China as an example. Taobao.com has obtained a large amount of consumer data, including consumer identity data, browsing data, transaction data, financial data, geographic location data, etc. The sellers on taobao.com can only obtain limited data related to the specific orders submitted by the consumers during the transaction. The lack of consumer data puts sellers at a disadvantage among the competition. In view of this, some e-commerce platforms share consumers’ privacy data to the sellers. For example, taobao.com has launched data analysis tools. The sellers on taobao.com can pay to use these data analyzing tools to improve their marketing ability.

    The impacts of privacy data sharing on the e-commerce platform, the sellers and consumers are multifaceted. For consumers, they bear more privacy risks; on the other hand, privacy data sharing enables consumers to obtain additional personalized services from sellers. For the sellers, privacy data can help them conduct accurate marketing, which is helpful to recognize the demanded consumers; on the other hand, the sells should pay for privacy data sharing. If the sellers can obtain little value from privacy data, accepting privacy data sharing will reduce the profits of sellers. For the e-commerce platform, on the one hand, providing data sharing can increase revenue through the payment of the sellers; meanwhile, data sharing can attract more sellers to join in the platform for the value of consumers’ privacy data; on the other hand, the privacy risk brought by data sharing may cause consumers to be reluctant to purchase products through the platform, thus reducing the transaction commission. In consideration of consumer privacy concerns, by studying the effects of data sharing, we can help the platform to further decide its strategy when sharing privacy data with the seller. The questions we studied specifically include: What is the impact of data sharing on the platform transaction fee setting and the seller’s product price strategy? What is the impact of data sharing on the disclosure of consumers’ privacy data? What is the impact of data sharing on platform profit, seller profit and consumer surplus?

    Recently, researchers have studied the topic of data sharing mainly from three aspects. The first aspect is the role of personal data sharing in the competition of enterprises. For example, Casadesus-Masanell et al.[5]discussed the impact of consumer privacy concerns brought by data transaction behavior of enterprises on enterprise competition. Montes et al.[6]studied the strategy of data dealers selling data to two competing enterprises and the impact of enterprises’ purchase of consumer data on competition. The above literature studied data transaction between data supplier and data demander. These firms have no other connections. Our study focuses on data/data sharing behavior between the platform and the sellers on it. These two agents are connected by data sharing as well as product selling. Data sharing has effects on product selling. Therefore, the effects of data sharing on the agents are more complex. The second aspect is the factors that influence consumers’ personal data sharing behavior[7-11]. Dinev and Hart[12]studied the impact of consumer privacy concerns on personal data disclosure and they found that the existence of privacy concerns led consumers to be reluctant to easily provide personal data on the Internet. Bansal et al.[13]explored the impact of the privacy protection mechanism on privacy data disclosure. They believed that the privacy protection mechanism strengthens consumers’ trust in enterprises, which makes consumers more willing to disclose privacy data. These studies focused on the impact of consumer privacy concerns or privacy protection measures on consumer privacy data disclosure. In fact, the application of privacy data on consumers also has an effect on consumers’ disclosure behaviors[14]. However, at present, there are few studies in this area. The third aspect is that much research focused on data sharing in the supply chain[15-17]. For example, Zhang et al.[18]investigated data sharing and after-sale service in the supply chain and found that data sharing did not always bring a win-win situation to the retailer and manufacturer. Most of these studies discussed the demand data and operation data of the enterprises, while we will study consumers’ privacy data sharing behavior. We focused on the effects of data sharing behavior on the e-commerce platform, seller and consumers. Through constructing a game-theoretic model, we tried to explore the impacts of data sharing on the platform’s transaction fee, the seller’s product price setting as well as on the consumer privacy data disclosure strategy.

