• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction method of restoring force based on online AdaBoost regression tree algorithm in hybrid test

    2020-07-20 09:20:24WangYanhuaJingWuJingWangCheng

    Wang Yanhua Lü Jing Wu Jing Wang Cheng

    (Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)

    Abstract:In order to solve the poor generalization ability of the back-propagation(BP) neural network in the model updating hybrid test, a novel method called the AdaBoost regression tree algorithm is introduced into the model updating procedure in hybrid tests. During the learning phase, the regression tree is selected as a weak regression model to be trained, and then multiple trained weak regression models are integrated into a strong regression model. Finally, the training results are generated through voting by all the selected regression models. A 2-DOF nonlinear structure was numerically simulated by utilizing the online AdaBoost regression tree algorithm and the BP neural network algorithm as a contrast. The results show that the prediction accuracy of the online AdaBoost regression algorithm is 48.3% higher than that of the BP neural network algorithm, which verifies that the online AdaBoost regression tree algorithm has better generalization ability compared to the BP neural network algorithm. Furthermore, it can effectively eliminate the influence of weight initialization and improve the prediction accuracy of the restoring force in hybrid tests.

    Key words:hybrid test; restoring force prediction; generalization ability; AdaBoost regression tree

    The hybrid test, first proposed by Hakuno in 1969, is an effective test technique which combines a physical loading experiment and numerical simulation to evaluate seismic responses of large complex civil structures. At present, it has been widely focused on by researchers, and certain research results have been achieved such as a numerical integration algorithm[1-2], real time hybrid test[3], loading control[4], time delay compensation[5], boundary condition[6], remote network collaborative hybrid test[7], and an accurate numerical element[8], etc. The hybrid test has been widely used in the test of large and complex civil structures[9-10]. However, when the hybrid test is conducted on large complex structures, it is impossible to perform a physical loading test on all critical parts. Thus, some key components or parts of the structure are modeled and analyzed in the numerical substructure. Due to model errors, the inaccuracy of the numerical simulation will increase when the entire structure enters nonlinearity. The two main reasons for model errors are: 1) The assumed numerical model is too simple to describe the nonlinear behaviors of the real structure or component; 2) The uncertainty of model parameters. When the proportion of the assumed numerical models with model errors become larger, the accuracy of hybrid tests will be reduced. Therefore, how to improve the model accuracy and restore the force prediction accuracy of the numerical substructure has become an urgent problem.

    Model updating is an effective method to improve the accuracy of hybrid tests, which has been widely used in finite element analysis over the past two decades. The theory of model updating can be specified as follows: In the process of hybrid tests, the data of the experimental substructures can be used to recognize and update the numerical model of numerical substructures with similar hysteresis behaviors. Therefore, the model errors of the numerical substructure are reduced, and the ability to predict the structural actual behaviors is improved.

    1 Principle of Model Updating in Hybrid Tests

    Fig.1 Procedure of model updating hybrid test

    Among all the parameter identification methods, the initial selected numerical model is usually simplified from the experimental results, which means that the limited number of parameters cannot fully describe the real nonlinear behaviors. In other words, the model gap between the simplified model and the real model exists from the early beginning of the hybrid tests. In contrast, the intelligent algorithms can acquire more hysteresis information that does not exist in the initial assumed numerical model, and can directly fit the constitutive model of the numerical substructure. Therefore, the intelligent algorithms address the shortcomings of the parameter identification methods. However, in intelligent algorithms, the BP neural network has a poor generalization ability and it is relatively sensitive to initial weight, which will influence the accuracy of the constitutive model.

    In order to solve the problem of poor generalization ability and sensitivity to the initial weight of the BP neural network, an online AdaBoost regression tree algorithm is proposed and adopted. First, some weak regressors are selected for training; then the multiple weak regressors are integrated into a strong regressor; and finally the training results are generated. In order to verify the effectiveness of the proposed model updating method, a numerical simulation of a 2-DOF nonlinear structure is carried out, and the results are compared with the BP neural network algorithm.

    2 Principle of Regression Tree Algorithm

    The regression tree is a type of decision tree for regression. A decision tree is a tree-like model defined in the feature space, as shown in Fig.2. The regression tree algorithm proposed by Breiman et al.[17]mainly includes two steps: regression tree generation and regression tree pruning.

