• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence evaluation of titania nanotube surface morphology on the performance of bioelectrochemical systems

    2020-07-20 09:20:38ZhangTianLongXiziCaoXianLiXianning

    Zhang Tian Long Xizi Cao Xian Li Xianning

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan)

    Abstract:In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output, TiO2 nanotube array bio-anodes (TNA) are synthesized at different electrolyte temperatures, thereby changing the length and surface roughness of the nanotubes. When the anodizing temperature is increased from 30 to 75 ℃, the length of the nanotubes increases from 1.459 to 4.183 μm, which hinders the transfer of extracellular electrons to the electrodes. On the other hand, the surface roughness of TNA is significantly improved at higher temperatures, which is conducive to electron transfer. Therefore, samples processed at 45 ℃ have the best current output performance. Compared with the treatment at 30 ℃ under anodization, samples processed at 45 ℃ can balance the resistance and roughness and have a higher electron transfer rate; the current output density of which is increased by 1.5 times, and the decolorization rate is increased by 0.8 times. Therefore, proper TNA surface morphology can improve the current output and the potential of wastewater treatment.

    Key words:bioelectrochemical system; titania nanotube arrays; anodization; current generation; surface morphology

    Microbial bioelectrochemical systems (BESs) are microbial engineering systems which utilize microorganisms as living catalysts to interconvert electrical and chemical energy[1]. The representative BES can be used in microbial fuel cells (MFCs).The microbial fuel cell is a newly developed technology for simultaneous power generation and wastewater treatment[2], and it is a typical microbial bioelectrochemical system. In MFCs, electroactive bacteria (EAB) on the electrode catalyzes the oxidation of organics to electrons via complex extracellular electron transfer (EET), which is regarded as the main limitation of commercial applications[3]. Efforts have been made to improve EET by identifying bacteria that generate more power, designing cells that better transmit power, and promoting biofilm accumulation on modified electrodes[4]. Compared with carbon materials (e.g., graphite), metal electrodes have a higher conductivity and greater mechanical strength. However, apart from noble metals, most metals corrode easily and have poor biocompatibility[5].

    Titanium (Ti) is corrosion-resistant and biocompatible and, thus, is widely used in biosensors, medicine delivery and implants. However, in order to decrease costs and improve the surface binding of cells, different titania nanostructures have been synthesized, including nano-tubes, nano-wires, nano-rods, and nano-nets[6-7]. Electrochemical anodization can be used to alter the highly ordered surface morphology of titania nanotube arrays (TNAs) by controlling parameters such as the electrolytes, voltage, and process time[8]. A wide range of lengths (1 to 200 μm) and pore diameters (20 to 150 nm) have been produced for different applications[9]. Moreover, the application of different TNAs on photocatalysis and wastewater treatment in MFCs has been widely studied in recent decades[10-11].

    Few studies have detailed bacterial cell-TNA interactions. Feng et al.[7]first investigated the current output of TNA anodes. Compared with bare Ti plates, a 190-fold higher current density of (12.7 ± 0.7) A/m2was observed in TNA , which improved the accumulation of EAB on the nanotube structure. Furthermore, Anitha et al.[12]quantified the influence of nanotube diameter on the growth of biofilms. A 20-nm diameter corresponding to a 90% increase in the surface area (compared with 140 nm) resulted in better adhesion of EAB. A study of the crystallinity of TNA electrodes examined heating treatments in hydrogen, methane, and nitrogen atmospheres[13]. Higher crystallinity in a reducing hydrogen atmosphere markedly improved biofilm formation on the anode. However, titanium dioxide has a huge band gap of 3.2 eV[14], which results in the poor conductivity of nanotubes merely comprised of titania. In fact, multimeter detection revealed that the TNAs in this study exhibited a resistance of 3×104Ω. Although the mechanism of the conduction of a bioanode is not clear, some research showed that a thin oxide layer at the bottom of nanotube pores and voids allows EET to occur. Therefore, the thicker TNA can increase resistance and affect the flow of the EET process. To the best of our knowledge, few reports have discussed the influence of tube length and surface morphology.