    1 Model

    We study the impacts of data sharing on the platform, the seller and consumers in a monopoly market through a theoretic game model. In the model, the platform helps the seller to sell its products and charge transaction fee for each transaction. Consumers buy products on the platform and meanwhile, as required, disclose personal data to the platform as a tradeoff for a personalized service. In order to help the seller operate effectively, the platform applies the data collected from consumers to the firm. We illustrate the relationship among the three agents in Fig.1.

    Fig.1 Relationships among agents

    (1)

    (2)

    To analyze the effects of data sharing, we need to consider a benchmark model where privacy data sharing is unavailable (k=0). We construct a three-stage game, in which in the first stage, the monopolistic platform decides the transaction fee; in the second stage, the seller sets the product price; and in the final stage, consumers decide whether to buy products from the platform, and consumers who purchase decide how much privacy data they provide.

    2 Equilibriums and Analysis

    2.1 Equilibriums of the model

    We proceed to solve the game model by backward induction and obtain the equilibrium solutions. By analyzing the equilibriums, we can obtain the effects of data sharing on the agents.

    We can obtain the first-order derivative of a consumer’s utility with respect to the consumer’s data provision.

    (3)

    where superscript D denotes the equilibriums for the model, in which the platform shares consumers’ personal data with the seller on the platform.

    (4)

    Suppose that when the utility of consumer is positive, the consumer will purchase on the platform. There is an indifferent consumer whose utility is zero.

    (5)

    wherev0refers to the indifferent consumer’s valuation of data disclosing, andy0refers to the indifferent consumer’s data provision. Solving Eq.(5), we can obtain the indifferent data coefficient as

    (6)

    Those consumers, whose data coefficients are higher thanv0, purchase on the platform. Therefore, we can obtain the number of consumers purchasing on the platform given data provision as

    (7)

    Analyzing Eq.(4) and Eq.(7), we can obtain the following lemmas.

    Lemma1Both consumers’ data provision and the number of consumers purchasing on the platform decrease with the increase in a privacy data sharing level.

    According to Eq.(2), we can obtain that the first-order derivative of the seller’s profitπDwith respect to product’s price is

    (8)

    (9)

    Lemma2The product price decreases with the decrease in privacy data sharing level and increases with the increase in transaction fee.

    To maximize the profit, the platform set the transaction fee reacting to the seller’s strategy and the consumer’s strategy. The first-order derivative of the platform’s profitφDwith respect to the transaction fee is

    (10)

    (11)

    Similarly, as we described above, we can obtain the equilibrium transaction fee in the benchmark as

    (12)

    where superscript B denotes the equilibriums for the benchmark model, in which the platform does not share consumers’ personal data with the seller on the platform.

    ComparingtB*with the transaction feetD*in Eq.(11) when the platform is sharing privacy data, we can obtain that, ifγ>d+/2+2α,tD*>tB*; otherwise, ifγ≤d+/2+2α,tD*≤tB*.

    Proposition1Privacy data sharing encourages the platform to increase the transaction fee if the privacy data sharing value is high. Moreover, ifγ>2α, the platform’s transaction fee increases with the increase in the privacy data sharing level; otherwise, it decreases with the increase in the privacy data sharing level. In addition, the platform’s transaction fee decreases with the increase in the platform’s privacy data sharing fee and increases with the increase in the privacy data sharing value.

    The platform would like to set a high transaction fee in order to maximize its profit. However, a high transaction fee may push the seller to opt out of the platform. If the privacy data sharing value is high enough and the seller can still profit from data sharing even though he/she has paid a high transaction fee, the seller will stay on the platform. Consequently, the platform will increase the transaction fee synchronously with the privacy data sharing level. On the other hand, if the privacy data sharing value is low, the platform has to decrease the transaction fee with the privacy data sharing level since a high transaction fee will discourage the seller to engage with it.

    When sharing privacy data, the platform can increase transaction fee if privacy data sharing can help the seller gain great benefits. On the other hand, if privacy data sharing cannot bring a high revenue to the seller, the platform has to decrease the transaction fee. The platform can take two measures to increase the positive effects of privacy data sharing with the seller: 1) Set a low fee on privacy data sharing; 2) Increase the quality of privacy data.