    Fig.2 The regression tree model diagram

    2.1 Regression tree generation

    The regression tree model consists of nodes and directed edges as shown in Fig.2. The nodes include internal nodes and leaf nodes. The circles and boxes in Fig.2 represent internal nodes and leaf nodes, respectively. The internal nodes represent the characteristics or attributes of the samples, and the leaf nodes represent the prediction value of the samples. The least squares algorithm is used to generate the regression tree. The specific process is as follows:

    It is supposed thatxandydenote the input and output variables, respectively, and the training data set isD={(x1,y1),(x2,y2),…,(xN,yN)}. The input space is divided intoMregions, namely,R1,R2,…,Rm,…,RMand each regionRmhas a fixed output valuecm. Thus, the regression tree model can be expressed as

    (1)

    (2)

    The heuristic algorithm is used to segment the input space. Thej-th variablex(j)and the corresponding valuesare selected as the split variable and split point, respectively. The next two regions are defined as

    R1(j,s)={x|x(j)≤s},R2(j,s)={x|x(j)>s}

    (3)

    Then, the best split variablex(j)and the split pointsare searched for by solving the minimum value:

    (4)

    The best split points inR1(j,s) andR2(j,s) are as follows:

    (5)

    After all the input variables (j,s) are traversed, the optimal partition variablex(j)is established and the input space is divided into two regions one by one. Next, the above segmentation process is repeated for each region until the stop condition is reached. Thus, a regression tree is generated.

    2.2 Regression tree pruning

    In order to prevent the over fitting of the above-mentioned regression tree model, it is necessary to prune the generated regression tree to ensure its generalization ability. The pruning algorithm performs recursive pruning according to the principle of loss function minimizing, including the following two steps:

    From the bottom of the regression treeT0to the top, pruning is continued until the procedure reaches the root nodes. Then, a pruned subtree sequence {T0,T1,…,Tn} is formed and the loss function of the subtrees during pruning is calculated as follows:

    Cα(T)=C(T)+α|T|

    (6)

    whereTis an arbitrary subtree;C(T) is the prediction error of the training data; |T| is the number of leaf nodes in a subtree; and the parameterα(α≥0) measures the fitting degree of the training samples and the complexity of the model.Cα(T) indicates the entire loss of the subtreeTwhen the parameter isα. The pruning process is repeated till the root node.

    Based on the validation data set, the cross validation method is used to test the subtree sequence obtained from the above process. Also, the optimal subtreeTαis obtained based on the independent verification data set. The decision tree with the smallest square error in the subtree sequence {T0,T1,…,Tn} is selected as the optimal one. The pruning diagram of the regression tree is illustrated in Fig.3

    Fig.3 The regression tree pruning diagram

    3 Implementation of online AdaBoost regression tree algorithm

    For the constitutive model recognition of the nonlinear components, large generalization errors cannot be avoided when only one neural network model is adopted for training. The training results of multiple neural network models are more accurate than those of the single neural network model, which is called the boosting method. The representative boosting method is the AdaBoost algorithm proposed by Freund and Schapire[18]in 1995. Firstly, the regression tree is selected for training and the weight of each training sample is adjusted in each round of training. Then, these regression tree models are integrated linearly to vote out the final results. The diagram of the Adaboost regression tree algorithm is shown in Fig.4.

    Fig.4 The diagram of Adaboost regression tree algorithm

    In hybrid tests, the samples of the experimental substructure in the current step are input into the Adaboost regression tree model for training, and a strong regressor is obtained. Then, after inputting the displacement of the numerical substructure in the current step into the trained strong regressor, the corresponding restoring force can be directly predicted. The procedure based on the proposed method is illustrated in Fig.5.

    3.1 Collecting training samples

    Fig.5 Procedure based on the proposed method in hybrid test

    3.2 Weight initialization of training samples

    In the first loading step, the initial weight of training samples is set to be

    (7)

    In thei-th step, the initial weight vector of the training samples is set to be the weight vector trained afterMiterations in the (i-1)-th step:

    (8)

    3.3 Training AdaBoost regression tree model

    The updating criterion of the training sample weight is: If the regression error of a certain sample point is small, the weight of this sample will be reduced in the next iteration; on the contrary, if the regression error of a certain sample point is large, the weight of this sample will be increased in the next iteration. Following the learning rule of the AdaBoost regression tree algorithm, the weight of unpredictable samples is increased and the prediction accuracy of the restoring force is finally improved. The training process mainly includes the following steps.