    This study evaluates the power generation of TNA electrodes with different tube lengths and roughness. The length and roughness of the TNA are manipulated by electrochemical anodization at different temperatures. More-over, the reduction kinetics of an azo dye is established to evaluate the EET capacity of the TNA anodes. Finally, a possible mechanism is considered by discussing the correlation among power generation, pipe diameter, and microbial community.

    1 Materials and Methods

    1.1 Electrochemical anodization for the synthesis of TNAs

    TNAs of different lengths were synthesized according to previously reported methods. Briefly, a Ti plate with an area of 4 cm2was first cleaned in acetone, ethanol, and deionized water for 15 min, respectively. After drying, electrochemical anodization was performed for 5 h by loading a voltage of 30 V between the Ti plate and a graphite counter electrode. The electrolytes (1.092 g NaF, 160 mL ethylene glycol, and 40 mL distilled water) were heated to 30 ℃ (A1), 45 ℃ (A2), 55 ℃ (A3), 65 ℃ (A4), or 75 ℃ (A5) during synthesis. After anodization, the samples were washed by deionized water and dried with nitrogen. Then, the electrode was annealed in air at 450 ℃ for 2 h in a muffle furnace (SXL; Shanghai Jinghong, Shanghai, China).

    1.2 MFC construction and operation

    A double-chamber reactor (175 mL) divided by a cation-exchange membrane (CMI7000; Membrane International, Glen Rock, NJ, USA) was used. The anode chamber was inoculated with 15 mL of effluent from the cathode of a continuous-flow denitrification MFC. The anolyte comprised of 0.1 g/L active brilliant red X-3B (ABRX3), 0.5 g/L NaAC, 0.025 g/L NH4Cl, 1.66 g/L NaH2PO4·2H2O, 5.16 g/L Na2HPO4·12H2O, and trace elements[10]. Before batch experiments, the anolyte was pre-deoxygenated via nitrogen bubbling for 30 min. The anolyte was stirred magnetically and replenished every 3 d when the current dropped. A 100 Ω external resistor was loaded between two electrodes during the whole experiment process.

    1.3 Characterization of TNA electrodes

    A field emission scanning electron microscope (FESEM) operating at 10 kV (Nova NanoSEM 450; FEI, Hillsboro, OR, USA) was used to characterize the morphology of the top and tube sides of the TNAs.

    1.4 Analysis

    The current in the MFC was recorded every 30 s[11]. Cyclic voltammetry (CV) was conducted in the presence of NaAC in the anolyte under the turnover condition and in absence of organics under no turnover condition at different scan rates. Ag/AgCl electrode was the reference eletrode. Electrochemical impedance spectroscopy (EIS) was used (100 kHz to 0.01 Hz) to measure the resistance of the material[11].

    The electrontransfer number is calculated by a simple model as follows:

    (1)

    whereJandJlimitare the current and limited current output (mA), respectively, in the presence of organic material in the anolyte, which is referred to as the turnover condition.E0is the half-peak potential of the current profile;nis the electrons;Fis the Faradic constant; andF=96 485 C/mol.Ris the ideal gas constant,R=8.314 J/(mol·K), andTis the temperature, K.

    To quantify the rate of ABRX3 degradation, a first-order kinetics model is applied as follows:

    (2)

    wherecis the concentration of ABRX3 in water at timet, mg/L; andkis the first-order kinetic constant. Each sample was collected with a syringe and filtered through a 0.45-μm filter before analysis. The absorbance variation at the catholyte was measured using UV-Vis spectrophotometry (UV9100; Labtech International Ltd, East Sussex, UK) from 200 to 700 nm. The microbial community structures of A1 to A5 were examined using 16s rRNA pyrosequencing.