    2.2 Equilibriums analysis

    In equilibrium, we can obtain the product price in the case of sharing privacy data as

    (13)

    Meanwhile, in the benchmark, the seller sets the product price as

    (14)

    Proposition2Privacy data sharing causes the seller to set a lower product price no matter how much the seller has to pay for privacy data. In addition, the higher the privacy data sharing value (or privacy data sharing level) is, the lower the product price is.

    Privacy data sharing, especially when the privacy data sharing value or privacy data sharing level is high, helps cut down the seller’s costs on the products by accurate marketing and brings extra revenue, which can increase the seller’s net profit even though product price decreases. Meanwhile, a low product price means high demand in the market.

    In equilibrium, we can obtain the equilibrium demand of consumers as

    (15)

    (16)

    The equilibrium number of potential consumers in the benchmark is

    (17)

    (18)

    Proposition3When the platform shares privacy data, more consumers purchase on the platform. Meanwhile, the platform can collect a larger quantity of data. Moreover, the higher the privacy data sharing value or privacy data sharing level is, the more consumers the platform can attract and the more data it can collect.

    Although the privacy data sharing level has increased consumers’ privacy risk, it also decreases product price. Obviously, the reduction of product price brings greater positive effects on consumers. Therefore, consumers are more willing to purchase on the platform. Furthermore, even though the purchasing consumers disclose less privacy data due to privacy concerns[20-21], the large scale of consumers increases the total quantity of data that the platform can collect.

    The proposition indicates that privacy data sharing can help the platform encourage more consumers to purchase as well as collect more privacy data from them. Moreover, since the number of consumers and data collection increases with the increase in the privacy data sharing value, the platform can take measures to increase privacy data sharing value, such as preventing consumers from providing false data, regulating the sellers’ transaction fraud behavior and investing to improve the data analytic capability.

    In equilibrium, the profit of the platform when sharing privacy data is

    (19)

    The profit of the platform when not sharing privacy data is

    (20)

    ComparingφDwithφB, we can obtain

    (21)

    where Δφ=φD-φB.

    We can obtain the results as follows:

    The profit of the firm when sharing privacy data is

    (22)

    The profit of the firm when not sharing privacy data is

    (23)

    The first-order derivative of the platform’s profit when sharing privacy data with respect to sharing level (k) is

    (24)

    When sharing privacy data, consumer surplus is

    CSD=(d+-d-) ·

    (25)

    When not sharing privacy data, consumer surplus is

    (26)

    Comparing CSDwith CSB, we can obtain that CSD≥CSB.

    Proposition4Compared with the benchmark, if the platform shares privacy data to the firm, the platform earns a lower profit when the privacy data sharing value is low and the platform provides a high privacy data sharing level. In addition, both the seller’s profit and consumer surplus increase under privacy data sharing.

    For the seller, privacy data sharing brings extra revenue. For the consumers, since the seller sets a low product price under privacy data sharing, their cost of obtaining the desired product decreases. Therefore, privacy data sharing benefits both the seller and the consumers. For the platform, the high privacy data sharing value can help it to set a high transaction fee, which increases the platform’s profit. Under a low privacy data sharing value, the platform can increase its transaction fee only when it provides a low level of privacy data sharing, which is discussed in Proposition 1.

    If the platform can collect a high quality of data and make good use of this data,privacy data sharing has a high value for the seller. Consequently, sharing privacy data is a good choice for the platform. On the other hand, if the platform cannot provide a high value of privacy data sharing, we suggest that the platform does not share privacy data. Take the two biggest e-commerce platforms, Tmall.com and JD.com, for example. Tmall.com shares while JD.com does not. We found that unlike JD.com, Tmall.com collects a large quantity of consumer data, meanwhile, it has regulations and technologies to keep this data highly valued.