    (9)

    (10)

    3) The weight of the training samples is updated in each iteration. The update rules are

    (11)

    (12)

    (13)

    3.4 Combining regression tree models

    TheMregression tree models are linearly integrated into a strong regressorYi(x) in thei-th step:

    (14)

    The diagram of integrating regression tree models is shown in Fig.6.

    3.5 Prediction of restoring force in hybrid tests

    The restoring force of the numerical substructure in thei-th step can be predicted by inputting the displacement into the integrated regressor obtained above. Then, the restoring force of the experimental substructure and numerical substructure are fed back to the equation of motion. The five steps are repeated until the ground motion input is completed.

    Fig.6 The diagram of integrating regression tree models

    4 Numerical Validation

    4.1 Model description

    The online AdaBoost regression tree algorithm is evaluated on a 2-DOF nonlinear structure as shown in Fig.7. It is assumed that there are no complex incomplete boundaries and no obvious different loading histories.

    Fig.7 A 2-DOF nonlinear structure model

    The masses of the experimental substructure and numerical substructure areM1=M2=2 500 t; the initial stiffnesses areK1=K2=394 785 kN/m; and the damping coefficients areC1=C2=5 026.5 kN/(m·s-1). The ground motion recorded at the SimiValley-Katherine Rd station on January 17, 1994 at the Northridge earthquake is selected for numerical simulation. The peak seismic acceleration is adjusted to 200 cm/s2. The Runge-Kutta method is applied as the numerical integration scheme and the sample time is set to be 0.01 s. In this numerical study, it is assumed that the real constitutive models of the experimental substructure and numerical substructure are both the Bouc-Wen model, that is

    (15)

    whereFis the restoring force of the structure;αis the second stiffness coefficient;Kis the initial stiffness of the structure;Zis the hysteretic displacement; andβ,γ,nare the model parameters that control the shape of the hysteresis curve. The real model parameters of the experimental substructure and numerical substructure in this numerical study are both set to be as follows:K=394 785 kN/m,α=0.01,A=1,β=100,γ=40,n=1.

    The input variables of the nonlinear hysteresis model are set to be 6 variables as follows:di,di-1,F(xiàn)i-1,F(xiàn)i-1di-1,F(xiàn)i-1ΔdiandEi-1.diis the relative displacement of the structure in thei-th step; Δdi=di-di-1;Fi-1is the restoring force of the structure in thei-th step;Fi-1di-1is the energy consumption of the structure in the (i-1)-th step;Fi-1Δdiis the energy consumption of structure in thei-th step;Ei-1[19]is the cumulative energy consumption of the structure in the (i-1)-th step,Ei-1=Ei-2+|Fi-1di-1|.

    4.2 Results analysis

    In order to verify the effectiveness of the proposed method, three types of hybrid tests are analyzed and compared in this numerical simulation, as shown in Figs.8 and 9. The reference in the figures represents the true hybrid test; the BP algorithm in the figures represents the model updating hybrid test based on the BP neural network algorithm; the AdaBoot algorithm in the figures represents the hybrid test of model updating based on the AdaBoot regression tree algorithm.

    Fig.8 Comparison of the restoring force prediction of the numerical substructure with online AdaBoost regression tree and BP neural network algorithm

    Fig.9 Comparison of the restoring force prediction error of the numerical substructure with an online AdaBoost regression tree and BP neural network algorithm

    Fig.8 and Fig.9 show the comparison of restoring force prediction error and restoring force prediction error of the numerical substructure in three simulation cases, respectively. It can be seen from Fig.8 that the restoring force of the numerical substructure predicted by the AdaBoost regression tree algorithm is in good agreement with the real value, while the restoring force predicted by the BP algorithm has a large error at the turning point.

    Fig.9 shows that the maximum absolute error of the predicted restoring force based on the BP neural network algorithm is larger than that of the AdaBoost regression tree algorithm on the whole. The AdaBoost regression tree algorithm gradually adapts to the new data through online training and reduces the prediction error of the restoring force over time.

    In order to quantify the prediction error of the restoring force, the dimensionless error index is utilized in this study. The root mean deviation (RMSD) is

    (16)

    Fig.10 Comparison of the RMSD with the online AdaBoost regression tree and BP neural network algorithm

    It can be seen from Fig.10 that in the initial stage of hybrid tests, the prediction errors of the BP neural network algorithm and AdaBoost regression tree algorithm are relatively large. However, as time goes on, the prediction errors of the restoring force in both cases gradually decrease and tend to stabilize.