    2 Results and Discussion

    As shown in Fig.1, the lengths of the TNAs A1 to A5 are 1.459, 2.322, 3.043, 3.430, and 4.183 μm, respectively. The growth of TNAs increased significantly with the anodization temperature. The etching effect of F-on titanium dioxide was enhanced at higher temperatures, increasing the lengths of the nanotubes. According to previous research, electrochemical corrosion and the growth of TNAs proceed simultaneously in organic solvents, such as ethylene glycol and methanol[15]. The nanotubes can reach hundreds of micrometers in length. However, as a high volume ratio of water was used in this experiment, the chemical dissolution rate of the TNAs in aqueous solution was very fast, resulting in shorter nanotubes (<4.5 μm). Apart from altering the length, little effect on the surface pore size of the TNAs was observed[16]. Bulges grew along the pipe. Previous studies have shown that the distance between the bulges on the tube wall was the same, indicating that the formation of the bulges on the tube wall was related to the current oscillation[17].

    (a)

    Fig.2(a) shows the current output of the anodes. The maximum current densities observed in A2 (0.625 mA/cm2), A5 (0.5 mA/cm2), A4 (0.45 mA/cm2), A3 (0.4 mA/cm2), and A1 (0.25 mA/cm2) were recorded after 20 d of acclimation. Although there were similar cycles of current increase and decrease between the replenishment of the anolyte, the start-up of A1 was much slower (12 d) than that of the others. This delayed current increase reflected the lower accumulation of EAB on the surface of A1 , whereas electrodes made at higher anodization temperatures accumulated more EAB and generated more current. The kinetics of EET were evaluated by CV spectroscopy in Fig.2(b). By Eq.(1), the apparent electron transfer was calculated. In this study, the values of A2 and A1 were 0.213 and 0.107, respectively. An S-shaped CV curve usually represents the rate of oxidation of organic matter in cells by EAB[18]. More electrons in A2 resulted in better electrode performance[10]. Due to the band gap of titanium dioxide being 3.2 eV, a huge surface resistance of approximately 1020(Ω·m)-1was observed[17]. According to Fig.1, A1 TNA (1.459 μm) was shorter than A2 TNA (2.322 μm); thus, A1 exhibited a lower resistance. However, the current generated by A1 was still 1.5 times lower than that generated by A2. In comparison, although the tube length of A5 was 4 times as long as A1, A5 still generated more current. Accordingly,the surface morphology of TNAs was studied to understand the reason for these differences.

    (a)

    Fig.3 shows the surface morphology of the TNAs. The pore size of the nanotubes did not change and was approximately 200 nm. The three-dimensional reconstruction of the SEM images shows that the surface roughness is improved greatly by changing the anodization temperature. Greater surface roughness is more suitable for microbial attachment, which can significantly increase the accumulation of EAB and the electricity generated[19-20].

    The electrochemical characteristics of the TNAs are further evaluated (see Fig.4). As the extracellular electron transfer (EET) by EAB is mainly realized by the outer membrane heme proteins/protein flavin complex, the surface proteins involved in electron transfer can be studied semi-quantitatively using non-turnover CV spectroscopy. As shown in Fig.4(a), redox pairs are observed between -0.44 and -0.35 V (vs. Ag/AgCl), which typically appears in a mixed culture with Geobacter biofilms[21]. Surprisingly, a negative shift in the oxidation peaks from A1 (-0.41 V) to A5 (-0.48 V) was observed as the roughness increased. The semi-quinone complex formed by binding flavin and the outer membrane cytochrome resulted in more negative values[22-23]. This free radical changes the process of the 2-electron transfer into a single-electron transfer, which significantly accelerates extracellular electron transfer and increases current. In this experiment, the rougher interface locked more secreted flavin as a result of stirring, which contributed to a 70% increase in the current[22,24]. EIS was used to determine the resistance of the anodes. As shown in Fig.4(b), the small arc in the Nyquist plot of A2 indicates its lower interface impedance. The diffusion and electron transfer resistances of A2 are 3,451 and 17.05 Ω, respectively, which are much lower than those of A1 (8.26×108and 118.6 Ω, respectively). The lower resistance of A2 electrons contributes to the EET at the interface. Although the lower roughness of A2 hampers the enrichment of microorganisms compared with A3 to A5, the nanotubes in A2 are significantly shorter with a lower resistance, which might have contributed to the current output in this experiment. Notably, the highest current output of A2 might be caused by better balance between nanotube length and interface roughness.