    3 Extensions

    In this part, we consider the condition that the seller on the platform has a possibility to buy privacy data. Suppose that the possibility for the seller on the platform to buy privacy data isq.

    The number of consumers in the market is

    (27)

    According to the seller’s behavior, the platform sets the transaction fee as

    (28)

    Furthermore, the platform can obtain an equilibrium payoff as follows:

    (29)

    Consumers’ surplus is

    (30)

    Comparing with the equilibriums in the benchmark, we can obtain the following results.

    Proposition5If the seller has a possibility to buy privacy data from the platform, privacy data sharing has the same effects on consumers’ disclosing behavior, consumers’ purchase behavior, the platform’s transaction fee and consumers’ surplus whether the seller buys privacy data or not. Moreover, privacy data sharing brings higher payoff to the platform under one of the conditions below: 1) The possibility of the seller’s buying privacy data is high. 2) The possibility of the seller’s buying privacy data is low and the privacy data sharing value is high. 3) The possibility of the seller’s buying privacy data is low; the privacy data sharing value is low and the privacy data sharing fee is neither too high nor too low.

    The proposition indicates that the seller’s decision on buying privacy data influences the effects of privacy data sharing on the platform’s payoff. This is because privacy data sharing can bring extra revenue to the platform if the seller buys it.

    The seller decides whether to buy privacy data or not by calculating the benefits and costs of buying privacy data. If the seller does not buy privacy data, the seller sets its product price as

    (31)

    where subscript N denotes the equilibriums for the situation that the seller does not buy privacy data from the platform.

    Given the equilibrium product price, the profit of the seller is

    (32)

    In addition, if the seller buys privacy data, the seller sets the product price as

    (33)

    where subscript A denotes the equilibriums for the situation that the seller buys privacy data from the platform.

    Given the equilibrium product price, the profit of the seller is

    (34)

    Comparing with the equilibriums in the benchmark, we can obtain the following results.

    Proposition6The seller buys privacy data if the privacy data sharing value is lower than the privacy data sharing fee. When the seller buys privacy data, privacy data sharing makes the seller set a lower product price and the seller can obtain a higher profit if the privacy data sharing value is high. When the seller buys privacy data, if the data service value is low (γ<3d+/q+3α), data service makes the firm set a lower product price. Meanwhile, the seller can obtain a higher profit.

    The proposition shows that if the seller does not buy privacy data, the product price may be kept lower. This indicates that privacy data sharing can decrease product price whether the seller buys privacy data or not. However, we can also see that the seller’s profit cannot increase with the increase in privacy data sharing even though the seller buys privacy data. This is because an incomplete data of privacy data sharing acceptance by the seller makes the number of consumers in the market decrease.

    4 Conclusion

    The e-commerce platform profits from the transactions that the seller on it brings. Sharing privacy data with the firm, the platform can help the seller increase the possibility of getting more transactions. However, privacy data sharing increases privacy risks for the consumers, which may induce them to opt out of the market. We analyze the effects of privacy data sharing on the agents through a theoretic game model, supposing that the seller buys the privacy data once the platform provides it. The results show that: 1) In the monopoly market, privacy data sharing benefits both the seller and consumers. However, the platform’s profit decreases when the privacy data sharing value is low and privacy data sharing level is high. 2) If the platform can control the data and keep the data collected at a high quality, it is a good choice for the platform to share privacy data with the seller. 3) In the extended model, the seller’s decision on privacy data sharing acceptance is uncertain, and only the platform’s payoff and the seller’s profit are influenced by the seller’s decision.

    In the future, we will further discuss consumers’ privacy data sharing in the context of competition. That is, how privacy data sharing works between two competing platforms or how a platform shares privacy data to competing sellers.