    In the stable stage, the RMSD of the online AdaBoost regression tree algorithm is 0.117 9, and that of the BP neural network algorithm is 0.228 2. The prediction accuracy of the online AdaBoost regression algorithm is 48.3% higher than that of the BP neural network algorithm. In addition, the average one-step time of the proposed method is 0.12 s, which meets the requirements of slow hybrid tests. Therefore, the method proposed in this paper can significantly improve the model accuracy in hybrid tests, and has reference value for the application of intelligent algorithms to the hybrid test of model updating.

    5 Conclusion

    1) The numerical analysis of a 2-DOF nonlinear structure is conducted to verify the effectiveness of the proposed method.

    2) Compared with the online BP neural network algorithm, the absolute error of the restoring force prediction is reduced by 72.5% and the relative root mean square error is reduced by 48.3% when the online AdaBoost regression tree algorithm is adopted, which verifies the effectiveness of the proposed method.

    3) The generalization ability of the recognition system is improved. The research results are significant for the application of intelligent algorithms to improve the model accuracy in a hybrid test.

    免费在线观看亚洲国产| 一本精品99久久精品77| 日本免费a在线| 哪里可以看免费的av片| 十八禁网站免费在线| 丰满的人妻完整版| 宅男免费午夜| 美女黄网站色视频| 国产欧美日韩一区二区三| 久久婷婷人人爽人人干人人爱| 精品国产三级普通话版| av国产免费在线观看| 亚洲成人中文字幕在线播放| eeuss影院久久| 色噜噜av男人的天堂激情| 中文字幕人成人乱码亚洲影| 国产真人三级小视频在线观看| 亚洲国产精品sss在线观看| 久久人人精品亚洲av| 日韩免费av在线播放| 97碰自拍视频| 国产三级中文精品| 日韩欧美国产一区二区入口| 精品电影一区二区在线| 大型黄色视频在线免费观看| 成人国产一区最新在线观看| 日韩欧美 国产精品| 此物有八面人人有两片| 午夜免费成人在线视频| 我的老师免费观看完整版| 一进一出抽搐gif免费好疼| 我的老师免费观看完整版| 99国产极品粉嫩在线观看| 午夜影院日韩av| 午夜免费成人在线视频| av国产免费在线观看| avwww免费| 男女做爰动态图高潮gif福利片| 色综合亚洲欧美另类图片| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美一区二区三区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产私拍福利视频在线观看| 欧美黑人欧美精品刺激| 国产精品一区二区三区四区久久| 长腿黑丝高跟| 亚洲国产欧美人成| a级毛片a级免费在线| 露出奶头的视频| 亚洲av电影在线进入| 国产黄色小视频在线观看| 欧美成人a在线观看| 性色avwww在线观看| 俺也久久电影网| 午夜精品久久久久久毛片777| 国产亚洲av嫩草精品影院| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 精品熟女少妇八av免费久了| 久99久视频精品免费| 中国美女看黄片| 欧美成狂野欧美在线观看| 国产精品嫩草影院av在线观看 | 日本撒尿小便嘘嘘汇集6| 日本撒尿小便嘘嘘汇集6| 色av中文字幕| 国产 一区 欧美 日韩| 可以在线观看毛片的网站| 在线观看舔阴道视频| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 黄色成人免费大全| 人妻夜夜爽99麻豆av| 成人国产一区最新在线观看| 一级a爱片免费观看的视频| 国产主播在线观看一区二区| 国产精品,欧美在线| 亚洲av成人av| 国产精品爽爽va在线观看网站| 俄罗斯特黄特色一大片| 亚洲七黄色美女视频| 最近最新免费中文字幕在线| 欧美xxxx黑人xx丫x性爽| 欧美色视频一区免费| 