    (a)

    (a)

    Fig.5(a) shows the ABRX3 decolorization during the batch periods. The highest removal ratio of 80% is obtained with A2 electrode, whereas the removal ratio of A1 is only approximately 59%. The removal constants are obtained by fitting the first-order kinetic model to the data (see Fig.5(b)). The removal rate constant of A2 (-0.009 71 h-1) is 1.8 times that of A1 (-0.005 46 h-1). Although the application of azo dyes in MFCs has been studied in recent decades, researchers confirmed only recently that the outer membrane heme proteins of EAB reduce the azo bond[25-26]. As the azo dye methyl orange cannot penetrate the outer membrane of Geobacter, decolorization was achieved solely by the direct electron supply from the proteins OmcC, OmcE, and OmcB located on the outer membrane[26]. In this experiment, the higher current output from the A2 anode implied better accumulation of EAB at the interface where the azo bond was reduced. The first-order kinetic constants are analyzed using the peak current (see Fig.4(a)). The linear correlation (R2=0.955) between the peak current and removal rate constants confirmed that EAB played a role in azo dye removal. In general, A2 has better potential as the electrode, which can be used for wastewater treatment.

    (a)

    Fig.6(a) shows the microbial community structure of each TNA at the genus level. All anodes selectively accumulate the anode respiration bacteria Geobacter. The relative abundance of Geobacter in A1 to A5 are 0.655, 0.724, 0.725, 0.604 and 0.803, which is different and can significantly affect the current output[27]. The spearman correlation analysis of the microorganisms, current, and roughness showed that higher current and roughness corresponded to a greater abundance of Geobacter (see Fig.6(b)). Therefore, the rough surface is conducive to the enrichment of electricity-producing microorganisms. It is noted that the relative abundance of A2 is slightly lower than that of A5, whereas its current output is higher than that of A5. These contrasting results indicate that the effect of surface roughness can be offset by a smaller resistance with shorter tubes.

    3 Conclusions

    1) TNA semi-conductor MFC anodes were prepared via anodization at temperatures ranging from 30 to 75 ℃. The surface morphology of TNA and the performance of the bioelectrochemical system are influenced by the anodization temperatures.

    (a)

    2) A four-fold increase in nanotube length was accompanied by increased roughness on the top interfaces of the TNAs. The stable current output and the azo dye decolorization rate of A2 were 2.5 and 1.8 times that of A1, respectively.

    3) These features arose from the lower resistance of the relatively shorter tubes and the better attachment of EAB to the rough electrode surface.