    免费观看精品视频网站| 人妻久久中文字幕网| 久久人妻福利社区极品人妻图片| 国产一区二区三区在线臀色熟女| 黄色视频,在线免费观看| 精品国产乱码久久久久久男人| 啪啪无遮挡十八禁网站| 成年人黄色毛片网站| 在线观看日韩欧美| 精品久久蜜臀av无| 色尼玛亚洲综合影院| 久久青草综合色| 久久精品国产综合久久久| 757午夜福利合集在线观看| 午夜两性在线视频| 亚洲 国产 在线| 美女午夜性视频免费| 亚洲视频免费观看视频| 天堂√8在线中文| 中文字幕另类日韩欧美亚洲嫩草| 老鸭窝网址在线观看| 麻豆国产av国片精品| 亚洲一区高清亚洲精品| 高清在线国产一区| 精品国产乱子伦一区二区三区| 好看av亚洲va欧美ⅴa在| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费| av天堂在线播放| av在线播放免费不卡| 亚洲av成人av| 久久精品国产亚洲av高清一级| 18禁美女被吸乳视频| 久久久久国内视频| 一区在线观看完整版| av片东京热男人的天堂| 成人18禁在线播放| 国产亚洲欧美精品永久| 最新美女视频免费是黄的| 男男h啪啪无遮挡| 色老头精品视频在线观看| 色哟哟哟哟哟哟| 日韩精品免费视频一区二区三区| 欧美激情 高清一区二区三区| 亚洲中文av在线| 亚洲精品国产精品久久久不卡| 久久天堂一区二区三区四区| 国产一卡二卡三卡精品| 一进一出好大好爽视频| av欧美777| 亚洲成人国产一区在线观看| 女性生殖器流出的白浆| 欧美在线一区亚洲| 男人操女人黄网站| 久9热在线精品视频| 久久这里只有精品19| 自拍欧美九色日韩亚洲蝌蚪91| 9色porny在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩精品网址| 亚洲精品在线美女| 久久人人精品亚洲av| 日韩欧美三级三区| 好看av亚洲va欧美ⅴa在| 国产成人免费无遮挡视频| 看黄色毛片网站| 精品国产国语对白av| 手机成人av网站| 精品一区二区三区视频在线观看免费| 国产一区二区三区视频了| 丝袜在线中文字幕| 人人妻人人澡欧美一区二区 | 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 国产成人免费无遮挡视频| 美女国产高潮福利片在线看| 老汉色∧v一级毛片| 国产精品香港三级国产av潘金莲| 午夜影院日韩av| 18禁观看日本| 波多野结衣高清无吗| 一边摸一边抽搐一进一出视频| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 精品久久久久久,| 国产精品一区二区三区四区久久 | 精品一品国产午夜福利视频| 99国产精品免费福利视频| 岛国视频午夜一区免费看| 亚洲精品粉嫩美女一区| 免费高清视频大片| 淫秽高清视频在线观看| 大陆偷拍与自拍| 最近最新免费中文字幕在线| 午夜老司机福利片| 91大片在线观看| 国产伦一二天堂av在线观看| 久久精品91蜜桃| 久久久国产欧美日韩av| 免费高清视频大片| 亚洲av熟女| 别揉我奶头~嗯~啊~动态视频| 大码成人一级视频| 午夜免费鲁丝| 精品福利观看| 婷婷精品国产亚洲av在线| 国产私拍福利视频在线观看| 国产国语露脸激情在线看| 看黄色毛片网站| 亚洲美女黄片视频| 日韩高清综合在线| 男男h啪啪无遮挡| 在线视频色国产色| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 一区二区三区激情视频| 亚洲人成77777在线视频| 国产亚洲欧美98| 欧美 亚洲 国产 日韩一| 男女下面进入的视频免费午夜 | 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 在线免费观看的www视频| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 久热这里只有精品99| 青草久久国产| 午夜福利影视在线免费观看| 午夜免费观看网址| 欧美人与性动交α欧美精品济南到| 真人做人爱边吃奶动态| 欧美黑人精品巨大| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 9191精品国产免费久久| 丁香欧美五月| 最近最新免费中文字幕在线| 91精品国产国语对白视频| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 搡老妇女老女人老熟妇| 国产成人av激情在线播放| 亚洲全国av大片| 欧美激情高清一区二区三区| 久久热在线av| 亚洲美女黄片视频| 又大又爽又粗| 亚洲av片天天在线观看| 欧美在线黄色| 久久香蕉激情| 国产亚洲精品av在线| 亚洲国产高清在线一区二区三 | 黄色a级毛片大全视频| 精品久久久精品久久久| 精品电影一区二区在线| 日韩欧美三级三区| 高清黄色对白视频在线免费看| 性欧美人与动物交配| 法律面前人人平等表现在哪些方面| 国产成人av激情在线播放| 不卡av一区二区三区| 一边摸一边抽搐一进一出视频| 