国产成人福利小说| 亚洲专区中文字幕在线| 999久久久精品免费观看国产| 在线观看66精品国产| 麻豆久久精品国产亚洲av| 内射极品少妇av片p| 一本综合久久免费| 国产伦精品一区二区三区四那| 美女被艹到高潮喷水动态| 色综合欧美亚洲国产小说| 亚洲人成电影免费在线| 日韩av在线大香蕉| 国产一区二区三区在线臀色熟女| 成人三级黄色视频| 在线天堂最新版资源| 在线观看舔阴道视频| 精品午夜福利视频在线观看一区| 国产探花在线观看一区二区| 天天一区二区日本电影三级| 三级男女做爰猛烈吃奶摸视频| 国产精品综合久久久久久久免费| 国产爱豆传媒在线观看| 欧美av亚洲av综合av国产av| 草草在线视频免费看| 国产成人福利小说| 亚洲精品影视一区二区三区av| 三级毛片av免费| 国产精品一区二区免费欧美| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 久久久久亚洲av毛片大全| 丁香欧美五月| 日韩欧美一区二区三区在线观看| 国产成人福利小说| 两个人视频免费观看高清| 国产精华一区二区三区| 国产真实乱freesex| 人妻久久中文字幕网| 日韩欧美国产在线观看| 国内精品久久久久精免费| 欧美绝顶高潮抽搐喷水| 亚洲精品在线美女| 美女大奶头视频| www.999成人在线观看| 搡老妇女老女人老熟妇| 99在线视频只有这里精品首页| 国产v大片淫在线免费观看| 国内精品久久久久精免费| 少妇熟女aⅴ在线视频| 日本黄大片高清| 国产成人系列免费观看| 19禁男女啪啪无遮挡网站| 久久久久久久午夜电影| а√天堂www在线а√下载| 日本一二三区视频观看| 桃色一区二区三区在线观看| 99热这里只有是精品50| 岛国在线观看网站| 国产高清视频在线播放一区| 一a级毛片在线观看| 亚洲av免费在线观看| 国产精品自产拍在线观看55亚洲| 老鸭窝网址在线观看| 一级黄片播放器| 国产高清videossex| 在线播放无遮挡| 国产午夜福利久久久久久| 亚洲精品在线观看二区| 一进一出好大好爽视频| 欧美一区二区亚洲| 青草久久国产| 亚洲精品456在线播放app | 美女高潮喷水抽搐中文字幕| a级毛片a级免费在线| 亚洲精品久久国产高清桃花| 99久久精品国产亚洲精品| 日本在线视频免费播放| 在线国产一区二区在线| 久久精品亚洲精品国产色婷小说| 岛国在线观看网站| 欧美+亚洲+日韩+国产| 精品国产美女av久久久久小说| 极品教师在线免费播放| 午夜福利视频1000在线观看| 首页视频小说图片口味搜索| 日韩大尺度精品在线看网址| 精品福利观看| 婷婷精品国产亚洲av在线| 欧美黄色片欧美黄色片| 女人十人毛片免费观看3o分钟| 在线观看日韩欧美| 国产 一区 欧美 日韩| 亚洲国产精品合色在线| 亚洲精品亚洲一区二区| 国产成年人精品一区二区| 欧美在线一区亚洲| 国产日本99.免费观看| xxx96com| 久久国产精品影院| 91av网一区二区| 亚洲精品国产精品久久久不卡| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 香蕉久久夜色| 国产爱豆传媒在线观看| 久久久久久久久大av| 观看美女的网站| 99热6这里只有精品| 男女那种视频在线观看| 757午夜福利合集在线观看| 亚洲精品亚洲一区二区| 88av欧美| 男女视频在线观看网站免费| 精品无人区乱码1区二区| 精品久久久久久久久久久久久| 免费在线观看日本一区| 在线观看舔阴道视频| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 欧美成人性av电影在线观看| 热99re8久久精品国产| 久久久久久久亚洲中文字幕 | 国产伦在线观看视频一区| 国产午夜福利久久久久久| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 老司机福利观看| www日本在线高清视频| 男女午夜视频在线观看| 床上黄色一级片| 操出白浆在线播放| 成人精品一区二区免费| 国产亚洲精品av在线| 成熟少妇高潮喷水视频| 国产精品99久久久久久久久| 日本与韩国留学比较| 在线观看美女被高潮喷水网站 | 久久精品国产清高在天天线| 国产淫片久久久久久久久 | 免费在线观看亚洲国产| 亚洲国产日韩欧美精品在线观看 | 少妇的丰满在线观看| 欧美乱码精品一区二区三区| 国产三级中文精品| 色综合站精品国产| 性欧美人与动物交配| 内射极品少妇av片p| 色在线成人网| 午夜亚洲福利在线播放| 日本黄色片子视频| 国产欧美日韩精品一区二区| 国产精品影院久久| 听说在线观看完整版免费高清| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久亚洲av鲁大| 最近视频中文字幕2019在线8| 无人区码免费观看不卡| 精品人妻一区二区三区麻豆 | 18禁在线播放成人免费| 国产一区二区三区在线臀色熟女| 精品欧美国产一区二区三| 99久久成人亚洲精品观看| 激情在线观看视频在线高清| 亚洲av成人不卡在线观看播放网| 亚洲熟妇熟女久久| 国产亚洲精品久久久com| 精品午夜福利视频在线观看一区| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 日本与韩国留学比较| 最近视频中文字幕2019在线8| 老司机午夜十八禁免费视频| 看片在线看免费视频| 97碰自拍视频| 国产成人福利小说| 日韩亚洲欧美综合| 成人一区二区视频在线观看| 精品一区二区三区视频在线观看免费| 宅男免费午夜| 最后的刺客免费高清国语| 