    亚洲aⅴ乱码一区二区在线播放 | 精品国内亚洲2022精品成人| 亚洲欧美日韩高清在线视频| av天堂久久9| 国产精品一区二区免费欧美| 日韩欧美国产在线观看| 夜夜夜夜夜久久久久| 成人手机av| 中文字幕另类日韩欧美亚洲嫩草| 黄片小视频在线播放| 免费在线观看完整版高清| 99国产综合亚洲精品| 露出奶头的视频| 免费人成视频x8x8入口观看| 精品欧美国产一区二区三| 极品人妻少妇av视频| 色综合欧美亚洲国产小说| 久久国产精品人妻蜜桃| 波多野结衣巨乳人妻| 亚洲va日本ⅴa欧美va伊人久久| 国产精品98久久久久久宅男小说| 免费在线观看视频国产中文字幕亚洲| 老熟妇乱子伦视频在线观看| 一区二区三区激情视频| 午夜视频精品福利| 国产成人系列免费观看| av视频免费观看在线观看| 国产午夜精品久久久久久| 亚洲性夜色夜夜综合| 久久久久久久精品吃奶| a级毛片在线看网站| 精品欧美国产一区二区三| 很黄的视频免费| 亚洲精品国产一区二区精华液| 色尼玛亚洲综合影院| 久久国产亚洲av麻豆专区| 两性午夜刺激爽爽歪歪视频在线观看 | 此物有八面人人有两片| 欧美av亚洲av综合av国产av| 午夜福利一区二区在线看| 免费在线观看完整版高清| 国产一区二区三区综合在线观看| 琪琪午夜伦伦电影理论片6080| 欧美激情高清一区二区三区| 久久亚洲真实| 两性夫妻黄色片| 国内精品久久久久久久电影| 欧美中文综合在线视频| 国产日韩一区二区三区精品不卡| 91精品国产国语对白视频| 成人精品一区二区免费| 国产成+人综合+亚洲专区| 国产伦一二天堂av在线观看| av电影中文网址| www日本在线高清视频| 免费一级毛片在线播放高清视频 | 国产精品久久久av美女十八| 波多野结衣高清无吗| 日本五十路高清| 老熟妇乱子伦视频在线观看| 亚洲av五月六月丁香网| 怎么达到女性高潮| 91在线观看av| 9热在线视频观看99| 999精品在线视频| 久久久久亚洲av毛片大全| 最好的美女福利视频网| 国产又色又爽无遮挡免费看| 88av欧美| 淫秽高清视频在线观看| 一个人观看的视频www高清免费观看 | 美女大奶头视频| 婷婷六月久久综合丁香| 91麻豆精品激情在线观看国产| 午夜福利,免费看| 国产成人精品在线电影| 黄频高清免费视频| av视频在线观看入口| 大香蕉久久成人网| 很黄的视频免费| 久久伊人香网站| 国产成人免费无遮挡视频| 香蕉久久夜色| 国产精品国产高清国产av| 久热爱精品视频在线9| 国产欧美日韩一区二区三区在线| 日韩成人在线观看一区二区三区| 深夜精品福利| 亚洲av第一区精品v没综合| 男人的好看免费观看在线视频 | 村上凉子中文字幕在线| 久久精品国产清高在天天线| 国产亚洲欧美在线一区二区| 亚洲精品中文字幕一二三四区| 日韩高清综合在线| x7x7x7水蜜桃| 国产av一区在线观看免费| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| 九色亚洲精品在线播放| 成人av一区二区三区在线看| 在线视频色国产色| 天堂动漫精品| 国产亚洲精品久久久久5区| 91国产中文字幕| 国产精品亚洲av一区麻豆| 级片在线观看| 黑人操中国人逼视频| 一边摸一边做爽爽视频免费| av天堂在线播放| 免费av毛片视频| 日韩视频一区二区在线观看| 18美女黄网站色大片免费观看| 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 看免费av毛片| www日本在线高清视频| 女人被躁到高潮嗷嗷叫费观| 精品一品国产午夜福利视频| 在线天堂中文资源库| 亚洲国产精品成人综合色| 别揉我奶头~嗯~啊~动态视频| 亚洲av电影不卡..在线观看| 国产成人精品久久二区二区免费| 欧美激情久久久久久爽电影 | 亚洲人成电影观看| 性少妇av在线| 国产精品一区二区免费欧美| 亚洲自偷自拍图片 自拍| 妹子高潮喷水视频| 亚洲美女黄片视频| 99国产精品免费福利视频| 免费人成视频x8x8入口观看| bbb黄色大片| 欧美国产日韩亚洲一区| 咕卡用的链子| 国产一区二区三区视频了| 欧美在线黄色| 老汉色av国产亚洲站长工具| 久久精品国产亚洲av高清一级| 精品欧美国产一区二区三| 亚洲av电影不卡..在线观看| 精品卡一卡二卡四卡免费| 国产视频一区二区在线看| 女人高潮潮喷娇喘18禁视频| 国产成年人精品一区二区| 免费搜索国产男女视频| 欧美色视频一区免费| svipshipincom国产片| 9191精品国产免费久久| 欧美成人午夜精品| 免费看a级黄色片| 欧美激情 高清一区二区三区| 欧美日韩乱码在线| 真人一进一出gif抽搐免费| 欧美一级毛片孕妇| 啦啦啦韩国在线观看视频| 成人国产综合亚洲| 天天躁夜夜躁狠狠躁躁| 一区二区日韩欧美中文字幕| 国产三级黄色录像| 日本 欧美在线| 91字幕亚洲| 久久精品aⅴ一区二区三区四区| 国产精品日韩av在线免费观看 | 真人做人爱边吃奶动态| 啦啦啦韩国在线观看视频| 91九色精品人成在线观看| 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 男人舔女人的私密视频| 国产私拍福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 99香蕉大伊视频| 伦理电影免费视频| 老司机深夜福利视频在线观看| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| 99久久精品国产亚洲精品| 黄色a级毛片大全视频| 成年版毛片免费区| 波多野结衣av一区二区av| 国产精品自产拍在线观看55亚洲| 欧美乱妇无乱码| www.