日韩免费av在线播放| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影| 精品无人区乱码1区二区| 国产精品一区二区免费欧美| 国语自产精品视频在线第100页| av天堂在线播放| 国产亚洲欧美在线一区二区| 国产精华一区二区三区| √禁漫天堂资源中文www| 国产免费男女视频| 国产成人欧美| 宅男免费午夜| 中亚洲国语对白在线视频| 午夜福利成人在线免费观看| 一本综合久久免费| 成人av一区二区三区在线看| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 欧美成人免费av一区二区三区| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 黄色视频,在线免费观看| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 国产又爽黄色视频| 国产成人精品无人区| 99久久综合精品五月天人人| 日韩国内少妇激情av| 在线观看免费视频网站a站| 99国产精品一区二区蜜桃av| 大码成人一级视频| 丝袜美足系列| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产清高在天天线| 日本 欧美在线| 老司机福利观看| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 久久人妻福利社区极品人妻图片| 亚洲成a人片在线一区二区| 真人做人爱边吃奶动态| 精品电影一区二区在线| 久久精品人人爽人人爽视色| 精品一区二区三区四区五区乱码| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 99在线视频只有这里精品首页| 欧美一级a爱片免费观看看 | 一级片免费观看大全| 日本撒尿小便嘘嘘汇集6| 精品卡一卡二卡四卡免费| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 丝袜人妻中文字幕| 精品久久久久久成人av| 免费无遮挡裸体视频| 巨乳人妻的诱惑在线观看| 亚洲aⅴ乱码一区二区在线播放 | 老汉色av国产亚洲站长工具| 桃红色精品国产亚洲av| xxx96com| 欧美日韩黄片免| 香蕉丝袜av| 人人澡人人妻人| 一级a爱片免费观看的视频| 午夜福利视频1000在线观看 | 最近最新免费中文字幕在线| 无限看片的www在线观看| 在线观看一区二区三区| 丝袜人妻中文字幕| 精品第一国产精品| 免费在线观看影片大全网站| 搡老岳熟女国产| 两个人视频免费观看高清| 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 国产伦人伦偷精品视频| 成熟少妇高潮喷水视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 国产精品 国内视频| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 成年人黄色毛片网站| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 老汉色∧v一级毛片| 亚洲性夜色夜夜综合| 日本vs欧美在线观看视频| 99国产精品一区二区三区| 丰满的人妻完整版| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 人人妻人人澡人人看| 国产aⅴ精品一区二区三区波| 少妇熟女aⅴ在线视频| 日本 av在线| 久久久久久久久久久久大奶| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 午夜福利影视在线免费观看| 精品国产美女av久久久久小说| 国产色视频综合| 亚洲 欧美一区二区三区| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 日本一区二区免费在线视频| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 看黄色毛片网站| 国产精品二区激情视频| 法律面前人人平等表现在哪些方面| 男女午夜视频在线观看| 免费在线观看黄色视频的| 在线观看舔阴道视频| av在线播放免费不卡| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av香蕉五月| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 麻豆av在线久日| 精品国内亚洲2022精品成人| 亚洲 国产 在线| 亚洲欧美一区二区三区黑人| 多毛熟女@视频| 久久久久久人人人人人| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 久久性视频一级片| 一级毛片高清免费大全| 精品久久久久久,| 日韩大码丰满熟妇| 91精品国产国语对白视频| 欧美在线黄色| 后天国语完整版免费观看| 