国内久久婷婷六月综合欲色啪| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 高清毛片免费观看视频网站| 国产高清videossex| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放| 中出人妻视频一区二区| 91九色精品人成在线观看| 精品人妻1区二区| or卡值多少钱| 很黄的视频免费| 18+在线观看网站| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 首页视频小说图片口味搜索| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| av视频在线观看入口| 国产精品美女特级片免费视频播放器| 国产成人av激情在线播放| 一级毛片高清免费大全| 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看| 女人被狂操c到高潮| 久久午夜亚洲精品久久| 淫妇啪啪啪对白视频| 国产一级毛片七仙女欲春2| 长腿黑丝高跟| bbb黄色大片| 老司机深夜福利视频在线观看| 精品国产三级普通话版| 日本a在线网址| 成人亚洲精品av一区二区| 国产亚洲精品av在线| 国产精品影院久久| 亚洲国产欧美人成| 免费在线观看亚洲国产| 一本综合久久免费| 午夜a级毛片| 精品久久久久久久末码| 亚洲国产精品久久男人天堂| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| x7x7x7水蜜桃| 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 国内精品美女久久久久久| 一进一出好大好爽视频| 亚洲成av人片免费观看| 人人妻人人看人人澡| 丁香欧美五月| 最后的刺客免费高清国语| 窝窝影院91人妻| 亚洲精品成人久久久久久| 高清毛片免费观看视频网站| 可以在线观看毛片的网站| 亚洲美女黄片视频| 午夜福利在线观看吧| 最新美女视频免费是黄的| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 一级a爱片免费观看的视频| 日本一二三区视频观看| 亚洲男人的天堂狠狠| 精品福利观看| 日本精品一区二区三区蜜桃| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 日本黄色片子视频| 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 国产精品久久久久久精品电影| 亚洲成av人片免费观看| 午夜免费男女啪啪视频观看 | 国产精品98久久久久久宅男小说| 日韩欧美一区二区三区在线观看| 国产成人av教育| 日韩精品中文字幕看吧| 国产精品,欧美在线| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 看黄色毛片网站| eeuss影院久久| 久久午夜亚洲精品久久| 91在线观看av| 精品国产三级普通话版| 久久久色成人| 欧美绝顶高潮抽搐喷水| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 国产精品亚洲一级av第二区| 麻豆国产97在线/欧美| 法律面前人人平等表现在哪些方面| 999久久久精品免费观看国产| 岛国在线免费视频观看| 国产在线精品亚洲第一网站| 日本五十路高清| 日韩高清综合在线| 日日夜夜操网爽| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 天堂av国产一区二区熟女人妻| 国内揄拍国产精品人妻在线| 1024手机看黄色片| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 成年免费大片在线观看| 波野结衣二区三区在线 | 久久天躁狠狠躁夜夜2o2o| 免费人成在线观看视频色| 国产精品影院久久| 18美女黄网站色大片免费观看| 中文字幕高清在线视频| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 欧美不卡视频在线免费观看| 国产高清视频在线观看网站| 成年女人毛片免费观看观看9| 亚洲国产高清在线一区二区三| 香蕉丝袜av| 国产色婷婷99| 国产一区二区在线观看日韩 | 午夜精品一区二区三区免费看| 国产精品影院久久| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 精品乱码久久久久久99久播| av片东京热男人的天堂| 国产精品亚洲一级av第二区| 午夜亚洲福利在线播放| 午夜精品一区二区三区免费看| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 中文字幕久久专区| 欧美在线黄色| 男人和女人高潮做爰伦理| 国内精品一区二区在线观看| 成年女人永久免费观看视频| 亚洲天堂国产精品一区在线| 亚洲中文字幕日韩| 岛国在线免费视频观看| 国产精品野战在线观看| 精品国产三级普通话版| 国产精品自产拍在线观看55亚洲| 国产蜜桃级精品一区二区三区| 午夜福利视频1000在线观看| 免费av观看视频| 岛国在线观看网站| 精品久久久久久,| 免费看a级黄色片| 成熟少妇高潮喷水视频| 国产高潮美女av| 国产三级黄色录像| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影 | 首页视频小说图片口味搜索| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| 国产av在哪里看| 欧美黑人巨大hd| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 国产激情偷乱视频一区二区| 国产一区二区在线观看日韩 | 色综合站精品国产| 欧美日韩一级在线毛片| 国产日本99.