熟女人妻精品国产| 欧美 亚洲 国产 日韩一| 97碰自拍视频| www.999成人在线观看| 午夜福利在线观看吧| 老司机福利观看| 亚洲自偷自拍图片 自拍| 国产精品影院久久| www.999成人在线观看| 这个男人来自地球电影免费观看| www国产在线视频色| netflix在线观看网站| 在线观看www视频免费| 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 一进一出抽搐动态| 9色porny在线观看| 亚洲专区国产一区二区| 国产在线观看jvid| 国产精品精品国产色婷婷| 久99久视频精品免费| 亚洲在线自拍视频| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 亚洲中文av在线| 两性夫妻黄色片| 久久人妻av系列| 侵犯人妻中文字幕一二三四区| 久久亚洲精品不卡| 黄频高清免费视频| 国产97色在线日韩免费| 精品久久久久久久人妻蜜臀av | 他把我摸到了高潮在线观看| 欧美激情高清一区二区三区| 麻豆国产av国片精品| 制服人妻中文乱码| 午夜激情av网站| 午夜福利欧美成人| 国产伦人伦偷精品视频| 性少妇av在线| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 国产私拍福利视频在线观看| а√天堂www在线а√下载| 日本vs欧美在线观看视频| 窝窝影院91人妻| 丝袜在线中文字幕| 国产精品久久久人人做人人爽| 久久精品国产亚洲av高清一级| 最新在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 色综合欧美亚洲国产小说| 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| 欧美黑人欧美精品刺激| 免费看十八禁软件| 国产精品永久免费网站| 成人永久免费在线观看视频| 日韩精品青青久久久久久| 19禁男女啪啪无遮挡网站| 成人手机av| 久久久久精品国产欧美久久久| 国产精品乱码一区二三区的特点 | 亚洲色图 男人天堂 中文字幕| 正在播放国产对白刺激| 一级黄色大片毛片| 日韩欧美一区二区三区在线观看| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 国产高清视频在线播放一区| 人人妻人人爽人人添夜夜欢视频| 欧美成人一区二区免费高清观看 | 国产精品野战在线观看| 激情视频va一区二区三区| 欧美午夜高清在线| 欧美日韩乱码在线| 大码成人一级视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产欧美日韩av| 俄罗斯特黄特色一大片| 女人精品久久久久毛片| 精品国产国语对白av| 久久欧美精品欧美久久欧美| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 国产高清videossex| 少妇 在线观看| 精品人妻在线不人妻| 国产一区二区在线av高清观看| 午夜福利在线观看吧| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 国产精品自产拍在线观看55亚洲| 女警被强在线播放| 日日爽夜夜爽网站| 此物有八面人人有两片| 亚洲精品美女久久av网站| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清 | 夜夜爽天天搞| 亚洲第一电影网av| 久久国产精品影院| 国产精品久久久久久精品电影 | 在线观看午夜福利视频| 国产精品永久免费网站| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站 | 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 激情在线观看视频在线高清| 国产蜜桃级精品一区二区三区| 十八禁人妻一区二区| www.