91在线观看av| 在线永久观看黄色视频| 女警被强在线播放| 一边摸一边抽搐一进一出视频| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 欧美色视频一区免费| 精品国产国语对白av| 午夜福利欧美成人| 亚洲一码二码三码区别大吗| 夜夜躁狠狠躁天天躁| 日本五十路高清| 在线观看午夜福利视频| 午夜日韩欧美国产| 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 欧美黄色片欧美黄色片| x7x7x7水蜜桃| 欧美激情久久久久久爽电影 | 人妻丰满熟妇av一区二区三区| 亚洲成人精品中文字幕电影| 亚洲成av人片免费观看| 亚洲一区二区三区不卡视频| 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 中文亚洲av片在线观看爽| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 国产高清激情床上av| 日本vs欧美在线观看视频| 999精品在线视频| 国产高清有码在线观看视频 | 男女做爰动态图高潮gif福利片 | 久久国产亚洲av麻豆专区| 午夜a级毛片| 女警被强在线播放| 九色亚洲精品在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 两人在一起打扑克的视频| 国产精品亚洲一级av第二区| 久久久精品欧美日韩精品| 午夜久久久在线观看| 日韩精品青青久久久久久| 18美女黄网站色大片免费观看| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 欧美中文日本在线观看视频| 激情视频va一区二区三区| 久久人妻福利社区极品人妻图片| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩无卡精品| 亚洲五月婷婷丁香| 一本大道久久a久久精品| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 亚洲全国av大片| 久久精品91无色码中文字幕| 一区二区三区国产精品乱码| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 色综合站精品国产| 丰满人妻熟妇乱又伦精品不卡| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 丝袜美腿诱惑在线| 高潮久久久久久久久久久不卡| av欧美777| 在线av久久热| 亚洲一区二区三区色噜噜| 免费观看人在逋| 久久青草综合色| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 久久精品91蜜桃| 男女下面插进去视频免费观看| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 性少妇av在线| 悠悠久久av| 又大又爽又粗| 日韩精品中文字幕看吧| 大陆偷拍与自拍| 中文字幕久久专区| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 悠悠久久av| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| 亚洲精品粉嫩美女一区| 午夜久久久在线观看| 最好的美女福利视频网| 久久九九热精品免费| 亚洲av五月六月丁香网| 大陆偷拍与自拍| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| 嫩草影视91久久| 国产成人av教育| av中文乱码字幕在线| 中文字幕色久视频| 丰满的人妻完整版| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 成年版毛片免费区| 久久久久九九精品影院| 12—13女人毛片做爰片一| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 国产精品野战在线观看| 亚洲激情在线av| 校园春色视频在线观看| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 一本综合久久免费| 国产精品 国内视频| 精品国产亚洲在线| 国内精品久久久久久久电影| 国产不卡一卡二| 正在播放国产对白刺激| 国产一区二区激情短视频| 美女高潮到喷水免费观看| 我的亚洲天堂| 久久久国产精品麻豆| 久久人人97超碰香蕉20202| 首页视频小说图片口味搜索| 欧美在线黄色| 9色porny在线观看| 露出奶头的视频| 99国产精品一区二区三区| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 成人国语在线视频| 精品国产美女av久久久久小说| 一级毛片女人18水好多| 大陆偷拍与自拍| 亚洲一区中文字幕在线| 欧美成人一区二区免费高清观看 | 亚洲av日韩精品久久久久久密| 日韩大尺度精品在线看网址 | 亚洲av电影不卡..