免费观看| 国产色婷婷99| 日本五十路高清| 成人av在线播放网站| 一级黄色大片毛片| 在线观看美女被高潮喷水网站 | 内射极品少妇av片p| 大型黄色视频在线免费观看| 久久久久国内视频| 国产黄片美女视频| 最近视频中文字幕2019在线8| 怎么达到女性高潮| 国产精品av视频在线免费观看| 日本黄色片子视频| 一区二区三区高清视频在线| 在线观看午夜福利视频| 日韩国内少妇激情av| 丰满乱子伦码专区| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 久久久久九九精品影院| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| 国产97色在线日韩免费| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 香蕉久久夜色| 淫秽高清视频在线观看| 日韩大尺度精品在线看网址| 丰满人妻一区二区三区视频av | 久久久精品大字幕| 国产精品久久久久久精品电影| 精品日产1卡2卡| 国产三级在线视频| aaaaa片日本免费| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 国产淫片久久久久久久久 | 波多野结衣巨乳人妻| 美女黄网站色视频| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 久久午夜亚洲精品久久| 久久香蕉精品热| 男女视频在线观看网站免费| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 九色国产91popny在线| 久久精品国产亚洲av香蕉五月| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 久久久国产成人免费| 在线观看免费视频日本深夜| 久久亚洲真实| 内射极品少妇av片p| 一个人免费在线观看电影| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 免费大片18禁| 99热精品在线国产| 亚洲激情在线av| 国产av一区在线观看免费| 久久这里只有精品中国| 亚洲精品456在线播放app | 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 成人鲁丝片一二三区免费| 精品久久久久久,| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 欧美丝袜亚洲另类 | 欧美丝袜亚洲另类 | 99热这里只有精品一区| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 在线国产一区二区在线| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 两个人的视频大全免费| 真人一进一出gif抽搐免费| 老汉色∧v一级毛片| 亚洲欧美日韩高清专用| av在线蜜桃| 亚洲人成电影免费在线| 不卡一级毛片| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 精品国产亚洲在线| 给我免费播放毛片高清在线观看| 国产老妇女一区| 午夜免费激情av| 欧美日韩黄片免| 给我免费播放毛片高清在线观看| av天堂中文字幕网| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 国产爱豆传媒在线观看| 美女 人体艺术 gogo| 国产三级中文精品| 国产69精品久久久久777片| 91av网一区二区| 国产精品久久电影中文字幕| 国产主播在线观看一区二区| 亚洲第一电影网av| 免费av毛片视频| 国产成人a区在线观看| 少妇的逼好多水| 一级毛片高清免费大全| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 免费大片18禁| 久久精品国产综合久久久| 免费观看人在逋| 欧美乱色亚洲激情| 亚洲七黄色美女视频| 激情在线观看视频在线高清| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在 | 最后的刺客免费高清国语| 日本黄色视频三级网站网址| 给我免费播放毛片高清在线观看| 1000部很黄的大片| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| 亚洲精品456在线播放app | 精品熟女少妇八av免费久了| 午夜福利在线在线| 色av中文字幕| www.色视频.com| 男女床上黄色一级片免费看| 夜夜躁狠狠躁天天躁| 亚洲精品456在线播放app | 一本久久中文字幕| 国产精品1区2区在线观看.| 国模一区二区三区四区视频| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 亚洲国产精品999在线| 在线播放国产精品三级| 国产高清有码在线观看视频| 韩国av一区二区三区四区| 超碰av人人做人人爽久久 | 久久人人精品亚洲av| 色综合欧美亚洲国产小说| 午夜免费观看网址| 国产在线精品亚洲第一网站| 欧美一区二区国产精品久久精品| 亚洲中文日韩欧美视频|