熟女人妻精品国产| 夜夜看夜夜爽夜夜摸| 国产一区二区三区综合在线观看| 国产精品秋霞免费鲁丝片| 又黄又粗又硬又大视频| 欧美在线黄色| 在线观看午夜福利视频| 91老司机精品| 亚洲 国产 在线| 天天添夜夜摸| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 女生性感内裤真人,穿戴方法视频| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 精品日产1卡2卡| 在线观看66精品国产| 深夜精品福利| 亚洲欧美激情综合另类| 国产熟女xx| 国产一区在线观看成人免费| 亚洲国产欧美一区二区综合| 日韩欧美在线二视频| 一区二区三区激情视频| 啦啦啦 在线观看视频| 免费在线观看亚洲国产| 少妇熟女aⅴ在线视频| 久久精品aⅴ一区二区三区四区| 午夜福利视频1000在线观看 | 99热只有精品国产| 亚洲人成网站在线播放欧美日韩| 88av欧美| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 亚洲成人国产一区在线观看| av福利片在线| av电影中文网址| 久久婷婷人人爽人人干人人爱 | 成人特级黄色片久久久久久久| 十八禁网站免费在线| 两人在一起打扑克的视频| 岛国在线观看网站| 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 国产成人系列免费观看| 国产精品 国内视频| 亚洲情色 制服丝袜| 亚洲全国av大片| 99国产综合亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久av网站| 日本撒尿小便嘘嘘汇集6| 女人爽到高潮嗷嗷叫在线视频| 97人妻精品一区二区三区麻豆 | 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| 久久 成人 亚洲| 免费少妇av软件| 中亚洲国语对白在线视频| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 色播亚洲综合网| 久久久久久久久免费视频了| 自线自在国产av| 中文字幕另类日韩欧美亚洲嫩草| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产毛片av蜜桃av| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 国产三级在线视频| 国产精品久久视频播放| 久久久久久久久免费视频了| 神马国产精品三级电影在线观看 | 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 久久狼人影院| 大香蕉久久成人网| 成人永久免费在线观看视频| 日韩欧美一区视频在线观看| 午夜精品在线福利| 成人永久免费在线观看视频| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人看| 手机成人av网站| 天堂√8在线中文| 午夜福利成人在线免费观看| 国产成人欧美| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 波多野结衣巨乳人妻| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 精品久久久久久久人妻蜜臀av | 99国产综合亚洲精品| 精品日产1卡2卡| 黄色 视频免费看| 免费看美女性在线毛片视频| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 中国美女看黄片| 欧美乱码精品一区二区三区| 亚洲第一青青草原| 欧美黄色淫秽网站| 国产视频一区二区在线看| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 在线观看www视频免费| 国产亚洲精品久久久久5区| 亚洲精品国产色婷婷电影| 国产av在哪里看| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 88av欧美| 中出人妻视频一区二区| 激情视频va一区二区三区| 亚洲人成77777在线视频| 伦理电影免费视频| 亚洲精品在线观看二区| 久久久久九九精品影院| 一级毛片高清免费大全| 欧美黑人精品巨大| 久久久久精品国产欧美久久久| 久久人人爽av亚洲精品天堂| 最好的美女福利视频网| 搡老妇女老女人老熟妇| 免费在线观看日本一区| 国产精品久久久av美女十八| av福利片在线| 欧美日韩精品网址| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 成人av一区二区三区在线看| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 国产主播在线观看一区二区| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 91大片在线观看| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 国产精品99久久99久久久不卡| 露出奶头的视频| 最近最新中文字幕大全电影3 | 国产亚洲精品综合一区在线观看 | 窝窝影院91人妻| 在线永久观看黄色视频| 成人国语在线视频| 