在线观看| 此物有八面人人有两片| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 亚洲七黄色美女视频| 午夜日韩欧美国产| 天堂√8在线中文| 91大片在线观看| 在线永久观看黄色视频| 午夜成年电影在线免费观看| 一区二区日韩欧美中文字幕| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 十分钟在线观看高清视频www| 黄色 视频免费看| 日本 欧美在线| 欧美不卡视频在线免费观看 | 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| 巨乳人妻的诱惑在线观看| 国产日韩一区二区三区精品不卡| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 国产亚洲av嫩草精品影院| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久电影中文字幕| 啦啦啦 在线观看视频| 搞女人的毛片| 成人手机av| 国产男靠女视频免费网站| 欧洲精品卡2卡3卡4卡5卡区| 国产精品九九99| 亚洲精品av麻豆狂野| 亚洲无线在线观看| 咕卡用的链子| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 国产精品九九99| 亚洲国产精品久久男人天堂| 精品电影一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美日韩在线播放| 精品熟女少妇八av免费久了| 国产精品综合久久久久久久免费 | 高潮久久久久久久久久久不卡| 精品人妻在线不人妻| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 色在线成人网| 91麻豆av在线| 他把我摸到了高潮在线观看| 午夜日韩欧美国产| 视频在线观看一区二区三区| 国产精品影院久久| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 亚洲精品国产一区二区精华液| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 1024香蕉在线观看| 久久久久久久久免费视频了| 在线天堂中文资源库| 免费一级毛片在线播放高清视频 | 中文字幕av电影在线播放| videosex国产| 欧美乱码精品一区二区三区| 免费观看人在逋| 亚洲国产精品合色在线| 夜夜爽天天搞| 麻豆成人av在线观看| 黄片大片在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 69av精品久久久久久| 欧美日韩精品网址| 亚洲精华国产精华精| 精品不卡国产一区二区三区| 禁无遮挡网站| 国产高清视频在线播放一区| 热99re8久久精品国产| 国产男靠女视频免费网站| av片东京热男人的天堂| 欧美日本亚洲视频在线播放| 精品久久蜜臀av无| 男女做爰动态图高潮gif福利片 | 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 亚洲国产欧美日韩在线播放| 99久久国产精品久久久| 免费看a级黄色片| 91麻豆av在线| 国产蜜桃级精品一区二区三区| 久久热在线av| 国产黄a三级三级三级人| 精品国产国语对白av| 亚洲精品中文字幕一二三四区| 国产精品98久久久久久宅男小说| 桃红色精品国产亚洲av| 欧美日韩黄片免| 一进一出抽搐动态| 免费看a级黄色片| 亚洲欧美精品综合久久99| 黄色女人牲交| 黄色丝袜av网址大全| 午夜免费观看网址| 精品国内亚洲2022精品成人| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码| 亚洲成人国产一区在线观看| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 日韩欧美一区二区三区在线观看| 国产亚洲精品一区二区www| tocl精华| 国产高清激情床上av| 黑人操中国人逼视频| 成年人黄色毛片网站| 久久狼人影院| 国产成人免费无遮挡视频| 又大又爽又粗| 一级a爱片免费观看的视频| 日日摸夜夜添夜夜添小说| 亚洲精品久久国产高清桃花| 涩涩av久久男人的天堂| 久久青草综合色| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 黄片播放在线免费| 大型av网站在线播放| 亚洲伊人色综图| 午夜免费鲁丝| 中亚洲国语对白在线视频| 色在线成人网| 日日摸夜夜添夜夜添小说| 18禁裸乳无遮挡免费网站照片 | 亚洲激情在线av| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人看| 亚洲av美国av| 老熟妇乱子伦视频在线观看| 99久久精品国产亚洲精品| 亚洲熟妇熟女久久| 麻豆成人av在线观看| 老司机午夜福利在线观看视频| 女性生殖器流出的白浆|