日韩免费av在线播放| 亚洲五月天丁香| 两性午夜刺激爽爽歪歪视频在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 一级毛片女人18水好多| 日韩欧美一区视频在线观看| 女人精品久久久久毛片| 大型黄色视频在线免费观看| 免费看十八禁软件| 国产精品国产高清国产av| 天天添夜夜摸| 日日夜夜操网爽| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 亚洲一区二区三区不卡视频| 国产精品九九99| 女人被狂操c到高潮| 在线十欧美十亚洲十日本专区| 亚洲无线在线观看| 夜夜躁狠狠躁天天躁| 精品一品国产午夜福利视频| 国产亚洲欧美98| 身体一侧抽搐| 日本 欧美在线| 激情在线观看视频在线高清| 久久中文字幕一级| 精品久久久久久久人妻蜜臀av | 香蕉国产在线看| 麻豆成人av在线观看| 大型av网站在线播放| 波多野结衣巨乳人妻| 欧美日本中文国产一区发布| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影 | 亚洲国产中文字幕在线视频| 久久人人精品亚洲av| 99久久国产精品久久久| 999精品在线视频| 久久久久九九精品影院| 黄色成人免费大全| 亚洲国产精品成人综合色| 99国产精品一区二区三区| 黄色视频,在线免费观看| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 日韩欧美国产在线观看| 久久亚洲精品不卡| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看| 国产区一区二久久| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 亚洲国产高清在线一区二区三 | 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区二区三区在线观看| 多毛熟女@视频| 亚洲片人在线观看| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜 | 日本免费一区二区三区高清不卡 | 在线十欧美十亚洲十日本专区| av在线天堂中文字幕| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕一级| 最新美女视频免费是黄的| 免费在线观看影片大全网站| 国产午夜精品久久久久久| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 久久久久久久精品吃奶| 日韩欧美在线二视频| 亚洲专区中文字幕在线| 亚洲国产精品成人综合色| 亚洲一区二区三区不卡视频| 久久久久久久午夜电影| 中文字幕久久专区| 88av欧美| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| 国产精品永久免费网站| 亚洲精品久久成人aⅴ小说| 精品午夜福利视频在线观看一区| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 亚洲熟女毛片儿| 成年人黄色毛片网站| 老司机靠b影院| 三级毛片av免费| 黑人巨大精品欧美一区二区蜜桃| 热99re8久久精品国产| 悠悠久久av| av福利片在线| 精品电影一区二区在线| 一级作爱视频免费观看| 国产99白浆流出| 久久性视频一级片| 激情视频va一区二区三区| 又大又爽又粗| 一级a爱视频在线免费观看| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 日本 欧美在线| 一区二区三区激情视频| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 亚洲精品国产区一区二| 国产欧美日韩一区二区精品| 亚洲精品国产区一区二| 久久香蕉激情| 韩国精品一区二区三区| bbb黄色大片| 成人国产一区最新在线观看| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 91麻豆av在线| av欧美777| 久久伊人香网站| 国产一卡二卡三卡精品| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3 | 欧美精品啪啪一区二区三区| 国产成人精品久久二区二区91| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 中文亚洲av片在线观看爽| 国产精品一区二区精品视频观看| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| 中国美女看黄片| 亚洲精品在线美女| 99在线视频只有这里精品首页| 纯流量卡能插随身wifi吗| 国产成人一区二区三区免费视频网站| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看|